Background Heat stress(HS) incidence is associated with the accumulation of reactive substances, which might be associated with bone loss. N-Acetylcysteine(NAC) exhibits strong antioxidants due to its sulfhydryl group...Background Heat stress(HS) incidence is associated with the accumulation of reactive substances, which might be associated with bone loss. N-Acetylcysteine(NAC) exhibits strong antioxidants due to its sulfhydryl group and being as the precursor for endogenous glutathione synthesis. Therefore, interplay between oxidative stress and bone turnover of broilers and the effects of dietary NAC inclusion on antioxidant capability and “gut-bone” axis were evaluated during chronic HS.Results Implementing cyclic chronic HS(34 ℃ for 7 h/d) evoked reactive oxygen species excessive production and oxidant stress, which was accompanied by compromised tibia mass. The RNA-seq of proximal tibia also revealed the enrichment of oxidation–reduction process and inflammatory outbursts during HS. Although no notable alterations in the growth performance and cecal microbiota were found, the diet contained 2 g/kg NAC enhanced the antioxidant capability of heat-stressed broiler chickens by upregulating the expression of Nrf2 in the ileum, tibia, and bone marrow. Simultaneously, NAC tended to hinder NF-κB pathway activation and decreased the m RNA levels of the proinflammatory cytokines in both the ileum and bone marrow. As a result, NAC suppressed osteoclastogenesis and osteoclast activity, thereby increasing osteocyte-related gene expression. Furthermore, the inclusion of NAC tended to increase the ash content and density of the whole tibia, as well as improve cortical thickness and bone volume of the diaphysis.Conclusions These findings HS-mediated outburst of oxidant stress accelerates bone resorption and negatively regulates the bone quality of tibia, which is inhibited by NAC in broilers.展开更多
Background Chronic heat stress(CHS)is a detrimental environmental stressor with a negative impact on the meat quality of broilers.However,the underlying mechanisms are not fully understood.This study investigates the ...Background Chronic heat stress(CHS)is a detrimental environmental stressor with a negative impact on the meat quality of broilers.However,the underlying mechanisms are not fully understood.This study investigates the effects of CHS on long non-coding RNA(lncRNA)expression and muscle injury in broilers,with a focus on its implications for meat quality.Results The results showed that CHS diminished breast muscle yield,elevated abdominal fat deposition,induced cellular apoptosis(P<0.05),and caused myofibrosis.Transcriptomic analysis revealed 151 differentially expressed(DE)lncRNAs when comparing the normal control(NC)and HS groups,214 DE lncRNAs when comparing the HS and PF groups,and 79 DE lncRNAs when comparing the NC and pair-fed(PF)groups.After eliminating the confounding effect of feed intake,68 lncRNAs were identified,primarily associated with cellular growth and death,signal transduc-tion,and metabolic regulation.Notably,the apoptosis-related pathway P53,lysosomes,and the fibrosis-related gene TGF-β2 were significantly upregulated by lncRNAs.Conclusions These findings indicate that chronic heat stress induces cellular apoptosis and muscle injury through lncRNA,leading to connective tissue accumulation,which likely contributes to reduced breast muscle yield and meat quality in broilers.展开更多
Drugs and pesticide residues in broiler feed can compromise the therapeutic and production benefits of antibiotic(ANT)application and affect gene expression.In this study,we analyzed the expression of 13 key pancreati...Drugs and pesticide residues in broiler feed can compromise the therapeutic and production benefits of antibiotic(ANT)application and affect gene expression.In this study,we analyzed the expression of 13 key pancreatic genes and blood physiology parameters after administering one maximum residue limit of herbicide glyphosate(GLY),two ANTs,and one anticoccidial drug(AD).A total of 260 Ross 308 broilers aged 1-40 d were divided into the following four groups of 65 birds each:control group,which was fed the main