After a comprehensive literature review and analysis, a unified cloud computing framework is proposed, which comprises MapReduce, a vertual machine, Hadoop distributed file system (HDFS), Hbase, Hadoop, and virtuali...After a comprehensive literature review and analysis, a unified cloud computing framework is proposed, which comprises MapReduce, a vertual machine, Hadoop distributed file system (HDFS), Hbase, Hadoop, and virtualization. This study also compares Microsoft, Trend Micro, and the proposed unified cloud computing architecture to show that the proposed unified framework of the cloud computing service model is comprehensive and appropriate for the current complexities of businesses. The findings of this study can contribute to the knowledge for academics and practitioners to understand, assess, and analyze a cloud computing service application.展开更多
Since its birth in the early 90 's,digital forensics has been mainly focused on collecting and examining digital evidence from computers and networks that are controlled and owned by individuals or organizations.A...Since its birth in the early 90 's,digital forensics has been mainly focused on collecting and examining digital evidence from computers and networks that are controlled and owned by individuals or organizations.As cloud computing has recently emerged as a dominant platform for running applications and storing data,digital forensics faces well-known challenges in the cloud,such as data inaccessibility,data and service volatility,and law enforcement lacks control over the cloud.To date,very little research has been done to develop efficient theory and practice for digital forensics in the cloud.In this paper,we present a novel framework,Cloud Foren,which systematically addresses the challenges of forensics in cloud computing.Cloud Foren covers the entire process of digital forensics,from the initial point of complaint to the final point where the evidence is confirmed.The key components of Cloud Foren address some challenges,which are unique to the cloud.The proposed forensic process allows cloud forensic examiner,cloud provider,and cloud customer collaborate naturally.We use two case studies to demonstrate the applicability of Cloud Foren.We believe Cloud Foren holds great promise for more precise and automatic digital forensics in a cloud computing environment.展开更多
Cloud computing is touted as the next big thing in the Information Technology (IT) industry, which is going to impact the businesses of any size and yet the security issue continues to pose a big threat on it. The sec...Cloud computing is touted as the next big thing in the Information Technology (IT) industry, which is going to impact the businesses of any size and yet the security issue continues to pose a big threat on it. The security and privacy issues persisting in cloud computing have proved to be an obstacle for its widespread adoption. In this paper, we look at these issues from a business perspective and how they are damaging the reputation of big companies. There is a literature review on the existing issues in cloud computing and how they are being tackled by the Cloud Service Providers (CSP). We propose a governing body framework which aims at solving these issues by establishing relationship amongst the CSPs in which the data about possible threats can be generated based on the previous attacks on other CSPs. The Governing Body will be responsible for Data Center control, Policy control, legal control, user awareness, performance evaluation, solution architecture and providing motivation for the entities involved.展开更多
Cloud computing plays a very important role in the development of business and competitive edge for many organisations including SMEs (Small and Medium Enterprises). Every cloud user continues to expect maximum servic...Cloud computing plays a very important role in the development of business and competitive edge for many organisations including SMEs (Small and Medium Enterprises). Every cloud user continues to expect maximum service, and a critical aspect to this is cloud security which is one among other specific challenges hindering adoption of the cloud technologies. The absence of appropriate, standardised and self-assessing security frameworks of the cloud world for SMEs becomes an endless problem in developing countries and can expose the cloud computing model to major security risks which threaten its potential success within the country. This research presents a security framework for assessing security in the cloud environment based on the Goal Question Metrics methodology. The developed framework produces a security index that describes the security level accomplished by an evaluated cloud computing environment thereby providing the first line of defence. This research has concluded with an eight-step framework that could be employed by SMEs to assess the information security in the cloud. The most important feature of the developed security framework is to devise a mechanism through which SMEs can have a path of improvement along with understanding of the current security level and defining desired state in terms of security metric value.展开更多
In cloud computing environment, as the infrastructure not owned by users, it is desirable that its security and integrity must be protected and verified time to time. In Hadoop based scalable computing setup, malfunct...In cloud computing environment, as the infrastructure not owned by users, it is desirable that its security and integrity must be protected and verified time to time. In Hadoop based scalable computing setup, malfunctioning nodes generate wrong output during the run time. To detect such nodes, we create collaborative network between worker node (i.e. data node of Hadoop) and Master node (i.e. name node of Hadoop) with the help of trusted heartbeat framework (THF). We propose procedures to register node and to alter status of node based on reputation provided by other co-worker nodes.展开更多
