期刊文献+
共找到25,640篇文章
< 1 2 250 >
每页显示 20 50 100
Design and experimental validation of a low-impact wing locking/release mechanism based on energy conversion strategy
1
作者 Yanbing Wang Honghao Yue +5 位作者 Jun Wu Xueting Pan Fei Yang Yong Zhao Jicheng Liu Xue Bai 《Defence Technology(防务技术)》 2026年第1期241-256,共16页
Conventional locking/release mechanisms often face challenges in aircraft wing separation processes,such as excessive impact loads and insufficient synchronization.These may cause structural damage to the airframe or ... Conventional locking/release mechanisms often face challenges in aircraft wing separation processes,such as excessive impact loads and insufficient synchronization.These may cause structural damage to the airframe or attitude instability,seriously compromising mission reliability.To address this engineering challenge,this paper proposes a multi-point low-impact locking/release mechanism based on the mobility model and energy conversion strategy.Through establishing a DOF constraint framework system,this paper systematically analyzes the energy transfer and conversion characteristics during the wing separation process,reveals the generation mechanism of impact loads,and conducts research on low-impact design based on energy conversion strategy.Building on this foundation,a single-point locking/release mechanism employing parallel trapezoidal key shaft structure was designed,which increases frictional contact time and reduces the energy release rate,thereby achieving low-impact characteristics.The mechanism's performance was validated through physical prototype development and systematic functional testing(including unlocking force,synchronization,and impact tests).Experimental results demonstrate:(1)Under 14 kN preload condition,the maximum unlocking force was only 92.54 N,showing a linear relationship with preload that satisfies the"strong-connection/weak-unlock"design requirement;(2)Wing separation was completed within 46 ms,with synchronization time difference among three separation mechanisms stably controlled within 12-14 ms,proving rapid and reliable operation;(3)The unlocking impact acceleration ranged between 26 and 73 g,below the 100 g design limit,confirming the effectiveness of the energy conversion strategy.The proposed low-impact locking/release mechanism design method based on energy conversion strategy resolves the traditional challenges of high impact and synchronization deficiencies.The synergistic optimization mechanism of"structural load reduction and performance improvement"provides a highly reliable technical solution for wing separable mechanisms while offering novel design insights for wing connection/separation systems engineering. 展开更多
关键词 Hypersonic vehicle Energy conversion strategy Low-impact Wing separation locking/release mechanism
在线阅读 下载PDF
Generation and dynamics of special mode-locked pulses in an ultrafast Er-doped fiber laser with SMF-GIMF-SMF saturable absorber 被引量:1
2
作者 LIN Yingjie ZENG Qiong +3 位作者 JI Yubo SONG Yufeng WANG Ke WANG Zhenhong 《Optoelectronics Letters》 2025年第5期265-270,共6页
In this paper, we have demonstrated an Er-doped ultrafast laser with a single mode fiber-gradient index multimode fiber-single mode fiber(SMF-GIMF-SMF, SMS) structure as saturable absorber(SA), which can generate not ... In this paper, we have demonstrated an Er-doped ultrafast laser with a single mode fiber-gradient index multimode fiber-single mode fiber(SMF-GIMF-SMF, SMS) structure as saturable absorber(SA), which can generate not only stable single-pulse state, but also special mode-locked pulses with the characteristics of high energy and noisy behaviors at proper pump power and cavity polarization state. In addition, we have deeply investigated the real-time spectral evolutions of the mode-locked pulses through the dispersive Fourier transformation(DFT) technique. It can be found that the pulse regime can actually consist of a lot of small noise pulses with randomly varying intensities. We believe that these results will further enrich the nonlinear dynamical processes in the ultrafast lasers. 展开更多
关键词 ultrafast laser ER doped fiber SMF GIMF SMF dispersive Fourier transformation saturable absorber sa mode locked pulses nonlinear dynamics saturable absorber
原文传递
Synchronized dual-wavelength mode-locked laser in normal dispersion regime
3
作者 Yangrui Shi Haojing Zhang +2 位作者 Yuxuan Ren Junsong Peng Heping Zeng 《Chinese Physics B》 2025年第9期228-232,共5页
Synchronized dual-wavelength mode-locked laser is investigated numerically and experimentally in the normal dispersion regime.A programmable optical processor is introduced to shape the spectral profile and adjust the... Synchronized dual-wavelength mode-locked laser is investigated numerically and experimentally in the normal dispersion regime.A programmable optical processor is introduced to shape the spectral profile and adjust the net dispersion,which is demonstrated be a convenient and reliable approach to generate dual-color solitons.The time-stretch dispersive Fourier transform and frequency-resolved optical grating techniques are utilized to measure the spectral and temporal characteristics of dual-color solitons,respectively.The numerical results are consistent with experimental results.This work may facilitate the development of filter-based mode-locked laser and the understanding of multi-wavelength soliton dynamics. 展开更多
