During the continuous casting process of high-Mn high-Al steels,various types of gases such as Ar need to escape through the top of the mold.In which,the behavior of bubbles traversing the liquid slag serves as a rest...During the continuous casting process of high-Mn high-Al steels,various types of gases such as Ar need to escape through the top of the mold.In which,the behavior of bubbles traversing the liquid slag serves as a restrictive link,closely associated with viscosity and the thickness of liquid slag.In contrast to two-dimensional surface observation,three-dimensional(3D)analysis method can offer a more intuitive,accurate,and comprehensive information.Therefore,this study employs a 3D X-ray microscope(3D-XRM)to obtained spatial distribution and 3D morphological characteristics of residual bubbles in mold flux under different basicity of liquid slag,different temperatures,and different holding times.The results indicate that as basicity of slag increases from 0.52 to 1.03,temperature increases from 1423 to 1573 K,the viscosity of slag decreases,the floating rate of bubbles increases.In addition,when holding time increases from 10 to 30 s,the bubbles floating distance increases,and the volume fraction and average equivalent sphere diameter of the bubbles solidified in the mold flux gradually decreases.In one word,increasing the basicity,temperature,and holding time leading to an increase in the removal rate of bubbles especially for the large.These findings of bubbles escape behavior provide valuable insights into optimizing low basicity mold flux for high-Mn high-Al steels.展开更多
To analyze the impact of bubbles on the mechanical behavior of glasses,by controlling the refining time,we prepared three borosilicate glasses with the same composition and different porosity.By the analysis software ...To analyze the impact of bubbles on the mechanical behavior of glasses,by controlling the refining time,we prepared three borosilicate glasses with the same composition and different porosity.By the analysis software integrated within the optical microscope,the diameter and number of the bubbles on the surface of three borosilicate glasses were quantified.From the hardness and crack initiation resistance(CR),we built the relationship between the porosity and the mechanical performance of these borosilicate glasses.展开更多
The internal pressure within fission gas bubbles(FGBs)in irradiated nuclear fuels drives mechanical interactions with the surrounding fuel skeleton.To investigate the micromechanical stress fields in irradiated nuclea...The internal pressure within fission gas bubbles(FGBs)in irradiated nuclear fuels drives mechanical interactions with the surrounding fuel skeleton.To investigate the micromechanical stress fields in irradiated nuclear fuels containing pressurized FGBs,a mechanical constitutive model for the equivalent solid of FGBs was developed and validated.This model was based on the modified Van der Waals equation,incorporating the effects of surface tension.Using this model,the micromechanical fields in irradiated U-10Mo fuels with randomly distributed FGBs were calculated during uniaxial tensile testing via the finite element(FE)method.The macroscopic elastic constants of the irradiated U-10Mo fuels were then derived using homogenization theory,and the influences of bubble pressure,bubble size,and porosity on these constants were examined.Results show that adjacent FGBs exhibit mechanical interactions,which leads to distinct stress concentrations in the surrounding fuel skeleton.The macroscopic elastic constants of irradiated U-10Mo fuels decrease with increasing the macroscopic porosity,which can be quantitatively described by the Mori-Tanaka model.In contrast,bubble pressure and size have negligible effects on these constants.展开更多
Sound speed is essential for leakage detection in liquid pipelines when using acoustic methods,which can be significantly influenced by gas bubbles generated from leakage.The propagation characteristics and mechanism ...Sound speed is essential for leakage detection in liquid pipelines when using acoustic methods,which can be significantly influenced by gas bubbles generated from leakage.The propagation characteristics and mechanism of acoustic waves in horizontal liquid pipelines containing gas bubbles are studied in detail in the present paper.The effect of sound wave frequency,bubble size and bubble distribution pattern on sound speed is studied through numerical simulations.The results show that the acoustic wave generated by leakage of liquid pipelines containing gas bubbles is a multi-frequency signal,and the energy of the signal is mainly concentrated within 200 Hz.In the low-frequency range,the propagation of sound waves has almost no dispersion in bubbly liquid.Sound speed at a certain void fraction is not constant,which is related to the bubble size and distribution pattern.The bubble size affects the gasliquid heat transfer equilibrium,during which sound speed is affected.For this reason,a thermodynamic correction factor is proposed,which enables the accuracy of the sound speed calculation to reach98.2%.What's more,sound speed increases non-linearly with the reduction of the bubble distribution space in the pipeline axial direction.This paper establishes a theoretical calculation model of sound speed based on the bubble distribution pattern in the pipeline axial direction,which is in good agreement with the numerical calculation results.The results of this paper provide the basis for applying acoustic leak detection technology in liquid pipelines containing gas bubbles.展开更多
The present paper is inspired by the article “Ho’oleilana: An Individual Baryon Acoustic Oscillation?” published by R. B. Tully, C. Howlett, and D. Pomarède on Sep. 2023 [1]. They claim: Evidence is presented ...The present paper is inspired by the article “Ho’oleilana: An Individual Baryon Acoustic Oscillation?” published by R. B. Tully, C. Howlett, and D. Pomarède on Sep. 2023 [1]. They claim: Evidence is presented here for the discovery of a remarkably strong individual contribution to the baryon acoustic oscillation (BAO) signal at z = 0.068, an entity that is given the name Ho’oleilana. K. Dawson, co-spokesperson for Dark Energy Spectroscopic Instrument is more inclined to believe that this latest finding is something of a coincidence, a chance alignment that simply looks like a sphere with a radius around what you’d expect for a BAO [2]. In this paper, we provide a short summary of experimental observations of Boötes Void and Superclusters;discuss the main features of the developed Hypersphere World-Universe Model;introduce notions “Cosmic Voids” and “Cosmic Bubbles”;elaborate a mathematical framework for different types of Cosmic Bubbles (Hubble Spherical Bubble for the World, Disk Bubbles for Galaxies;Spherical Bubbles for Extrasolar Systems, Dark Matter (DM) Spherical Bubbles for Galaxies and Superclusters);make a conclusion that the Boötes is a DM Cosmic Bubble and suggest experiments, which confirm our conclusion.展开更多