In the last few years, cloud computing (CC) has grown from being a promising business concept to one of the fastest growing segments of the IT industry. Many businesses including small, medium (SMEs) and large enterpr...In the last few years, cloud computing (CC) has grown from being a promising business concept to one of the fastest growing segments of the IT industry. Many businesses including small, medium (SMEs) and large enterprises are migrating to this technology. The objective of this paper was to describe the opinions of enterprises about the benefits and challenges of cloud computing services in the private and public companies in South Lebanon. During 2019, a cross-sectional study which enrolled 29 enterprises used CC was conducted. The survey included questions on socio-demographic characteristics of representative of companies, and companies’ factors in reference to the technology, organization, and environment (TOE) framework. Most (58.6%) of companies were private and micro and SMEs sized (86.8%). The cost saving (75.0%), scalability and flexibility (75.9%), security (44.8%), and improved service delivery were the main benefits that cloud offer to the business. The security aspect, the cost, and the limited provision of infra-structure remain a challenge for the adoption of CC. In conclusion, the research reveals the potential for the development of CC and obstacles for successful implementation of this new technology.展开更多
Cloud computing is a type of emerging computing technology that relies on shared computing resources rather than having local servers or personal devices to handle applications. It is an emerging technology that provi...Cloud computing is a type of emerging computing technology that relies on shared computing resources rather than having local servers or personal devices to handle applications. It is an emerging technology that provides services over the internet: Utilizing the online services of different software. Many works have been carried out and various security frameworks relating to the security issues of cloud computing have been proposed in numerous ways. But they do not propose a quantitative approach to analyze and evaluate privacy and security in cloud computing systems. In this research, we try to introduce top security concerns of cloud computing systems, analyze the threats and propose some countermeasures for them. We use a quantitative security risk assessment model to present a multilayer security framework for the solution of the security threats of cloud computing systems. For evaluating the performance of the proposed security framework we have utilized an Own-Cloud platform using a 64-bit quad-core processor based embedded system. Own-Cloud platform is quite literally as any analytics, machine learning algorithms or signal processing techniques can be implemented using the vast variety of Python libraries built for those purposes. In addition, we have proposed two algorithms, which have been deployed in the Own-Cloud for mitigating the attacks and threats to cloud-like reply attacks, DoS/DDoS, back door attacks, Zombie, etc. Moreover, unbalanced RSA based encryption is used to reduce the risk of authentication and authorization. This framework is able to mitigate the targeted attacks satisfactorily.展开更多
The purpose of this study is to examine the different factors that are expected to influence the intention of hospitals to adopt cloud computing in Jordan. This study is conducted using quatititative methodology. 223 ...The purpose of this study is to examine the different factors that are expected to influence the intention of hospitals to adopt cloud computing in Jordan. This study is conducted using quatititative methodology. 223 questionnaires were distributed to the IT departments of different hospitals to evaluate their ability and willingness to adopt cloud computing. The data were tested using multiple regression in order to determine whether Technology, Organizational, and Environmental factors (TOE) played a role in hospitals’ decision to consider cloud computing as a beneficial investment. The findings of this study showed that all the factors had a significant positive impact on the intention of hospitals to adopt cloud computing, with the Technological factor having the most impact on the decision made.展开更多
The tremendous growth of the cloud computing environments requires new architecture for security services. Cloud computing is the utilization of many servers/data centers or cloud data storages (CDSs) housed in many d...The tremendous growth of the cloud computing environments requires new architecture for security services. Cloud computing is the utilization of many servers/data centers or cloud data storages (CDSs) housed in many different locations and interconnected by high speed networks. CDS, like any other emerging technology, is experiencing growing pains. It is immature, it is fragmented and it lacks standardization. Although security issues are delaying its fast adoption, cloud computing is an unstoppable force and we need to provide security mechanisms to ensure its secure adoption. In this paper a comprehensive security framework based on Multi-Agent System (MAS) architecture for CDS to facilitate confidentiality, correctness assurance, availability and integrity of users' data in the