关键词 fiber laser mode locking DUAL-WAVELENGTH
原文传递
Regulating hydrogen adsorption via built-in electric field-driven charge transfer at the heterointerface for enhanced alkaline/seawater hydrogen evolution
4
作者 Liang Yan Zhiyi Yin +3 位作者 Mengmeng Yue Wenli Yan Jingjing Deng Hao Li 《Journal of Materials Science & Technology》 2025年第33期215-224,共10页
The pursuit of high-purity,high-energy-density green hydrogen via water electrolysis remains a signif-icant challenge.This work reports the successful synthesis of a novel NiWO_(4)-Ni_(2)P heterostructure enriched wit... The pursuit of high-purity,high-energy-density green hydrogen via water electrolysis remains a signif-icant challenge.This work reports the successful synthesis of a novel NiWO_(4)-Ni_(2)P heterostructure enriched with abundant interfacial sites.Leveraging electron transfer from NiWO_(4)to Ni_(2)P,the resulting NiWO_(4)-Ni_(2)P electrocatalyst exhibits exceptional hydrogen evolution reaction(HER)performance.Combined experimental and theoretical studies demonstrate that the built-in electric field(BIEF)at the NiWO4-Ni2 P interface induces charge redistribution,modulating the d-band center and optimizing hydro-gen adsorption,thus leading to superior HER activity.An assembled NiFe LDH||NiWO_(4)-Ni_(2)P electrolyzer achieves a current density of 10 mA cm^(−2)at only 1.51 V in 1 M KOH.Furthermore,the NiWO_(4)-Ni_(2)P electrocatalyst and electrolyzer maintain remarkable electrocatalytic performance for hydrogen produc-tion even in seawater.This study offers a new approach for the rational design and development of high-performance heterogeneous electrocatalysts for hydrogen production from water splitting and other energy conversion applications. 展开更多
关键词 built-in electric field Charge transfer HETEROSTRUCTURE Hydrogen evolution
原文传递
Revealing the regulatory mechanism of built-in electric field in defective mesoporous MIL-125(Ti)@BiOCl S-scheme heterojunctions toward optimized photocatalytic performance
5
作者 Tingting Hu Panpan Feng +3 位作者 Hongqi Chu Teng Gao Fusheng Liu Wei Zhou 《Chinese Journal of Catalysis》 2025年第2期123-134,共12页
The rational configuration of built-in electric field(IEF)in heterogeneous materials can significantly optimize the band structure to accelerate the separation of photogenerated charge carriers.However,the strength mo... The rational configuration of built-in electric field(IEF)in heterogeneous materials can significantly optimize the band structure to accelerate the separation of photogenerated charge carriers.However,the strength modulation of IEF formed by various materials has an uncertain enhancing effect on the separation of photogenerated carriers.Herein,a mesoporous MIL-125(Ti)@BiOCl S-scheme heterojunction with controllable IEF is prepared by green photoreduction reaction to investigate the relationship between IEF,microstructure,and photocatalytic activity.Moreover,the corresponding results demonstrate the MIL-125(Ti)@BiOCl effectively regulates the IEF strength through controlling the concentration of ligand defects,thereby optimizing the band structure and improving the efficiency of photogenerated charge separation.The optimized IEF significantly enhances the photocatalytic degradation performance of mesoporous MIL-125(Ti)-3@BiOCl towards tetracycline,with a k value of 0.07 min^(–1),which are approximately 5.5 and 4.7 times greater than that of BiOCl(0.0127 min^(–1))and MIL-125(Ti)-3(0.015 min^(–1)).These findings provide a new pathway for regulating IEF within MOF-based heterojunctions,and offer new insights into the intrinsic correlations between defect structure,IEF,and photocatalytic activity. 展开更多
关键词 Photocatalysis built-in electric field Metal-organic framework BiOCl Ligand defect
在线阅读 下载PDF
Optimizing heterointerface of NiCoP–Co/MXene with regulated charge distribution via built-in electric field for efficient overall water-splitting
6
作者 Liang Yan Yong-Hang Chen +1 位作者 Jia-Chun Xie Hao Li 《Rare Metals》 2025年第2期1067-1083,共17页