The gas-liquid countercurrent flow pattern is complex and the bubble migration velocity is difficult to predict in the process of bullheading well killing.The experiment on bubble migration in gas-liquid countercurren...The gas-liquid countercurrent flow pattern is complex and the bubble migration velocity is difficult to predict in the process of bullheading well killing.The experiment on bubble migration in gas-liquid countercurrent flow in annulus is carried out under different working conditions to reveal how the wellbore inclination angle,liquid phase property and countercurrent liquid velocity affect the bubble deformation and bubble migration trajectory/velocity,and to establish a bubble migration velocity prediction model.The bubbles in the countercurrent flow mainly migrate in two modes:free rising of isolated bubbles,and interactive rising of multiple bubbles.The bubbles migrate by an S-shaped trajectory in the countercurrent flow.With the increase of countercurrent liquid velocity,the lateral oscillation of bubbles is intensified.The increases of wellbore inclination angle,liquid density and liquid viscosity make the bubble migration trajectory gradually to be linear.The bubble is generally ellipsoidal during its rising.The wellbore inclination angle has little effect on the degree of bubble deformation.The bubbles are ellipsoidal during rising,with little influence of wellbore inclination angle on bubble deformation.With the increase of liquid viscosity and density,the aspect ratio of the bubble decreases.As the wellbore inclination angle increases,the bubble migration velocity gradually decreases.As the liquid viscosity increases,the bubble migration velocity decreases.As the liquid density increases,the bubble migration velocity increases slightly.The established bubble migration velocity prediction model yields errors within±15%,and demonstrates broad applicability across a wide range of operating conditions.展开更多
The size and distribution patterns of bubbles within a laboratory-scale coarse-particle flotation column were examined using a high-speed camera-based dynamic measurement system.The effects of operational parameters s...The size and distribution patterns of bubbles within a laboratory-scale coarse-particle flotation column were examined using a high-speed camera-based dynamic measurement system.The effects of operational parameters such as superficial water velocity,air-flow rate,and frother dosage on bubble-size and distribution characteristics were investigated.This study aims to provide theoretical support for enabling fluidized-bed flotation within coarse-particle flotation columns.The results show that negative pressure for air inspiratory and bubble formation is generated by passing a high-speed jet through a throat,and the greatest number of bubbles are observed under natural inspiratory state at an air-liquid ratio of 1:3-1:2.5.Increasing the air-flow rate transforms the bubble diameter distribution from a peaked distribution to a more uniform distribution.Furthermore,the frother narrows the range of bubble-size distribution.A positive correlation exists between the bubble Sauter diameter and air-flow rate,with the bubble Sauter diameter bearing a negative correlation with the superficial water velocity and frother concentration.展开更多
A series of high-entropy alloys(HEAs) containing nanoprecipitates of varying sizes is successfully prepared by a non-consuming vacuum arc melting method.In order to study the irradiation evolution of helium bubbles in...A series of high-entropy alloys(HEAs) containing nanoprecipitates of varying sizes is successfully prepared by a non-consuming vacuum arc melting method.In order to study the irradiation evolution of helium bubbles in the FeCoNiCrbased HE As with γ' precipitates,these samples are irradiated by 100-keV helium ions with a fluence of 5 × 10^(20) ions/m^(2) at 293 K and 673 K,respectively.And the samples irradiated at room temperature are annealed at different temperatures to examine the diffusion behavior of helium bubbles.Transmission electron microscope(TEM) is employed to characterize the structural morphology of precipitated nanoparticles and the evolution of helium bubbles.Experimental results reveal that nanosized,spherical,dispersed,coherent,and ordered L1_(2)-type Ni_(3)Ti γ' precipitations are introduced into FeCoNiCr(Ni_(3)Ti)_(0.1) HEAs by means of ageing treatments at temperatures between 1073 K and 1123 K.Under the ageing treatment conditions adopted in this work,γ' nanoparticles are precipitated in FeCoNiCr(Ni_(3)Ti)_(0.1) HE As,with average diameters of 15.80 nm,37.09 nm,and 62.50 nm,respectively.The average sizes of helium bubbles observed in samples after 673-K irradiation are 1.46 nm,1.65 nm,and 1.58 nm,respectively.The improvement in the irradiation resistance of FeCoNiCr(Ni_(3)Ti)_(0.1) HEAs is evidenced by the diminution in bubbles size.Furthermore,the FeCoNiCr(Ni_(3)Ti)_(0.1) HEAs containing γ' precipitates of 15.8 nm exhibits the minimum size and density of helium bubbles,which can be ascribed to the considerable helium trapping effects of heterogeneous coherent phase boundaries.Subsequently,annealing experiments conducted after 293-K irradiation indicate that HEAs containing precipitated phases exhibits smaller apparent activation energy(E_(a)) for helium bubbles,resulting in larger helium bubble size.This study provides guidance for improving the irradiation resistance of L1_(2)-strengthened high-entropy alloy.展开更多
In a multi-bubble system, the bubble behavior is modulated by the primary acoustic field and the secondary acoustic field. To explore the translational motion of bubbles in cavitation liquids containing high-concentra...In a multi-bubble system, the bubble behavior is modulated by the primary acoustic field and the secondary acoustic field. To explore the translational motion of bubbles in cavitation liquids containing high-concentration cavitation nuclei,evolutions of bubbles are recorded by a high-speed camera, and translational trajectories of several representative bubbles are traced. It is found that translational motion of bubbles is always accompanied by the fragmentation and coalescence of bubbles, and for bubbles smaller than 10 μm, the possibility of bubble coalescence is enhanced when the spacing of bubbles is less than 30 μm. The measured signals and their spectra show the presence of strong negative pressure, broadband noise,and various harmonics, which implies that multiple interactions of bubbles appear in the region of high-intensity cavitation.Due to the strong coupling effect, the interaction between bubbles is random. A simplified triple-bubble model is developed to explore the interaction patterns of bubbles affected by the surrounding bubbles. Patterns of bubble interaction, such as attraction, repulsion, stable spacing, and rebound of bubbles, can be predicted by the theoretical analysis, and the obtained results are in good agreement with experimental observations. Mass exchange between the liquid and bubbles as well as absorption in the cavitation nuclei also plays an important role in multi-bubble cavitation, which may account for the weakening of the radial oscillations of bubbles.展开更多
With the continuous deepening of rural revitalization strategy and the increasingly strict sewage discharge standards,rural domestic sewage treatment technology is facing higher challenges and requirements.The combine...With the continuous deepening of rural revitalization strategy and the increasingly strict sewage discharge standards,rural domestic sewage treatment technology is facing higher challenges and requirements.The combined process of micro-electrolysis+micro-nano bubbles coupled with peroxymonosulfate was constructed in this study,and the treatment effect and application value of this technology were explored with the actual rural domestic sewage as the treatment object.The experimental results showed that under the conditions of HRT of 120 min,PMS dosage of 0.15 mmol/L,pH=7,MBs air intake of 15 ml/min,current intensity of 15 A,and Fe/C mass ratio of 1:1,the removal rates of COD,ammonia nitrogen and total phosphorus can reach 88.55%,77.18%and 74.67%,respectively.Under the condition that the pH value of sewage was not adjusted,the non-biochemical simultaneous decarbonization,denitrification and phosphorus removal of rural domestic sewage can be achieved by micro-electrolysis and micro-nano bubbles coupled with peroxymonosulfate.The concentrations of effluent COD,ammonia nitrogen and total phosphorus met the requirements of the first level standard of the Discharge Standard of Water Pollutants for Rural Domestic Sewage Treatment Facilities(DB45T2413-2021).And the comprehensive operating cost was about 1.15 yuan/m 3.展开更多