cloud is proposed. Our security framework consists of two main layers as agent layer and CDS layer. Our propose MAS architecture includes main five types of agents: Cloud Service Provider Agent (CSPA), Cloud Data Confidentiality Agent (CDConA), Cloud Data Correctness Agent (CDCorA), Cloud Data Availability Agent (CDAA) and Cloud Data Integrity Agent (CDIA). In order to verify our proposed security framework based on MAS architecture, pilot study is conducted using a questionnaire survey. Rasch Methodology is used to analyze the pilot data. Item reliability is found to be poor and a few respondents and items are identified as misfits with distorted measurements. As a result, some problematic questions are revised and some predictably easy questions are excluded from the questionnaire. A prototype of the system is implemented using Java. To simulate the agents, oracle database packages and triggers are used to implement agent functions and oracle jobs are utilized to create agents.展开更多
In the modern arena, the Information and Communication Technologies (ICTs) have been playing a vital role in every walks of our day to day life. In order to enhance the ICT capacity and align with the global technolog...In the modern arena, the Information and Communication Technologies (ICTs) have been playing a vital role in every walks of our day to day life. In order to enhance the ICT capacity and align with the global technology transformations, the developing countries have started introducing the computerization and automation processes at different levels of the governments. The several research studies revealed that the existing legacy of governance system and their services in current state have several issues and challenges in terms of timeliness, cost of services, delay in service delivery, time-bound availability of services (24/7/365), inefficiency services, ease of service and discomforts, poor service collaboration, absence of responsiveness, and limited security of sensitive information/documents. A significant question is still unanswered that how to bring the Citizens and Government bodies closer for alleviating the aforementioned issues and challenges of existing government system services. This research paper aims to investigate the issues and challenges in the current status of Governance and partial E-Governance systems which encompass the computerization or automation process. The research designs a cloud framework for effective delivery of citizen centric services in general and Ethiopia as a specific case study. After rigorous analysis of prior research efforts, along with primary survey and interview, it was clearly observed that cloud computing can be an alternative instrumental for significant transformation of governmental service delivery. The research paper used a mix of exploratory and constructive research design and methodology with qualitative & quantitative data analysis approach. Finally, a Cloud Based E-Governance (CBEG) Framework is designed for the delivery of Ethiopian Citizen Centric Services. The validation, evaluation and acceptance test of the framework proves that the revealed knowledge can provide a significant transformation towards the betterment of the E Governance Services Delivery Systems.展开更多
User’s data is considered as a vital asset of several organizations.Migrating data to the cloud computing is not an easy decision for any organization due to the privacy and security concerns.Service providers must e...User’s data is considered as a vital asset of several organizations.Migrating data to the cloud computing is not an easy decision for any organization due to the privacy and security concerns.Service providers must ensure that both data and applications that will be stored on the cloud should be protected in a secure environment.The data stored on the public cloud will be vulnerable to outside and inside attacks.This paper provides interactive multi-layer authentication frameworks for securing user identities on the cloud.Different access control policies are applied for verifying users on the cloud.A security mechanism is applied to the cloud application that includes user registration,granting user privileges,and generating user authentication factor.An intrusion detection system is embedded to the security mechanism to detect malicious users.The multi factor authentication,intrusion detection,and access control techniques can be used for ensuring the identity of the user.Finally,encryption techniques are used for protecting the data from being disclosed.Experimental results are carried out to verify the accuracy and efficiency of the proposed frameworks and mechanism.The results recorded high detection rate with low false positive alarms.展开更多
Soil moisture plays an important role in crop yield estimation,irrigation management,etc.Remote sensing technology has potential for large-scale and high spatial soil moisture mapping.However,offline remote sensing da...Soil moisture plays an important role in crop yield estimation,irrigation management,etc.Remote sensing technology has potential for large-scale and high spatial soil moisture mapping.However,offline remote sensing data processing is time-consuming and resource-intensive,and significantly hampers the efficiency and timeliness of soil moisture mapping.Due to the high-speed computing capabilities of remote sensing cloud platforms,a High Spatial Resolution Soil Moisture Estimation Framework(HSRSMEF)based on the Google Earth Engine(GEE)platform was developed in this study.The functions of the HSRSMEF include research area and input datasets customization,radar speckle noise filtering,optical-radar image spatio-temporal matching,soil moisture retrieving,soil moisture visualization and exporting.This paper tested the performance of HSRSMEF by combining Sentinel-1,Sentinel-2 images and insitu soil moisture data in the central farmland area of Jilin Province,China.Reconstructed Normalized Difference Vegetation Index(NDVI)based on the Savitzky-Golay algorithm conforms to the crop growth cycle,and its correlation with the original NDVI is about 0.99(P<0.001).The soil moisture accuracy of the random forest model(R 2=0.942,RMSE=0.013 m3/m3)is better than that of the water cloud model(R 2=0.334,RMSE=0.091 m3/m3).HSRSMEF transfers time-consuming offline operations to cloud computing platforms,achieving rapid and simplified high spatial resolution soil moisture mapping.展开更多