The quest for sustainable energy solutions has intensified the need for efficient water electrolysis techniques,pivotal for hydrogen production.However,developing effective bifunctional electrocatalysts capable of dri... The quest for sustainable energy solutions has intensified the need for efficient water electrolysis techniques,pivotal for hydrogen production.However,developing effective bifunctional electrocatalysts capable of driving the hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)remains a formidable challenge.Addressing this,we introduce a novel built-in electric field(BEF)strategy to synthesize NiCoP–Co nanoarrays directly on Ti_(3)C_(2)T_(x) MXene substrates(NiCoP–Co/MXene).This approach leverages a significant work function difference(ΔΦ),propelling these nanoarrays as adept bifunctional electrocatalysts for comprehensive water splitting.MXene,in this process,plays a dual role.It acts as a conductive support,enhancing the catalyst’s overall conductivity,and facilitates an effective charge transport pathway,ensuring efficient charge transfer.Our study reveals that the BEF induces an electric field at the interface,prompting charge transfer from Co to NiCoP.This transfer modulates asymmetric charge distributions,which intricately control intermediates’adsorption and desorption dynamics.Such regulation is crucial for enhancing the reaction kinetics of both HER and OER.Furthermore,under oxidative conditions,the NiCoP–Co/MXene catalyst undergoes a structural metamorphosis into Ni(Co)oxides/hydroxides/MXene,increasing OER performance.This research demonstrates the BEF’s role in fine-tuning interfacial charge redistribution and underscores its potential in crafting more sophisticated electrocatalytic designs.The insights gained here could pave the way for the next generation of electrocatalysis,with far-reaching implications for energy conversion and storage technologies. 展开更多
关键词 built-in electric field Charge redistribution NiCoP-Co MXene Water splitting
原文传递
Interface engineering-induced built-in electric field enhances charge-transfer kinetics in centimeter-sized silicon anodes for lithium-ion batteries
7
作者 Baoguo Zhang Lin Wu +5 位作者 Xiaoyu Yang Ying Liu Jingwang Li Rongsheng Chen Feng Ma Ya Hu 《Journal of Materials Science & Technology》 2025年第34期1-9,共9页
Silicon(Si)anodes,with a theoretical specific capacity of 4200 mAh g^(-1),hold significant promise for the development of high-energy-density lithium-ion batteries(LIBs).However,practical applications are hindered by ... Silicon(Si)anodes,with a theoretical specific capacity of 4200 mAh g^(-1),hold significant promise for the development of high-energy-density lithium-ion batteries(LIBs).However,practical applications are hindered by sluggish charge transfer kinetics,substantial volume expansion,and an unstable solid elec-trolyte interphase during cycling.To address these challenges,we propose a centimeter-scale Si anode design featuring a three-dimensional continuous network structure of Si nanowires(SiNWs)decorated with high-density Ag nanoparticles(Ag-SiNWs-Net)on both the surface and internally.This architecture effectively mitigates mechanical stress from Si volume changes through the high-aspect-ratio wire network.Additionally,the distribution of Ag nanoparticles on the Si induces electronic structure redistribution,generating built-in electric fields that accelerate charge transfer within the Si,significantly enhancing rate performance and cycling stability.The Ag-SiNWs-Net anode achieves a high reversible capacity of 3780.9 mAh g^(-1)at 0.1 A g^(-1),with an initial coulombic efficiency of 85.1%.Moreover,the energy density of full cells assembled with Ag-SiNWs-Net anodes and LiFePO4 cathodes can be pushed further up to 395.8 Wh kg^(-1).This study offers valuable insights and methodologies for the development of high-capacity and practical Si anodes-. 展开更多
关键词 Interface engineering built-in electric field Charge-transfer kinetics Silicon anode Lithium-ion batteries
原文传递
Tailoring solvation sheath and desolvation processes of weakly solvated Zn^(2+) through heterointerfaces built-in electric field effects for ultra-stable aqueous zinc batteries
8
作者 Peng Cai Mengjun Li +7 位作者 Xin He Xianbo Zhou Zhenyu Lei Haomiao Li Min Zhou Wei Wang Kangli Wang Kai Jiang 《Advanced Powder Materials》 2025年第3期34-45,共12页
Solvated zinc ions are prone to undergo desolvation at the electrode/electrolyte interfaces,and unstable H_(2)O molecules within the solvated sheaths tend to trigger hydrogen evolution reaction(HER),further accelerati... Solvated zinc ions are prone to undergo desolvation at the electrode/electrolyte interfaces,and unstable H_(2)O molecules within the solvated sheaths tend to trigger hydrogen evolution reaction(HER),further accelerating interfaces decay.Herein,we propose for the first time a novel strategy to enhance the interfacial stabilities by insitu dynamic reconstruction of weakly solvated Zn2þduring the desolvation processes at heterointerfaces.Theoretical calculations indicate that,due to built-in electric field effects(BEFs),the plating/stripping mechanism shifts from[Zn(H_(2)O)_(6)]_(2)þto[Zn(H_(2)O)_(5)(SO_(4))^(2-)]_(2)þwithout additional electrolyte additives,reducing the solvation ability of H_(2)O,enhancing the competitive coordination of SO_(4)^(2-),essentially eliminating the undesirable side effects of anodes.Hence,symmetric cells can operate stably for 3000 h(51.7-times increase in cycle life),and the full cells can operate stably for 5000 cycles(51.5-times increase in cycle life).This study provides valuable insights into the critical design of weakly solvated Zn^(2+) þand desolvation processes at heterointerfaces. 展开更多