diet(MD),and three experimental groups,which were fed MD supplemented with GLY,GLY+ANTs(enrofloxacin and colistin methanesulfonate),and GLY+AD(ammonium maduramicin),respectively.The results showed that the addition of GLY,GLY+ANTs,and GLY+AD caused significant changes in the expression of several genes of physiological and economic importance.In particular,genes related to inflammation and apoptosis(interleukin 6(IL6),prostaglandin-endoperoxide synthase 2(PTGS2),and caspase 6(CASP6))were downregulated by up to 99.1%,and those related to antioxidant protection(catalase(CAT),superoxide dismutase 1(SOD1)and peroxiredoxin 6(PRDX6))by up to 98.6%,compared to controls.There was also a significant decline in the values of immunological characteristics in the blood serum observed in the experimental groups,and certain changes in gene expression were concordant with changes in the functioning of the pancreas and blood.The changes revealed in gene expression and blood indices in response to GLY,ANTs,and AD provide insights into the possible mechanisms of action of these agents at the molecular level.Specifically,these changes may be indicative of physiological mechanisms to overcome the negative effects of GLY,GLY+ANTs,and GLY+AD in broilers.展开更多
Background Tryptophan is essential for nutrition,immunity and neural activity,but cannot be synthesized endogenously.Certain natural products influence host health by modulating the gut microbiota to promote the produ...Background Tryptophan is essential for nutrition,immunity and neural activity,but cannot be synthesized endogenously.Certain natural products influence host health by modulating the gut microbiota to promote the production of tryptophan metabolites.Sanguinarine(SAN)enhances broiler immunity,however,its low bioavailability and underlying mechanisms remain unclear.This study aimed to decode the mechanisms by which sanguinarine enhances intestinal immune function in broilers.Methods Liquid chromatography-tandem mass spectrometry(LC-MS/MS)was employed to identify the main metabolites of sanguinarine in the intestine.Subsequently,equal concentrations of sanguinarine and its metabolites were separately added to the diets.The effects of sanguinarine and its metabolites on the intestinal immune function of broiler chickens were evaluated using 16S rRNA gene amplicon sequencing and tryptophan metabolomics approaches.Results We determined that dihydrosanguinarine(DHSA)is the main metabolite of sanguinarine in the intestine.Both compounds increased average daily gain and reduced feed efficiency,thereby improving growth performance.They also enhanced ileal villus height and the villus-to-crypt(V/C)ratio while decreasing crypt depth and upregulating the mRNA expression of tight junction proteins ZO-1,occludin and claudin-1.Furthermore,both compounds promoted the proliferation of intestinal Lactobacillus species,a tryptophan-metabolizing bacterium,stimulated short-chain fatty acid production,and lowered intestinal pH.They regulated tryptophan metabolism by increasing the diversity and content of indole tryptophan metabolites,activating the aryl hydrocarbon receptor(AhR)pathway,and elevating the mRNA levels of CYP1A1,CYP1B1,SLC3A1,IDO2 and TPH1.Inflammatory cytokines IL-1β and IL-6 were inhibited,while anti-inflammatory cytokines IL-10 and IL-22,serum SIgA concentration,and intestinal MUC2 expression were increased.Notably,DHSA exhibited a more pronounced effect on enhancing immune function compared to SAN.Conclusions SAN is converted to DHSA in vivo,which increases its bioavailability.DHSA regulates tryptophan metabolism by activating the AhR pathway and modulating immune-related factors through changes in the gut microbiota.Notably,DHSA significantly increases the abundance of Lactobacillus,a key tryptophan-metabolizing bacterium,thereby enhancing intestinal immune function and improving broiler growth performance.展开更多