Sonodynamic therapy(SDT)has emerged as a novel and highly researched advancement in the medical field.Traditional ultrasound contrast agents and novel bubble-shaped agents are used to stimulate cavitation and enhance ...Sonodynamic therapy(SDT)has emerged as a novel and highly researched advancement in the medical field.Traditional ultrasound contrast agents and novel bubble-shaped agents are used to stimulate cavitation and enhance SDT efficiency.However,the impact of artificially modified shell structures on the acoustic properties of microbubbles remains to be explored.Alternatively,in the absence of bubble-shaped agents,some clinically available organic sonosensitizers and advanced inorganic materials are also used to enhance the efficacy of SDT.Diagnostic and therapeutic ultrasound can also activate cavitation bubbles,which supply energy to sonosensitive agents,leading to the production of cytotoxic free radicals to achieve therapeutic effects.While inorganic materials often spark controversy in clinical applications,their relatively simple structure enables researchers to gain insight into the mechanism by which SDT produces various free radicals.Some organic-inorganic hybrid sonosensitive systems have also been reported,combining the benefits of inorganic and organic sonosensitive agents.Alternatively,by employing cell surface modification engineering to enable cells to perform functions such as immune escape,drug loading,gas loading,and sonosensitivity,cellular sonosensitizers have also been developed.However,further exploration is needed on the acoustic properties,ability to generate reactive oxygen species(ROS),and potential clinical application of this cellular sonosensitizer.This review offers a comprehensive analysis of vesical microbubbles and nanoscale sonocatalysts,including organic,inorganic,combined organic-inorganic sonosensitizers,and cellular sonosensitizers.This analysis will enhance our understanding of SDT and demonstrate its important potential in transforming medical applications.展开更多
Frothers facilitate the reduction of bubbles size by preventing bubbles coalescence and produce more stable froths.The collision probability of the bubbles and particles substantially increases by decreasing bubble si...Frothers facilitate the reduction of bubbles size by preventing bubbles coalescence and produce more stable froths.The collision probability of the bubbles and particles substantially increases by decreasing bubble size.For the same volume system,fewer bubbles result from a distribution of large-sized bubbles,and more bubbles result from a distribution of small-sized bubbles.In this research,fundamental two-phase frother characterization parameters were aimed to link with three-phase coal and talc flotation behavior.For this purpose,the effect of single and dual frother systems on inhibiting bubble coalescence was investigated with methyl isobutyl carbinol(MIBC),isooctanol(2 ethyl hexanol),pine oil,and Dowfroth 250.Based on the results of single frothers,isooctanol at the lowest critical coalescence concentration(CCC)value of 6×10^(−6) achieved the smallest bubbles with Sauter mean diameter of 0.80 mm.By blending Dowfroth 250 and pine oil,the bubbles size decreased significantly,reaching 0.45 mm.While the highest recoveries in coal flotation were obtained in single and frother blends where the bubbles size was measured as the smallest in two-phase system,and such a relationship was not found for talc flotation.展开更多
The microscopic characterization of isolated bubbles in gassy soil plays an important role in the macroscopic physical properties of sediments and is a key factor in the study of geological hazards in gas-bearing stra...The microscopic characterization of isolated bubbles in gassy soil plays an important role in the macroscopic physical properties of sediments and is a key factor in the study of geological hazards in gas-bearing strata.Based on the box-counting method and the pore fractal features in porous media,a fractal model of bubble microstructure parameters in gassy soil under different gas con-tents and vertical load conditions is established by using an industrial X-ray CT scanning system.The results show that the fractal di-mension of bubbles in the sample is correlated with the volume fraction of bubbles,and it is also restricted by the vertical load.The three-dimensional fractal dimension of the sample is about 1 larger than the average two-dimensional fractal dimension of all the slices from the same sample.The uniform porous media fractal model is used to test the equivalent diameter,and the results show that the variation of the measured pore diameter ratio is jointly restricted by the volume fraction and the vertical load.In addition,the measured self-similarity interval of the bubble area distribution is tested by the porous media fractal capillary bundle model,and the fitting curve of measured pore area ratio in a small loading range is obtained in this paper.展开更多
The helium bubbles induced by 14 MeV neutron irradiation can cause intergranular fractures in reduced activation ferritic martensitic steel,which is a candidate structural material for fusion reactors.In order to eluc...The helium bubbles induced by 14 MeV neutron irradiation can cause intergranular fractures in reduced activation ferritic martensitic steel,which is a candidate structural material for fusion reactors.In order to elucidate the susceptibility of different grain boundaries(GBs)to helium-induced embrittlement,the tensile fracture processes of 10 types of GBs with and without helium bubbles in body-centered cubic(bcc)iron at the relevant service temperature of 600 K were investigated via molecular dynamics methods.The results indicate that in the absence of helium bubbles,the GBs studied here can be classified into two distinct categories:brittle GBs and ductile GBs.The atomic scale analysis shows that the plastic deformation of ductile GB at high temperatures originates from complex plastic deformation mechanisms,including the Bain/Burgers path phase transition and deformation twinning,in which the Bain path phase transition is the most dominant plastic deformation mechanism.However,the presence of helium bubbles severely inhibits the plastic deformation channels of the GBs,resulting in a significant decrease in elongation at fractures.For bubble-decorated GBs,the ultimate tensile strength increases with the increase in the misorientation angle.Interestingly,the coherent twin boundary∑3{112}was found to maintain relatively high fracture strength and maximum failure strain under the influence of helium bubbles.展开更多