关键词 DESOLVATION Heterointerfaces Solvation sheath built-in electric field effects Zinc metal anodes
在线阅读 下载PDF
Harmonization of heterointerface states to enhance built-in electric field effects for electromagnetic wave absorption
9
作者 Hongbao Zhu Yi Yan +9 位作者 Jintang Zhou Jiaqi Tao Kexin Zou Zhenyu Cheng Zhengjun Yao Xuewei Tao Yiming Lei Yao Ma Peijiang Liu Hexia Huang 《Journal of Materials Science & Technology》 2025年第26期223-234,共12页
Heterointerface engineering based on built-in electric field(BIEF)has been well-received in electromagnetic wave(EMW)absorption.However,the influence of interface size and number of interfaces on the BIEF and interfac... Heterointerface engineering based on built-in electric field(BIEF)has been well-received in electromagnetic wave(EMW)absorption.However,the influence of interface size and number of interfaces on the BIEF and interface polarization loss mechanism remains unclear.Here,we designed a ternary dual het-erointerfaces Co@C/SiO_(2)nanocomposite.Experimental and theoretical analyses show that Co@C/SiO_(2)has abundant Mott-Schottky heterointerfaces,and a reasonable increase in the heterointerface area leads to a strong BIEF effect,where the charge accumulates at the interface and subsequently migrates along the direction of the alternating electromagnetic field to promote the dissipation of EMW by polarization loss.However,an excessive number of interfaces leads to many carriers being bound by the interfaces,which is not conducive to forming electron channels.By coordinating the heterointerface states to achieve optimal EMW absorption performance,SZ-3 can accomplish an effective absorption width(EAB)of 5.93 GHz at a thickness of 1.91 mm.This work provides new ideas and methods for BIEF-based heterointerface engineering applied to EMW absorption materials. 展开更多
关键词 Electromagnetic wave absorption HETEROINTERFACE built-in electric field Polarization loss Interface state
原文传递
A Simple and Reliable Eccentric Locking Mechanism
10
作者 Mengjiao NIU Yong ZHAO Yongliang YUAN 《Mechanical Engineering Science》 2025年第2期34-38,共5页
In view of the time-consuming and unreliable deficiencies of the cross-axis work piece in the clamping process,combined with the working characteristics of the eccentric mechanism,a simple and fast eccentric locking m... In view of the time-consuming and unreliable deficiencies of the cross-axis work piece in the clamping process,combined with the working characteristics of the eccentric mechanism,a simple and fast eccentric locking mechanism is designed.The push rod iquickly driven by the combined action of the handle and the drum,so that the cross shaft work piece can be quickly locked in the axial direction.The eccentric locking mechanism not only has simple operation and convenient maintenance,but also has the characteristics of low manufacturing cost and high life,and has certain reference value for future special fixture design. 展开更多
关键词 cross shaft eccentric mechanism locking mechanism special fixture
在线阅读 下载PDF
Constructing P-O bridge at heterogeneous interface to enhance built-in electric field to facilitate the surface reconstruction of carbon coated OER catalyst
11
作者 Zhicheng Xu Mingfeng Zhong +1 位作者 Pingan Liu Zhijie Zhang 《Journal of Energy Chemistry》 2025年第7期123-132,共10页
Constructing heterostructures and facilitating surface reconstruction are effective ways to obtain excellent catalysts for the oxygen evolution reaction(OER).Surface reconstruction is a dynamic process that is affecte... Constructing heterostructures and facilitating surface reconstruction are effective ways to obtain excellent catalysts for the oxygen evolution reaction(OER).Surface reconstruction is a dynamic process that is affected by the built-in electric field of the heterostructure.In this study,P/N co-doped carbon-coated NiCo/Ni-CoO heterostructure was prepared by in situ acid etching,aniline polymerization,and pyrolysis.This method can form a tightly connected heterogeneous interface.It was found that introducing P-O bonds in the carbon shell can increase its work function,thereby enhancing the built-in electric field between the carbon shell and the core catalyst.Detailed characterizations confirm that the P-O bridge at the heterogeneous interface can provide an electron flow highway from the core to the shell.The generated carbon defects generated by P leaching during surface reconstruction also have strong electronabsorbing capacity.These effects promote the conversion of Co^(2+)to Co^(3+),thereby providing more highly active sites.The resulting catalyst shows significantly enhanced activity and stability.This study demonstrates the promoting effect of the built-in electric field on the surface reconstruction of the catalyst and emphasizes the importance of the construction of tightly connected heterogeneous interface,which is instructive for the design of excellent OER catalysts. 展开更多