文摘After a comprehensive literature review and analysis, a unified cloud computing framework is proposed, which comprises MapReduce, a vertual machine, Hadoop distributed file system (HDFS), Hbase, Hadoop, and virtualization. This study also compares Microsoft, Trend Micro, and the proposed unified cloud computing architecture to show that the proposed unified framework of the cloud computing service model is comprehensive and appropriate for the current complexities of businesses. The findings of this study can contribute to the knowledge for academics and practitioners to understand, assess, and analyze a cloud computing service application.
文摘Since its birth in the early 90 's,digital forensics has been mainly focused on collecting and examining digital evidence from computers and networks that are controlled and owned by individuals or organizations.As cloud computing has recently emerged as a dominant platform for running applications and storing data,digital forensics faces well-known challenges in the cloud,such as data inaccessibility,data and service volatility,and law enforcement lacks control over the cloud.To date,very little research has been done to develop efficient theory and practice for digital forensics in the cloud.In this paper,we present a novel framework,Cloud Foren,which systematically addresses the challenges of forensics in cloud computing.Cloud Foren covers the entire process of digital forensics,from the initial point of complaint to the final point where the evidence is confirmed.The key components of Cloud Foren address some challenges,which are unique to the cloud.The proposed forensic process allows cloud forensic examiner,cloud provider,and cloud customer collaborate naturally.We use two case studies to demonstrate the applicability of Cloud Foren.We believe Cloud Foren holds great promise for more precise and automatic digital forensics in a cloud computing environment.
文摘Cloud computing is touted as the next big thing in the Information Technology (IT) industry, which is going to impact the businesses of any size and yet the security issue continues to pose a big threat on it. The security and privacy issues persisting in cloud computing have proved to be an obstacle for its widespread adoption. In this paper, we look at these issues from a business perspective and how they are damaging the reputation of big companies. There is a literature review on the existing issues in cloud computing and how they are being tackled by the Cloud Service Providers (CSP). We propose a governing body framework which aims at solving these issues by establishing relationship amongst the CSPs in which the data about possible threats can be generated based on the previous attacks on other CSPs. The Governing Body will be responsible for Data Center control, Policy control, legal control, user awareness, performance evaluation, solution architecture and providing motivation for the entities involved.
文摘Cloud computing plays a very important role in the development of business and competitive edge for many organisations including SMEs (Small and Medium Enterprises). Every cloud user continues to expect maximum service, and a critical aspect to this is cloud security which is one among other specific challenges hindering adoption of the cloud technologies. The absence of appropriate, standardised and self-assessing security frameworks of the cloud world for SMEs becomes an endless problem in developing countries and can expose the cloud computing model to major security risks which threaten its potential success within the country. This research presents a security framework for assessing security in the cloud environment based on the Goal Question Metrics methodology. The developed framework produces a security index that describes the security level accomplished by an evaluated cloud computing environment thereby providing the first line of defence. This research has concluded with an eight-step framework that could be employed by SMEs to assess the information security in the cloud. The most important feature of the developed security framework is to devise a mechanism through which SMEs can have a path of improvement along with understanding of the current security level and defining desired state in terms of security metric value.
文摘In cloud computing environment, as the infrastructure not owned by users, it is desirable that its security and integrity must be protected and verified time to time. In Hadoop based scalable computing setup, malfunctioning nodes generate wrong output during the run time. To detect such nodes, we create collaborative network between worker node (i.e. data node of Hadoop) and Master node (i.e. name node of Hadoop) with the help of trusted heartbeat framework (THF). We propose procedures to register node and to alter status of node based on reputation provided by other co-worker nodes.