Ultrasonic cavitation involves dynamic oscillation processes induced by small bubbles in a liquid under the influence of ultrasonic waves. This study focuses on the investigation of shape and diffusion instabilities o...Ultrasonic cavitation involves dynamic oscillation processes induced by small bubbles in a liquid under the influence of ultrasonic waves. This study focuses on the investigation of shape and diffusion instabilities of two bubbles formed during cavitation. The derived equations for two non-spherical gas bubbles, based on perturbation theory and the Bernoulli equation, enable the analysis of their shape instability. Numerical simulations, utilizing the modified Keller–Miksis equation,are performed to examine the shape and diffusion instabilities. Three types of shape instabilities, namely, Rayleigh–Taylor,Rebound, and parametric instabilities, are observed. The results highlight the influence of initial radius, distance, and perturbation parameter on the shape and diffusion instabilities, as evidenced by the R_0–P_a phase diagram and the variation pattern of the equilibrium curve. This research contributes to the understanding of multiple bubble instability characteristics, which has important theoretical implications for future research in the field. Specifically, it underscores the significance of initial bubble parameters, driving pressure, and relative gas concentration in determining the shape and diffusive equilibrium instabilities of non-spherical bubbles.展开更多
Hydrodynamic cavitaion venturi tube technique is used for pico and nano bubble generations in coal column flotation. In order to determine the optimal design of hydrodynamic cavitation venture tube for pico and nano b...Hydrodynamic cavitaion venturi tube technique is used for pico and nano bubble generations in coal column flotation. In order to determine the optimal design of hydrodynamic cavitation venture tube for pico and nano bubble generation, a four-factor three-level Central Composite Design of Experimental was conducted for investigating four important design parameters of cavitation venturi tube governing the median size and the volume of pico and nano bubbles. The test results showed that maximum volume of pico and nano bubbles, 65–75%, and minimum mean pico and nano bubble size,150–240 nm, were achieved at the medium ratio of the diameter of outlet of the venturi-tube and diameter of throat(3–4), medium outlet angle(11–13°), high inlet angle(26–27°) and high ratio of the length of the throat and the diameter of throat(2.3–3). Study the effects of the producing pico and nano bubbles on fine coal flotation was performed in a 5 cm diameter 260 cm height flotation column. The optimal percentage of pico and nano bubbles was about 70%, which produced maximum combustible material recovery of 86% with clean coal ash content of 11.7%.展开更多
The flow fields surrounding two parallel moving bubbles rising from two identical orifices submerged in non-Newtonian fluid of carboxymethylcellulose (CMC) solution of three different mass concentration were measure...The flow fields surrounding two parallel moving bubbles rising from two identical orifices submerged in non-Newtonian fluid of carboxymethylcellulose (CMC) solution of three different mass concentration were measured experimentally by the use of particle image velocimetry (PIV). The influences of gas flowrate, solution mass concentration, orifice interval and the angle between two bubble centers line and vertical direction on the flow field surrounding bubbles were discussed respectively by analyzing the velocity vector, velocity contours as well as individual velocity components. The results show that the liquid velocity both in front of two bubbles and behind increases with gas flowrate duo to shear-thinning effect of previous bubbles, whereas decreases with the increase of CMC concentration due to the increase of drag force acting on bubbles. The effect of the orifice interval on the flow field around two moving bubbles becomes gradually obvious as the interval becomes closer. Moreover, two adjacent side-by-side bubbles repulse each other during rising, leading to the practical interval between them increased somewhat above the orifice interval. When the distance between bubbles is less than the orifice interval 10 mm, the interaction between two neighboring bubbles changed from mutual repellence to attraction with the decrease of the angle of the line of linking two bubble centers to the vertical direction.展开更多
The stresses around bubbles formed on a coating/substrate interface under hydrostatic pressure(HP)and alternating hydrostatic pressure(AHP)were calculated using the finite element method.The results reveal that HP pro...The stresses around bubbles formed on a coating/substrate interface under hydrostatic pressure(HP)and alternating hydrostatic pressure(AHP)were calculated using the finite element method.The results reveal that HP promotes coating failure but does not mechanically destroy the interface,whereas AHP can provide tensile stress on bubbles formed at the interface and accelerate disbonding of the coating.Because of water resistance,a lag time exists for the coating that serves in an AHP environment.The coating can have a better protective performance if the lag time suits the AHP to minimize the impact of the AHP on the interface.展开更多
The bubbles rise up and burst at the free surface is a complex two-phase process.A free energy lattice Boltzmann method(LBM)model is adopted in this paper to study this phenomenon.The interface capturing technique[Zhe...The bubbles rise up and burst at the free surface is a complex two-phase process.A free energy lattice Boltzmann method(LBM)model is adopted in this paper to study this phenomenon.The interface capturing technique[Zheng et al.,2006]is used to deal with the high density ratio problem.The Laplace law and the air-water interface capturing ability are validated for the multiphase model.The interaction between the single bubble or multiple bubbles and the free surface are studied by the multiphase model.The force acting on the bubble and the evolution of the free surface is studied.Meanwhile,effect of the initial distance between two adjacent bubbles on interaction effects of multiple bubbles is investigated as well.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.52274315 and 52374320)the Fundamental Research Funds for the Central Universities(Nos.FRF-TP-22-011A1 and FRF-DF22-16)。
文摘During the continuous casting process of high-Mn high-Al steels,various types of gases such as Ar need to escape through the top of the mold.In which,the behavior of bubbles traversing the liquid slag serves as a restrictive link,closely associated with viscosity and the thickness of liquid slag.In contrast to two-dimensional surface observation,three-dimensional(3D)analysis method can offer a more intuitive,accurate,and comprehensive information.Therefore,this study employs a 3D X-ray microscope(3D-XRM)to obtained spatial distribution and 3D morphological characteristics of residual bubbles in mold flux under different basicity of liquid slag,different temperatures,and different holding times.The results indicate that as basicity of slag increases from 0.52 to 1.03,temperature increases from 1423 to 1573 K,the viscosity of slag decreases,the floating rate of bubbles increases.In addition,when holding time increases from 10 to 30 s,the bubbles floating distance increases,and the volume fraction and average equivalent sphere diameter of the bubbles solidified in the mold flux gradually decreases.In one word,increasing the basicity,temperature,and holding time leading to an increase in the removal rate of bubbles especially for the large.These findings of bubbles escape behavior provide valuable insights into optimizing low basicity mold flux for high-Mn high-Al steels.