关键词 HETEROSTRUCTURE built-in electric field Electron flow highway Surface reconstruction Oxygen evolution reaction
在线阅读 下载PDF
Heterojunctions engineered electron-deficient Co/oxygen vacancy-rich MnO_(2) triggers local built-in electric field within porous carbon fiber for PMS activation and rapid pollutant degradation
12
作者 Zhenxiao Wang Shuguang Ning +10 位作者 Xiang Liu Hongyao Zhao Wanyu Zhang Liying Cao Yanyun Wang Danhong Shang Linzhi Zhai Tongyi Yang Feng Zeng Yangping Zhang Fu Yang 《Rare Metals》 2025年第10期7486-7499,共14页
The advanced oxidation process presents a perfect solution for eliminating organic pollutants in water resources,and the local microenvironment and surface state of metal reactive sites are crucial for the selective a... The advanced oxidation process presents a perfect solution for eliminating organic pollutants in water resources,and the local microenvironment and surface state of metal reactive sites are crucial for the selective activation of peroxomonosulfate(PMS),which possibly determines the degradation pathways of organic contaminants.In this study,by virtue of the precursor alternation,we constructed the state-switched dual metal species with the porous carbon fibers through the electrospinning strategy.Impressively,the optimal catalyst,featuring the electron-deficient cobalt surface oxidative state and most abundant oxygen vacancies(Ov)with MnO_(2)within porous carbon fibers,provides abundant mesoporosity,facilitating the diffusion and accommodation of big carbamazepine molecules during the reaction process.Benefiting from the tandem configuration of carbon fiber-encapsulated nanocrystalline species,a p-n heterojunction configuration evidenced by Mott-Schottky analysis induced local built-in electric field(BIEF)between electron-deficient cobalt and Ov-rich MnO_(2)within carbon matrix-mediated interfacial interactions,which optimizes the adsorption and activation of PMS and intermediates,increases the concentration of reactive radicals around the active site,and significantly enhances the degradation performance.As a result,the optimal catalyst could achieve 100%degradation of 20 ppm carbamazepine(CBZ)within only 4 min with a rate constant of 1.099 min^(-1),showcasing a low activation energy(50 kJ mol^(-1)),obviously outperforming the other counterparts.We further demonstrated the generation pathways of active species by activation of PMS mainly including sulfate radical(·SO_(4)^(-)),hydroxyl radical(·OH),superoxide radicals(·O_(2)^(-)),and singlet oxygen(^(1)O_(2)),unveiling their contribution to CBZ degradation.The degradation route of CBZ and toxicity analysis of various intermediates were further evaluated.By anchoring the optimal catalyst onto polyester fiber sponge,the photothermal conversion synergistic monolith floatable catalyst and its easy recovery can be achieved,showing good reproducibility and generalizability in the practical application. 展开更多
关键词 Advanced oxidation Heterojunction engineering Oxygen vacancies Integral degradation devices built-in electric field
原文传递
Transient Dynamic Research of Deployable and Lockable Mechanism for Multi-Wing Considering Multiple Factors
13
作者 Guangqing Zhai Jianguo Tao +5 位作者 Hong Xiao Chen Yao Runchao Zhao Hongwei Guo Guang Yang Rongqiang Liu 《Chinese Journal of Mechanical Engineering》 2025年第4期483-503,共21页
The spatial constraints of aircraft have accelerated the development of multi-wing deployable mechanisms.These systems enable the rapid,sub-second deployment of multiple folding wings,which generate high-energy impact... The spatial constraints of aircraft have accelerated the development of multi-wing deployable mechanisms.These systems enable the rapid,sub-second deployment of multiple folding wings,which generate high-energy impacts upon locking-resulting in oscillations that can adversely affect aerodynamic performance.Despite their importance,the transient dynamic characteristics during deployment and locking remain insufficiently explored.This study presents an integrated dynamic model for a single-actuator,multi-wing deployable mechanism that accounts for joint clearances,component elasticity,and locking collisions.This model is used to analyze the influence of transient driving on the motion errors of multiple folding wings,the locking oscillation amplitude,and the complete stabilization time.Results indicate that as the driving force and transient deployment speed increase,all dynamic performance characteristics are notably affected.Specifically,raising the transient driving force from 3000 to 7000 N leads to a maximum increase of 60.8%in oscillation amplitude and 78.4%in stabilization time.By comparing the results of the prototype experiment with the theoretical model,it is found that the errors of the maximum locking oscillation amplitude and the complete stabilization time for the three groups of folding wings are all within the acceptable range,which verifies the theoretical model.These findings advance the theoretical understanding of transient deployment dynamics and locking oscillations in high-speed deployable mechanisms. 展开更多