Background Hatch weight(HW)affects broiler growth and low HW(LHW)often leads to suboptimal performance.Sodium butyrate(SB)has been shown to promote growth through enhanced intestinal health.This study investi-gated ho...Background Hatch weight(HW)affects broiler growth and low HW(LHW)often leads to suboptimal performance.Sodium butyrate(SB)has been shown to promote growth through enhanced intestinal health.This study investi-gated how broilers with different HW responded to in ovo SB injection and whether SB could enhance gut health and performance in LHW chicks.Ross 308 broiler eggs were injected on incubation d 12 with physiological saline(control)or SB at 0.1%(SB1),0.3%(SB3),or 0.5%(SB5).Post-hatch,male chicks from each treatment were categorized as high HW(HHW)or LHW and assigned to 8 groups in a 4×2 factorial design.Production parameters were recorded periodically.Intestinal weight,length,and gene expression related to gut barrier function and immune response were examined on d 14 and 42.Cecal microbiota dynamics and predicted functionality were analyzed using 16S rRNA gene sequencing.Results SB treatments did not affect hatchability.HHW-control group exhibited consistently better weight gain and FCR than LHW-control group.SB dose-dependently influenced performance and gut health in both HW catego-ries,with greater effects in LHW broilers at 0.3%.LHW-SB3 group attained highest body weight on d 42,exceeding controls but not significantly differing from HHW-SB3 group.LHW-SB3 group showed upregulation of gut-barrier genes CLDN1 in ileum,TJP1 in jejunum and anti-inflammatory cytokine IL-10 in both jejunum and ileum on d 14.Addi-tionally,LHW-SB3 group upregulated mucin-producing MUC6 gene in ileum,while HHW-SB5 group increased pro-inflammatory IL-12p40 cytokine in caecum on d 42.LHW-SB3 group demonstrated shorter relative intestinal lengths,while HHW-SB5 had longer lengths.HHW-control group had higher bacterial diversity and growth-promoting bacte-ria while LHW-control group harbored the potential pathogen Helicobacter.SB reshaped gut microbiota biodiversity,composition,and predicted metabolic pathways in both HW categories.The LHW-SB3 group exhibited highest alpha diversity on d 14 and most beneficial bacteria at all timepoints.HHW-SB5 group presented increased pathogenic Escherichia-Shigella and Campylobacter on d 42.Conclusions HW significantly affects subsequent performance and SB has differential effects based on HW.LHW chicks benefited more from 0.3%SB,showing improvements in growth,intestinal development,health,and gut microbiota characteristics.展开更多
Background Salmonella Typhimurium(S.Typhimurium)is a common pathogenic microorganism and poses a threat to the efficiency of poultry farms.As signaling molecules regulating the interaction between the host and gut mic...Background Salmonella Typhimurium(S.Typhimurium)is a common pathogenic microorganism and poses a threat to the efficiency of poultry farms.As signaling molecules regulating the interaction between the host and gut microbiota,bile acids(BAs)play a protective role in maintaining gut homeostasis.However,the antibacterial effect of BAs on Salmonella infection in broilers has remained unexplored.Therefore,the aim of this study was to investigate the potential role of feeding BAs in protecting against S.Typhimurium infection in broilers.Methods A total of 1441-day-old Arbor Acres male broilers were randomly assigned to 4 groups,including non-challenged birds fed a basal diet(CON),S.Typhimurium-challenged birds(ST),S.Typhimurium-challenged birds treated with 0.15 g/kg antibiotic after infection(ST-ANT),and S.Typhimurium-challenged birds fed a basal diet supplemented with 350 mg/kg of BAs(ST-BA).Results BAs supplementation ameliorated weight loss induced by S.Typhimurium infection and reduced the colonization of Salmonella in the liver and small intestine in broilers(P<0.05).Compared to the ST group,broilers in ST-BA group had a higher ileal mucosal thickness and villus height,and BAs also ameliorated the increase of diamine oxidase(DAO)level in serum(P<0.05).It was observed that the mucus layer thickness and the number of villous and cryptic goblet cells(GCs)were increased in the ST-BA group,consistent with the upregulation of MUC2 gene expression in the ileal mucosa(P<0.05).Moreover,the m RNA expressions of Toll-like receptor 5(TLR5),Toll-like receptor 4(TLR4),and interleukin 1 beta(IL1b)were downregulated