基金Funded by the National Natural Science Foundation of China(No.52172007)。
文摘To analyze the impact of bubbles on the mechanical behavior of glasses,by controlling the refining time,we prepared three borosilicate glasses with the same composition and different porosity.By the analysis software integrated within the optical microscope,the diameter and number of the bubbles on the surface of three borosilicate glasses were quantified.From the hardness and crack initiation resistance(CR),we built the relationship between the porosity and the mechanical performance of these borosilicate glasses.
基金National Natural Science Foundation of China(12135008,12132005)。
文摘The internal pressure within fission gas bubbles(FGBs)in irradiated nuclear fuels drives mechanical interactions with the surrounding fuel skeleton.To investigate the micromechanical stress fields in irradiated nuclear fuels containing pressurized FGBs,a mechanical constitutive model for the equivalent solid of FGBs was developed and validated.This model was based on the modified Van der Waals equation,incorporating the effects of surface tension.Using this model,the micromechanical fields in irradiated U-10Mo fuels with randomly distributed FGBs were calculated during uniaxial tensile testing via the finite element(FE)method.The macroscopic elastic constants of the irradiated U-10Mo fuels were then derived using homogenization theory,and the influences of bubble pressure,bubble size,and porosity on these constants were examined.Results show that adjacent FGBs exhibit mechanical interactions,which leads to distinct stress concentrations in the surrounding fuel skeleton.The macroscopic elastic constants of irradiated U-10Mo fuels decrease with increasing the macroscopic porosity,which can be quantitatively described by the Mori-Tanaka model.In contrast,bubble pressure and size have negligible effects on these constants.
基金supported by the National Natural Science Foundation of China[grant number 52274066]。
文摘Sound speed is essential for leakage detection in liquid pipelines when using acoustic methods,which can be significantly influenced by gas bubbles generated from leakage.The propagation characteristics and mechanism of acoustic waves in horizontal liquid pipelines containing gas bubbles are studied in detail in the present paper.The effect of sound wave frequency,bubble size and bubble distribution pattern on sound speed is studied through numerical simulations.The results show that the acoustic wave generated by leakage of liquid pipelines containing gas bubbles is a multi-frequency signal,and the energy of the signal is mainly concentrated within 200 Hz.In the low-frequency range,the propagation of sound waves has almost no dispersion in bubbly liquid.Sound speed at a certain void fraction is not constant,which is related to the bubble size and distribution pattern.The bubble size affects the gasliquid heat transfer equilibrium,during which sound speed is affected.For this reason,a thermodynamic correction factor is proposed,which enables the accuracy of the sound speed calculation to reach98.2%.What's more,sound speed increases non-linearly with the reduction of the bubble distribution space in the pipeline axial direction.This paper establishes a theoretical calculation model of sound speed based on the bubble distribution pattern in the pipeline axial direction,which is in good agreement with the numerical calculation results.The results of this paper provide the basis for applying acoustic leak detection technology in liquid pipelines containing gas bubbles.
文摘The present paper is inspired by the article “Ho’oleilana: An Individual Baryon Acoustic Oscillation?” published by R. B. Tully, C. Howlett, and D. Pomarède on Sep. 2023 [1]. They claim: Evidence is presented here for the discovery of a remarkably strong individual contribution to the baryon acoustic oscillation (BAO) signal at z = 0.068, an entity that is given the name Ho’oleilana. K. Dawson, co-spokesperson for Dark Energy Spectroscopic Instrument is more inclined to believe that this latest finding is something of a coincidence, a chance alignment that simply looks like a sphere with a radius around what you’d expect for a BAO [2]. In this paper, we provide a short summary of experimental observations of Boötes Void and Superclusters;discuss the main features of the developed Hypersphere World-Universe Model;introduce notions “Cosmic Voids” and “Cosmic Bubbles”;elaborate a mathematical framework for different types of Cosmic Bubbles (Hubble Spherical Bubble for the World, Disk Bubbles for Galaxies;Spherical Bubbles for Extrasolar Systems, Dark Matter (DM) Spherical Bubbles for Galaxies and Superclusters);make a conclusion that the Boötes is a DM Cosmic Bubble and suggest experiments, which confirm our conclusion.