关键词 Folding wing Transient mechanism Dynamic characteristics locking collision
在线阅读 下载PDF
Dual built-in electric field engineering in heterostructure nickel-cobalt bimetallic composites for boosted electromagnetic energy dissipation
14
作者 Jin Liang Siying Zhu +6 位作者 Dewei Chen Yinjun Li Dong Zhou Nan Meng Yaozu Liao Hanxu Sun Jie Kong 《Advanced Powder Materials》 2025年第6期193-203,共11页
Built-in electric fields(BIEF),engineered via space charge manipulation,represent an effective strategy for enhance electromagnetic loss.However,single BIEF fail to reconcile the impedance matching and strong electrom... Built-in electric fields(BIEF),engineered via space charge manipulation,represent an effective strategy for enhance electromagnetic loss.However,single BIEF fail to reconcile the impedance matching and strong electromagnetic attenuation across broad frequency spectra,resulting in limited effective absorption bandwidth(EAB).To address this,dual-BIEF are constructed utilizing an asymmetric gradient electric field structure and multi-polarization center coordination to achieve high-efficiency broad EAB.Herein,heterostructure Ni-Co bimetallic nanocomposites(Ni_(0.5)Co_(0.5)@NiCoO_(2)/NCP)are constructed via Ni-Co-based nanocomposites(NiCoO_(2)and Ni_(0.5)Co_(0.5))integrated with nitrogen-doped nanoporous carbon(NCP).This configuration forms dual heterojunctions the NCP-NiCoO_(2)-semiconductor heterojunction and the NiCoO_(2)-Ni_(0.5)Co_(0.5)Mott-Schottky heterojunction—forming the dual-BIEF system.The superposed dual-BIEF drives charge-pumping dynamics facilitating oriented transfer and transition of charges that strengthen interfacial polarization and reduced relaxation times.Theoretical calculations confirm this system simultaneously modulates conductivity,intensifies polarization relaxation,promotes charge separation,and optimizes dipole distribution.Dielectric loss from semiconductor junctions dominates the low-frequency regime,while conductive loss via Mott-Schottky junctions prevails at high frequencies.Thus,the Ni_(0.5)Co_(0.5)@NiCoO_(2)/NCP achieves excellent microwave absorption with a remarkable minimum reflection loss of51.5 dB,and an EAB of 6.4 GHz at 2.8 mm thickness.This work establishes a dual-BIEF strategy for effectively engineering high-performance electromagnetic wave absorption materials. 展开更多
关键词 Electromagnetic wave absorption Nickel-cobalt bimetallic composites Dual built-in electric field Semiconductor heterojunction Mott-Schottky heterojunction
在线阅读 下载PDF
Built-in electric field induced by defected carbons adjacent to graphitic nitrogen valley for efficient oxygen reduction reaction and zinc-air batteries
15
作者 Na Li Tingting Ma +9 位作者 Huihui Wang Jiayi Li Dingrong Qiu Zhen Meng Jiangdu Huang Lijun Sui Faming Han Huidan Lu Yongping Liu Sundaram Chandrasekaran 《Journal of Energy Chemistry》 2025年第4期813-825,共13页
Rational design of defected carbons adjacent to nitrogen(N)dopants is a fascinating but challenging approach for enhancing the catalytic performance of N-doped carbon.Meanwhile,the combined effect of heteroatom doping... Rational design of defected carbons adjacent to nitrogen(N)dopants is a fascinating but challenging approach for enhancing the catalytic performance of N-doped carbon.Meanwhile,the combined effect of heteroatom doping and defect engineering can efficiently increase the oxygen reduction reaction(ORR)ability of inactive carbons through charge redistribution.Herein,we report that an enhanced built-in electric field caused by the combined effect of N-doping and carbon defects in the twodimensional(2D)mesoporous N-doped carbon nano flakes(NCNF)is a promising technique for improving ORR performance.As a result,the NCNF exhibits more promising ORR activity than Pt/C and similar performance with reported robust catalysts.Comprehensive experimental and theoretical investigations suggest that topologically defected carbon adjacent to the graphitic valley nitrogen is a real active site,rendering optimal energy for the adsorption of ORR intermediates and lowering the total energy barrier for ORR.Also,NCNF-based Zn-air batteries exhibited an excellent power density and specific capacity of~121.10 mW cm^(-2)and~679.86 mA h g_(Zn)^(-1),respectively.This study not only offers new insights into defected carbons with graphitic valley N for ORR but also proposes novel catalyst design principles and provides a solid grasp of the built-in electric field effect on the ORR performance of defective catalysts. 展开更多
关键词 Defective carbon built-in electric field Graphitic valley nitrogen-doped carbon defects Oxygen reduction reaction Zn-air batteries