文摘In the last few years, cloud computing (CC) has grown from being a promising business concept to one of the fastest growing segments of the IT industry. Many businesses including small, medium (SMEs) and large enterprises are migrating to this technology. The objective of this paper was to describe the opinions of enterprises about the benefits and challenges of cloud computing services in the private and public companies in South Lebanon. During 2019, a cross-sectional study which enrolled 29 enterprises used CC was conducted. The survey included questions on socio-demographic characteristics of representative of companies, and companies’ factors in reference to the technology, organization, and environment (TOE) framework. Most (58.6%) of companies were private and micro and SMEs sized (86.8%). The cost saving (75.0%), scalability and flexibility (75.9%), security (44.8%), and improved service delivery were the main benefits that cloud offer to the business. The security aspect, the cost, and the limited provision of infra-structure remain a challenge for the adoption of CC. In conclusion, the research reveals the potential for the development of CC and obstacles for successful implementation of this new technology.
文摘Cloud computing is a type of emerging computing technology that relies on shared computing resources rather than having local servers or personal devices to handle applications. It is an emerging technology that provides services over the internet: Utilizing the online services of different software. Many works have been carried out and various security frameworks relating to the security issues of cloud computing have been proposed in numerous ways. But they do not propose a quantitative approach to analyze and evaluate privacy and security in cloud computing systems. In this research, we try to introduce top security concerns of cloud computing systems, analyze the threats and propose some countermeasures for them. We use a quantitative security risk assessment model to present a multilayer security framework for the solution of the security threats of cloud computing systems. For evaluating the performance of the proposed security framework we have utilized an Own-Cloud platform using a 64-bit quad-core processor based embedded system. Own-Cloud platform is quite literally as any analytics, machine learning algorithms or signal processing techniques can be implemented using the vast variety of Python libraries built for those purposes. In addition, we have proposed two algorithms, which have been deployed in the Own-Cloud for mitigating the attacks and threats to cloud-like reply attacks, DoS/DDoS, back door attacks, Zombie, etc. Moreover, unbalanced RSA based encryption is used to reduce the risk of authentication and authorization. This framework is able to mitigate the targeted attacks satisfactorily.
文摘The purpose of this study is to examine the different factors that are expected to influence the intention of hospitals to adopt cloud computing in Jordan. This study is conducted using quatititative methodology. 223 questionnaires were distributed to the IT departments of different hospitals to evaluate their ability and willingness to adopt cloud computing. The data were tested using multiple regression in order to determine whether Technology, Organizational, and Environmental factors (TOE) played a role in hospitals’ decision to consider cloud computing as a beneficial investment. The findings of this study showed that all the factors had a significant positive impact on the intention of hospitals to adopt cloud computing, with the Technological factor having the most impact on the decision made.
文摘The tremendous growth of the cloud computing environments requires new architecture for security services. Cloud computing is the utilization of many servers/data centers or cloud data storages (CDSs) housed in many different locations and interconnected by high speed networks. CDS, like any other emerging technology, is experiencing growing pains. It is immature, it is fragmented and it lacks standardization. Although security issues are delaying its fast adoption, cloud computing is an unstoppable force and we need to provide security mechanisms to ensure its secure adoption. In this paper a comprehensive security framework based on Multi-Agent System (MAS) architecture for CDS to facilitate confidentiality, correctness assurance, availability and integrity of users' data in the cloud is proposed. Our security framework consists of two main layers as agent layer and CDS layer. Our propose MAS architecture includes main five types of agents: Cloud Service Provider Agent (CSPA), Cloud Data Confidentiality Agent (CDConA), Cloud Data Correctness Agent (CDCorA), Cloud Data Availability Agent (CDAA) and Cloud Data Integrity Agent (CDIA). In order to verify our proposed security framework based on MAS architecture, pilot study is conducted using a questionnaire survey. Rasch Methodology is used to analyze the pilot data. Item reliability is found to be poor and a few respondents and items are identified as misfits with distorted measurements. As a result, some problematic questions are revised and some predictably easy questions are excluded from the questionnaire. A prototype of the system is implemented using Java. To simulate the agents, oracle database packages and triggers are used to implement agent functions and oracle jobs are utilized to create agents.