基金Supported by the National Natural Science Foundation of China(U21B2069,52274020,52288101,52274022)National Key Research and Development Program of China(2022YFC2806504)。
文摘The gas-liquid countercurrent flow pattern is complex and the bubble migration velocity is difficult to predict in the process of bullheading well killing.The experiment on bubble migration in gas-liquid countercurrent flow in annulus is carried out under different working conditions to reveal how the wellbore inclination angle,liquid phase property and countercurrent liquid velocity affect the bubble deformation and bubble migration trajectory/velocity,and to establish a bubble migration velocity prediction model.The bubbles in the countercurrent flow mainly migrate in two modes:free rising of isolated bubbles,and interactive rising of multiple bubbles.The bubbles migrate by an S-shaped trajectory in the countercurrent flow.With the increase of countercurrent liquid velocity,the lateral oscillation of bubbles is intensified.The increases of wellbore inclination angle,liquid density and liquid viscosity make the bubble migration trajectory gradually to be linear.The bubble is generally ellipsoidal during its rising.The wellbore inclination angle has little effect on the degree of bubble deformation.The bubbles are ellipsoidal during rising,with little influence of wellbore inclination angle on bubble deformation.With the increase of liquid viscosity and density,the aspect ratio of the bubble decreases.As the wellbore inclination angle increases,the bubble migration velocity gradually decreases.As the liquid viscosity increases,the bubble migration velocity decreases.As the liquid density increases,the bubble migration velocity increases slightly.The established bubble migration velocity prediction model yields errors within±15%,and demonstrates broad applicability across a wide range of operating conditions.
基金supported by the National Key R&D Program of China(Nos.2023YFC3904202,2022YFC2904500)Major Science and Technology Program of Yunnan Province,China(No.202202AB080012).
文摘The size and distribution patterns of bubbles within a laboratory-scale coarse-particle flotation column were examined using a high-speed camera-based dynamic measurement system.The effects of operational parameters such as superficial water velocity,air-flow rate,and frother dosage on bubble-size and distribution characteristics were investigated.This study aims to provide theoretical support for enabling fluidized-bed flotation within coarse-particle flotation columns.The results show that negative pressure for air inspiratory and bubble formation is generated by passing a high-speed jet through a throat,and the greatest number of bubbles are observed under natural inspiratory state at an air-liquid ratio of 1:3-1:2.5.Increasing the air-flow rate transforms the bubble diameter distribution from a peaked distribution to a more uniform distribution.Furthermore,the frother narrows the range of bubble-size distribution.A positive correlation exists between the bubble Sauter diameter and air-flow rate,with the bubble Sauter diameter bearing a negative correlation with the superficial water velocity and frother concentration.
基金Project support provided by the National Natural Science Foundation of China(Grant No.12075200)the National Key Research and Development Program of China(Grant No.2022YFB3706004)。
文摘A series of high-entropy alloys(HEAs) containing nanoprecipitates of varying sizes is successfully prepared by a non-consuming vacuum arc melting method.In order to study the irradiation evolution of helium bubbles in the FeCoNiCrbased HE As with γ' precipitates,these samples are irradiated by 100-keV helium ions with a fluence of 5 × 10^(20) ions/m^(2) at 293 K and 673 K,respectively.And the samples irradiated at room temperature are annealed at different temperatures to examine the diffusion behavior of helium bubbles.Transmission electron microscope(TEM) is employed to characterize the structural morphology of precipitated nanoparticles and the evolution of helium bubbles.Experimental results reveal that nanosized,spherical,dispersed,coherent,and ordered L1_(2)-type Ni_(3)Ti γ' precipitations are introduced into FeCoNiCr(Ni_(3)Ti)_(0.1) HEAs by means of ageing treatments at temperatures between 1073 K and 1123 K.Under the ageing treatment conditions adopted in this work,γ' nanoparticles are precipitated in FeCoNiCr(Ni_(3)Ti)_(0.1) HE As,with average diameters of 15.80 nm,37.09 nm,and 62.50 nm,respectively.The average sizes of helium bubbles observed in samples after 673-K irradiation are 1.46 nm,1.65 nm,and 1.58 nm,respectively.The improvement in the irradiation resistance of FeCoNiCr(Ni_(3)Ti)_(0.1) HEAs is evidenced by the diminution in bubbles size.Furthermore,the FeCoNiCr(Ni_(3)Ti)_(0.1) HEAs containing γ' precipitates of 15.8 nm exhibits the minimum size and density of helium bubbles,which can be ascribed to the considerable helium trapping effects of heterogeneous coherent phase boundaries.Subsequently,annealing experiments conducted after 293-K irradiation indicate that HEAs containing precipitated phases exhibits smaller apparent activation energy(E_(a)) for helium bubbles,resulting in larger helium bubble size.This study provides guidance for improving the irradiation resistance of L1_(2)-strengthened high-entropy alloy.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11974232 and 12374441)the Fund from the Yulin Science and Technology Bureau,China(Grant No.CXY-2022-178).
文摘In a multi-bubble system, the bubble behavior is modulated by the primary acoustic field and the secondary acoustic field. To explore the translational motion of bubbles in cavitation liquids containing high-concentration cavitation nuclei,evolutions of bubbles are recorded by a high-speed camera, and translational trajectories of several representative bubbles are traced. It is found that translational motion of bubbles is always accompanied by the fragmentation and coalescence of bubbles, and for bubbles smaller than 10 μm, the possibility of bubble coalescence is enhanced when the spacing of bubbles is less than 30 μm. The measured signals and their spectra show the presence of strong negative pressure, broadband noise,and various harmonics, which implies that multiple interactions of bubbles appear in the region of high-intensity cavitation.Due to the strong coupling effect, the interaction between bubbles is random. A simplified triple-bubble model is developed to explore the interaction patterns of bubbles affected by the surrounding bubbles. Patterns of bubble interaction, such as attraction, repulsion, stable spacing, and rebound of bubbles, can be predicted by the theoretical analysis, and the obtained results are in good agreement with experimental observations. Mass exchange between the liquid and bubbles as well as absorption in the cavitation nuclei also plays an important role in multi-bubble cavitation, which may account for the weakening of the radial oscillations of bubbles.