在线阅读 下载PDF
Synergistic interlayer confinement and built-in electric field construct reconstruction-inhibited cobalt selenide for robust oxygen evolution at high current density
16
作者 Yuanhua Xiao Jinhui Shou +8 位作者 Shiwei Zhang Ya Shen Junwei Liu Dangcheng Su Yang Kong Xiaodong Jia Qingxiang Yang Shaoming Fang Xuezhao Wang 《Chinese Chemical Letters》 2025年第11期483-489,共7页
Transition metal selenides(TMS)demonstrate exceptional catalytic activity in the oxygen evolution reaction(OER),yet their performance is hindered by surface reconstruction under OER conditions,particularly at high cur... Transition metal selenides(TMS)demonstrate exceptional catalytic activity in the oxygen evolution reaction(OER),yet their performance is hindered by surface reconstruction under OER conditions,particularly at high current densities.This study reveals that embedding Co_(0.85)Se nanoparticles into the interlayer spacing of MXene-Ti_(3)C_(2)effectively suppresses surface reconstruction during OER.This configuration establishes a Schottky heterojunction with an intrinsic built-in electric field(BEF)between Co_(0.85)Se and Ti_(3)C_(2),which enhances charge redistribution and accelerates electron transport.Consequently,the Co_(0.85)Se@Ti_(3)C_(2)composite exhibits outstanding OER performance,achieving low overpotentials(230 m V at 100 m A/cm^(2),376 m V at 1000 m A/cm^(2),417 m V at 1500 m A/cm^(2))and exceptional durability(200 h at200 m A/cm^(2)).In-situ XRD/Raman characterization verifies that the encapsulated Co_(0.85)Se within Ti_(3)C_(2)inhibits CoOOH formation on the surface during OER.Both experimental and theoretical investigations indicate that the heterojunction's superhydrophilicity/superaerophobicity,synergized with BEF-regulated oxygen intermediate adsorption/desorption,collectively enhance catalytic efficiency of Co_(0.85)Se@Ti_(3)C_(2).This strategy of spatially confining chalcogenide catalysts to prevent structural degradation while leveraging interfacial electric fields presents a rational approach for developing durable electrocatalysts in highcurrent densities water electrolysis. 展开更多
关键词 Co_(0.85)Se MXene Prevent reconstruction built-in electric field Oxygen evolution
原文传递
Work function-induced spontaneous built-in electric field in Ir/MoSe_(2)for efficient PEM water electrolysis
17
作者 Bingjie Zhang Chunyan Wang +2 位作者 Fulin Yang Shuli Wang Ligang Feng 《Chinese Journal of Catalysis》 2025年第8期95-104,共10页
Bifunctional Ir catalysts for proton exchange membrane(PEM)water electrolysis offer transformative potential by streamlining electrolyzer while achieving efficient performance remains challenging due to the distinct c... Bifunctional Ir catalysts for proton exchange membrane(PEM)water electrolysis offer transformative potential by streamlining electrolyzer while achieving efficient performance remains challenging due to the distinct conditions required for oxygen and hydrogen evolution reaction(OER and HER).Herein,we propose a theory-directed design of Ir-based bifunctional catalysts,Ir nanoparticles supported on mesoporous carbon spheres embedded with MoSe_(2)(Ir/MoSe_(2)@MCS),leveraging a work function(WF)-induced spontaneous built-in electric field to enhance catalytic performance.They demonstrate exceptional kinetics for both OER and HER,and potential application in the practical PEM electrolyzer,showcasing the effectiveness of this innovative approach.Low overpotentials of 252 mV for OER and 28 mV for HER to drive 10 mA cm^(-2)were observed,and the PEM electrolyzer showed the current density of 2 A cm^(-2)at 1.87 V and maintained stable activity at 1.65 V for over 30 h to deliver 1 A cm^(-2).Density functional theory calculations reveal that the WF difference at Ir/MoSe_(2)interface induces a spontaneous built-in electric field with asymmetric charge distributions,that modulate the electronic environment and d-band center of Ir promoting bifunctional active phase formation.This significantly lowers reaction barriers for water splitting by balancing intermediate adsorption,endowing the bifunctional activity. 展开更多
关键词 Proton exchange membrane water electrolysis built-in electric field Work function Bifunctional electrocatalyst Iridium catalyst
在线阅读 下载PDF
A two-stage injection locking amplifier based on a cavity magnonic oscillator
18
作者 Mun Kim Chunlei Zhang +2 位作者 Chenyang Lu Jacob Burgess Can-Ming Hu 《Chinese Physics B》 2025年第6期154-159,共6页