文摘In the modern arena, the Information and Communication Technologies (ICTs) have been playing a vital role in every walks of our day to day life. In order to enhance the ICT capacity and align with the global technology transformations, the developing countries have started introducing the computerization and automation processes at different levels of the governments. The several research studies revealed that the existing legacy of governance system and their services in current state have several issues and challenges in terms of timeliness, cost of services, delay in service delivery, time-bound availability of services (24/7/365), inefficiency services, ease of service and discomforts, poor service collaboration, absence of responsiveness, and limited security of sensitive information/documents. A significant question is still unanswered that how to bring the Citizens and Government bodies closer for alleviating the aforementioned issues and challenges of existing government system services. This research paper aims to investigate the issues and challenges in the current status of Governance and partial E-Governance systems which encompass the computerization or automation process. The research designs a cloud framework for effective delivery of citizen centric services in general and Ethiopia as a specific case study. After rigorous analysis of prior research efforts, along with primary survey and interview, it was clearly observed that cloud computing can be an alternative instrumental for significant transformation of governmental service delivery. The research paper used a mix of exploratory and constructive research design and methodology with qualitative & quantitative data analysis approach. Finally, a Cloud Based E-Governance (CBEG) Framework is designed for the delivery of Ethiopian Citizen Centric Services. The validation, evaluation and acceptance test of the framework proves that the revealed knowledge can provide a significant transformation towards the betterment of the E Governance Services Delivery Systems.
文摘User’s data is considered as a vital asset of several organizations.Migrating data to the cloud computing is not an easy decision for any organization due to the privacy and security concerns.Service providers must ensure that both data and applications that will be stored on the cloud should be protected in a secure environment.The data stored on the public cloud will be vulnerable to outside and inside attacks.This paper provides interactive multi-layer authentication frameworks for securing user identities on the cloud.Different access control policies are applied for verifying users on the cloud.A security mechanism is applied to the cloud application that includes user registration,granting user privileges,and generating user authentication factor.An intrusion detection system is embedded to the security mechanism to detect malicious users.The multi factor authentication,intrusion detection,and access control techniques can be used for ensuring the identity of the user.Finally,encryption techniques are used for protecting the data from being disclosed.Experimental results are carried out to verify the accuracy and efficiency of the proposed frameworks and mechanism.The results recorded high detection rate with low false positive alarms.
基金Under the auspices of National Key Research and Development Project of China(No.2021YFD1500103)Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA28100500)+2 种基金National Natural Science Foundation of China(No.4197132)Science and Technology Development Plan Project of Jilin Province(No.20210201044GX)Land Observation Satellite Supporting Platform of National Civil Space Infrastructure Project(No.CASPLOS-CCSI)。
文摘Soil moisture plays an important role in crop yield estimation,irrigation management,etc.Remote sensing technology has potential for large-scale and high spatial soil moisture mapping.However,offline remote sensing data processing is time-consuming and resource-intensive,and significantly hampers the efficiency and timeliness of soil moisture mapping.Due to the high-speed computing capabilities of remote sensing cloud platforms,a High Spatial Resolution Soil Moisture Estimation Framework(HSRSMEF)based on the Google Earth Engine(GEE)platform was developed in this study.The functions of the HSRSMEF include research area and input datasets customization,radar speckle noise filtering,optical-radar image spatio-temporal matching,soil moisture retrieving,soil moisture visualization and exporting.This paper tested the performance of HSRSMEF by combining Sentinel-1,Sentinel-2 images and insitu soil moisture data in the central farmland area of Jilin Province,China.Reconstructed Normalized Difference Vegetation Index(NDVI)based on the Savitzky-Golay algorithm conforms to the crop growth cycle,and its correlation with the original NDVI is about 0.99(P<0.001).The soil moisture accuracy of the random forest model(R 2=0.942,RMSE=0.013 m3/m3)is better than that of the water cloud model(R 2=0.334,RMSE=0.091 m3/m3).HSRSMEF transfers time-consuming offline operations to cloud computing platforms,achieving rapid and simplified high spatial resolution soil moisture mapping.