基金Supported by Research Foundation Ability Enhancement Project for Young and Middle-aged Teachers in Guangxi Universities(2023KY2049).
文摘With the continuous deepening of rural revitalization strategy and the increasingly strict sewage discharge standards,rural domestic sewage treatment technology is facing higher challenges and requirements.The combined process of micro-electrolysis+micro-nano bubbles coupled with peroxymonosulfate was constructed in this study,and the treatment effect and application value of this technology were explored with the actual rural domestic sewage as the treatment object.The experimental results showed that under the conditions of HRT of 120 min,PMS dosage of 0.15 mmol/L,pH=7,MBs air intake of 15 ml/min,current intensity of 15 A,and Fe/C mass ratio of 1:1,the removal rates of COD,ammonia nitrogen and total phosphorus can reach 88.55%,77.18%and 74.67%,respectively.Under the condition that the pH value of sewage was not adjusted,the non-biochemical simultaneous decarbonization,denitrification and phosphorus removal of rural domestic sewage can be achieved by micro-electrolysis and micro-nano bubbles coupled with peroxymonosulfate.The concentrations of effluent COD,ammonia nitrogen and total phosphorus met the requirements of the first level standard of the Discharge Standard of Water Pollutants for Rural Domestic Sewage Treatment Facilities(DB45T2413-2021).And the comprehensive operating cost was about 1.15 yuan/m 3.
基金supported by the National Natural Science Foundation of China(NSFC)(52100014 and 12274220)。
文摘Sonodynamic therapy(SDT)has emerged as a novel and highly researched advancement in the medical field.Traditional ultrasound contrast agents and novel bubble-shaped agents are used to stimulate cavitation and enhance SDT efficiency.However,the impact of artificially modified shell structures on the acoustic properties of microbubbles remains to be explored.Alternatively,in the absence of bubble-shaped agents,some clinically available organic sonosensitizers and advanced inorganic materials are also used to enhance the efficacy of SDT.Diagnostic and therapeutic ultrasound can also activate cavitation bubbles,which supply energy to sonosensitive agents,leading to the production of cytotoxic free radicals to achieve therapeutic effects.While inorganic materials often spark controversy in clinical applications,their relatively simple structure enables researchers to gain insight into the mechanism by which SDT produces various free radicals.Some organic-inorganic hybrid sonosensitive systems have also been reported,combining the benefits of inorganic and organic sonosensitive agents.Alternatively,by employing cell surface modification engineering to enable cells to perform functions such as immune escape,drug loading,gas loading,and sonosensitivity,cellular sonosensitizers have also been developed.However,further exploration is needed on the acoustic properties,ability to generate reactive oxygen species(ROS),and potential clinical application of this cellular sonosensitizer.This review offers a comprehensive analysis of vesical microbubbles and nanoscale sonocatalysts,including organic,inorganic,combined organic-inorganic sonosensitizers,and cellular sonosensitizers.This analysis will enhance our understanding of SDT and demonstrate its important potential in transforming medical applications.
基金Project(ID42787)supported by the Istanbul Technical University,BAP(Scientific Research Project)Department,Turkey。
文摘Frothers facilitate the reduction of bubbles size by preventing bubbles coalescence and produce more stable froths.The collision probability of the bubbles and particles substantially increases by decreasing bubble size.For the same volume system,fewer bubbles result from a distribution of large-sized bubbles,and more bubbles result from a distribution of small-sized bubbles.In this research,fundamental two-phase frother characterization parameters were aimed to link with three-phase coal and talc flotation behavior.For this purpose,the effect of single and dual frother systems on inhibiting bubble coalescence was investigated with methyl isobutyl carbinol(MIBC),isooctanol(2 ethyl hexanol),pine oil,and Dowfroth 250.Based on the results of single frothers,isooctanol at the lowest critical coalescence concentration(CCC)value of 6×10^(−6) achieved the smallest bubbles with Sauter mean diameter of 0.80 mm.By blending Dowfroth 250 and pine oil,the bubbles size decreased significantly,reaching 0.45 mm.While the highest recoveries in coal flotation were obtained in single and frother blends where the bubbles size was measured as the smallest in two-phase system,and such a relationship was not found for talc flotation.
基金supported by the Open Research Fund Program of State Key Laboratory of Hydroscience and Engineering(No.sk lhse-2022-D-03)the National Natural Science Foundation of China(Nos.U2006213,42277139)the Taishan Scholars Program(No.tsqn202306297).
文摘The microscopic characterization of isolated bubbles in gassy soil plays an important role in the macroscopic physical properties of sediments and is a key factor in the study of geological hazards in gas-bearing strata.Based on the box-counting method and the pore fractal features in porous media,a fractal model of bubble microstructure parameters in gassy soil under different gas con-tents and vertical load conditions is established by using an industrial X-ray CT scanning system.The results show that the fractal di-mension of bubbles in the sample is correlated with the volume fraction of bubbles,and it is also restricted by the vertical load.The three-dimensional fractal dimension of the sample is about 1 larger than the average two-dimensional fractal dimension of all the slices from the same sample.The uniform porous media fractal model is used to test the equivalent diameter,and the results show that the variation of the measured pore diameter ratio is jointly restricted by the volume fraction and the vertical load.In addition,the measured self-similarity interval of the bubble area distribution is tested by the porous media fractal capillary bundle model,and the fitting curve of measured pore area ratio in a small loading range is obtained in this paper.