A cavity magnonic oscillator uses the coupling of a planar transmission line oscillator(cavity) and spin excitations(magnons) in a ferrimagnetic material to achieve superior frequency stability and reduced phase noise... A cavity magnonic oscillator uses the coupling of a planar transmission line oscillator(cavity) and spin excitations(magnons) in a ferrimagnetic material to achieve superior frequency stability and reduced phase noise. Like many low phase noise oscillators, a cavity magnonic oscillator faces the challenge that its narrow resonance profile is not well suited for injection locking amplification. This work presents an improved design for such an oscillator configured as an injection locking amplifier(ILA) with an extended lock range. The proposed design features a two-stage architecture, consisting of a pre-amplification oscillator and a cavity magnonic oscillator, separated by an isolator to prevent backward locking.By optimizing the circuit parameters of each stage, the proposed design achieved an order of magnitude increase in lock range, when compared to its predecessors, all while preserving the phase noise quality of the input, making it well-suited for narrowband, sensitive signal amplification. Furthermore, this work provides a method for using oscillators with high spectral purity as injection locking amplifiers. 展开更多
关键词 cavity magnonic oscillator injection locking amplifier
原文传递
Slip rate and locking degree of Haiyuan fault zone,northeastern Qinghai-Xizang plateau,based on refined block model and GPS data
19
作者 Yang Liu Yuxuan Qiu +2 位作者 Jialiang Liu Yu Zhang Caijun Xu 《Geodesy and Geodynamics》 2025年第5期536-545,共10页
As a major fault in the northeastern Qinghai-Xizang Plateau,the Haiyuan fault zone is important for understanding the regional deformation.Aiming at the differences in the slip rate and locking degree obtained from di... As a major fault in the northeastern Qinghai-Xizang Plateau,the Haiyuan fault zone is important for understanding the regional deformation.Aiming at the differences in the slip rate and locking degree obtained from different studies,this study constructs a refined block model(including Qilian,Alxa,Ordos,Xining,Haiyuan,and Lanzhou blocks)and uses the grid search and simulated annealing methods to invert GPS data for slip rate and locking degree of the Haiyuan fault zone.The results are as follows:(1)The sinistral slip rates in the western,middle,and eastern segments are 4.93-5.22 mm/a,1.52-4.94 mm/a,and 0.43-1.18 mm/a,decreasing eastward on the whole,while the compression rates are 0.45-1.26 mm/a,0.58-2.62 mm/a,and3.52-4.48 mm/a,increasing eastward on the whole.(2)The locking depth of the western segment increases from about 5 km to about 20 km eastward;the middle segment decreases and then increases eastward;the eastern segment concentrates at about 20 km(PHI is about 0.86).(3)The slip deficit is relatively higher in the Lenglongling,Jinqianghe,Maomaoshan,and Liupanshan faults(averaging about 3.42 mm/a,4.16 mm/a,4.23 mm/a,and 3.43 mm/a within 20 km).(4)The Qilian,Alxa,Xining,Lanzhou,and Haiyuan blocks rotate clockwise,while the Ordos block rotates counterclockwise.Additionally,by comparing different block models,the Haiyuan block should be considered independently.The Haiyuan fault zone adjusts surrounding block movements and uplifts Liupanshan mountain tectonically.The results can provide important references for understanding the regional earthquake risk and deformation mechanism. 展开更多
关键词 Haiyuan fault zone Block model locking degree Slip rate
原文传递
An Innovative Large-Scale Preparation Method for ODS Steel:Zone Melting with Built-In Precursor Powder
20
作者 Haoyu Cheng Chenyang Hou +5 位作者 Jianlei Zhang Xiaodong Mao Yuanxiang Zhang Yanyun Zhao Chulun Shen Changjiang Song 《Acta Metallurgica Sinica(English Letters)》 2025年第8期1397-1409,共13页
To develop a melting-based larger-scale fabrication process for oxide dispersion strengthened(ODS)steel,this study proposed a method of zone melting with built-in precursor powder(ZMPP),followed by hot forging and agi... To develop a melting-based larger-scale fabrication process for oxide dispersion strengthened(ODS)steel,this study proposed a method of zone melting with built-in precursor powder(ZMPP),followed by hot forging and aging treatments.A 50 kg ingot was successfully prepared,highlighting the scalability of this innovative process.Microstructural analysis revealed a predominantly lath martensite matrix with a small amount of ferrite in the hot-forged ODS steel,without oxide particle aggregation.Aging at 750℃ resulted in the formation of sub-micron-sized Cr_(23)C_(6) particles at grain boundaries and martensitic lath interfaces,accompanied by a high-density(7.64×1023 m^(-3))nano-scale(~6 nm)Y-Si-O complex oxides after 25 h.Additionally,the hot-forged sample exhibited a high yield strength(871 MPa)but limited ductility(5.0%).Aging treatments led to an increase in ductility but a decrease in yield strength.Notably,prolonged aging maintained the strength level of steels while enhancing ductility,with a 23.3% total elongation observed after 25 h.The novel ZMPP method,preparing high-quality ODS steels with uniform microstructure and good mechanical properties,provided a new avenue for large-scale production of ODS steels. 展开更多
关键词 Oxide dispersion strengthened(ODS)steel Zone melting built-in precursor powder Particle precipitation Mechanical properties
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部