基金supported by the National Natural Science Foundation of China(Nos.12175231 and 11805131)Anhui Natural Science Foundation of China(No.2108085J05)+1 种基金the National Key Research and Development Plan of China(No.2018YFE0307101)the Collaborative Innovation Program of the Hefei Science Center,CAS(Nos.2021HSC-CIP020 and 2022HSC-CIP009)。
文摘The helium bubbles induced by 14 MeV neutron irradiation can cause intergranular fractures in reduced activation ferritic martensitic steel,which is a candidate structural material for fusion reactors.In order to elucidate the susceptibility of different grain boundaries(GBs)to helium-induced embrittlement,the tensile fracture processes of 10 types of GBs with and without helium bubbles in body-centered cubic(bcc)iron at the relevant service temperature of 600 K were investigated via molecular dynamics methods.The results indicate that in the absence of helium bubbles,the GBs studied here can be classified into two distinct categories:brittle GBs and ductile GBs.The atomic scale analysis shows that the plastic deformation of ductile GB at high temperatures originates from complex plastic deformation mechanisms,including the Bain/Burgers path phase transition and deformation twinning,in which the Bain path phase transition is the most dominant plastic deformation mechanism.However,the presence of helium bubbles severely inhibits the plastic deformation channels of the GBs,resulting in a significant decrease in elongation at fractures.For bubble-decorated GBs,the ultimate tensile strength increases with the increase in the misorientation angle.Interestingly,the coherent twin boundary∑3{112}was found to maintain relatively high fracture strength and maximum failure strain under the influence of helium bubbles.
基金Project supported by the Scientific Research Project of Higher Education in the Inner Mongolia Autonomous Region (Grant No.NJZY23100)。
文摘Ultrasonic cavitation involves dynamic oscillation processes induced by small bubbles in a liquid under the influence of ultrasonic waves. This study focuses on the investigation of shape and diffusion instabilities of two bubbles formed during cavitation. The derived equations for two non-spherical gas bubbles, based on perturbation theory and the Bernoulli equation, enable the analysis of their shape instability. Numerical simulations, utilizing the modified Keller–Miksis equation,are performed to examine the shape and diffusion instabilities. Three types of shape instabilities, namely, Rayleigh–Taylor,Rebound, and parametric instabilities, are observed. The results highlight the influence of initial radius, distance, and perturbation parameter on the shape and diffusion instabilities, as evidenced by the R_0–P_a phase diagram and the variation pattern of the equilibrium curve. This research contributes to the understanding of multiple bubble instability characteristics, which has important theoretical implications for future research in the field. Specifically, it underscores the significance of initial bubble parameters, driving pressure, and relative gas concentration in determining the shape and diffusive equilibrium instabilities of non-spherical bubbles.
基金West Virginia State Coal and Energy Research Bureau(WVCERB)the Department of Mining Engineering,West Virginia University
文摘Hydrodynamic cavitaion venturi tube technique is used for pico and nano bubble generations in coal column flotation. In order to determine the optimal design of hydrodynamic cavitation venture tube for pico and nano bubble generation, a four-factor three-level Central Composite Design of Experimental was conducted for investigating four important design parameters of cavitation venturi tube governing the median size and the volume of pico and nano bubbles. The test results showed that maximum volume of pico and nano bubbles, 65–75%, and minimum mean pico and nano bubble size,150–240 nm, were achieved at the medium ratio of the diameter of outlet of the venturi-tube and diameter of throat(3–4), medium outlet angle(11–13°), high inlet angle(26–27°) and high ratio of the length of the throat and the diameter of throat(2.3–3). Study the effects of the producing pico and nano bubbles on fine coal flotation was performed in a 5 cm diameter 260 cm height flotation column. The optimal percentage of pico and nano bubbles was about 70%, which produced maximum combustible material recovery of 86% with clean coal ash content of 11.7%.
基金Supported by the National Natural Science Foundation of China (20476073), the State Key Laboratory of Chemical Engineering (SKL-ChE-08B03) and the Programs of Introducing Talents of Discipline to Universities 0306006).
文摘The flow fields surrounding two parallel moving bubbles rising from two identical orifices submerged in non-Newtonian fluid of carboxymethylcellulose (CMC) solution of three different mass concentration were measured experimentally by the use of particle image velocimetry (PIV). The influences of gas flowrate, solution mass concentration, orifice interval and the angle between two bubble centers line and vertical direction on the flow field surrounding bubbles were discussed respectively by analyzing the velocity vector, velocity contours as well as individual velocity components. The results show that the liquid velocity both in front of two bubbles and behind increases with gas flowrate duo to shear-thinning effect of previous bubbles, whereas decreases with the increase of CMC concentration due to the increase of drag force acting on bubbles. The effect of the orifice interval on the flow field around two moving bubbles becomes gradually obvious as the interval becomes closer. Moreover, two adjacent side-by-side bubbles repulse each other during rising, leading to the practical interval between them increased somewhat above the orifice interval. When the distance between bubbles is less than the orifice interval 10 mm, the interaction between two neighboring bubbles changed from mutual repellence to attraction with the decrease of the angle of the line of linking two bubble centers to the vertical direction.
基金financially supported by the National Natural Science Foundation of China(Nos.51871049 and 51622106)the National Key R&D Program of China(No.2017YFB0702303)Aclass pilot of the Chinese Academy of Sciences(No.XDA22010303)。
文摘The stresses around bubbles formed on a coating/substrate interface under hydrostatic pressure(HP)and alternating hydrostatic pressure(AHP)were calculated using the finite element method.The results reveal that HP promotes coating failure but does not mechanically destroy the interface,whereas AHP can provide tensile stress on bubbles formed at the interface and accelerate disbonding of the coating.Because of water resistance,a lag time exists for the coating that serves in an AHP environment.The coating can have a better protective performance if the lag time suits the AHP to minimize the impact of the AHP on the interface.
基金supported by the National Natural Science Foundation of China (11672081)
文摘The bubbles rise up and burst at the free surface is a complex two-phase process.A free energy lattice Boltzmann method(LBM)model is adopted in this paper to study this phenomenon.The interface capturing technique[Zheng et al.,2006]is used to deal with the high density ratio problem.The Laplace law and the air-water interface capturing ability are validated for the multiphase model.The interaction between the single bubble or multiple bubbles and the free surface are studied by the multiphase model.The force acting on the bubble and the evolution of the free surface is studied.Meanwhile,effect of the initial distance between two adjacent bubbles on interaction effects of multiple bubbles is investigated as well.