in the ileum by BAs treatment(P<0.05).16S rDNA sequencing analysis revealed that,compared to ST group,BAs ameliorated the decreases in Bacteroidota,Bacteroidaceae and Bacteroides abundances,which were negatively correlated with serum DAO activity,and the increases in Campylobacterota,Campylobacteraceae and Campylobacter abundances,which were negatively correlated with body weight but positively correlated with serum D-lactic acid(D-LA)levels(P<0.05).Conclusions Dietary BAs supplementation strengthens the intestinal mucosal barrier and reverses dysbiosis of gut microbiota,which eventually relieves the damage to the intestinal barrier and weight loss induced by S.Typhimurium infection in broilers.展开更多
Background The present experiment aimed to evaluate the effects of commercially processed former foodstuffs(cFF)as dietary substitutes of corn,soybean meal and soybean oil on the growth performance,apparent total trac...Background The present experiment aimed to evaluate the effects of commercially processed former foodstuffs(cFF)as dietary substitutes of corn,soybean meal and soybean oil on the growth performance,apparent total tract digestibil-ity(ATTD),hematobiochemical profiles,and liver gene abundance in broiler chickens.Two hundred one-day-old male ROSS-308 chicks were assigned to 4 dietary groups(5 replicates of ten birds per replicate)according to their average body weight(BW,38.0±0.11 g).All groups received a two-phase feeding program:starter,d 1–12 and grower,d 12–33.The control group(cFF0)was fed a standard commercial feed based on corn,soybean meal and soybean oil.The other three groups received diets in which the feed based on corn,soybean meal,and soybean oil was partially replaced with cFF at a substitution level of 6.25%(cFF6.25),12.5%(cFF12.5)or 25%(cFF25)for the following 33 d.Results The growth performance data showed no differences in BW or average daily gain among groups,although the average daily feed intake decreased during the grower period(12–33 d)and over entire experimental period(1–33 d)in a linear manner as the cFF inclusion level rose(P=0.026),positively affecting the gain to feed ratio(P=0.001).The ATTD of dry matter of the cFF-fed groups were greater with respect to control group and increased throughout the experimental period,whereas the ATTD of ether extract linearly decreased with increasing levels of cFF-fed groups compared with control group and throughout the experimental period(P<0.05).Additionally,a lin-ear increase in the heterophil to lymphocyte ratio,serum cholesterol,triglycerides and alanine-aminotransferase were observed with increasing dietary levels of cFF(P<0.05);however,no differences were observed in lipoprotein lipase or sterol regulatory element binding transcription factor gene abundance.Conclusions The results of this experiment demonstrate that it is possible to incorporate cFF into nutritionally balanced diets for broiler chickens,even up to 25%substitution levels,for up to 33 d without adversely impacting the overall growth performance of male broiler chickens raised under commercial conditions.Further studies are essential to validate the hematological trait findings.展开更多
Background Aflatoxin B_(1)(AFB_(1))risks animal and human health,and the liver is considered the most crucial detoxification organ.Phlorotannin(PT)is a polyhydroxy phenol that has a wide range of biological activities...Background Aflatoxin B_(1)(AFB_(1))risks animal and human health,and the liver is considered the most crucial detoxification organ.Phlorotannin(PT)is a polyhydroxy phenol that has a wide range of biological activities,including antioxidation and hepatoprotection,which can promote the ability of liver detoxification.This study aimed to elucidate the protective effect of PT on AFB_(1)-induced liver damage in broilers.Results In vivo experiment showed that the PT reduced AFB_(1) content and AFB_(1)-exo-8,9-epoxide DNA(AFBODNA)concentration in serum and liver(P<0.05),improved the histomorphology of liver and hepatic mitochondria,and activated nuclear factor erythroid 2-related factor 2(Nrf2)-related antioxidant and detoxification pathway by upregulating the activities of antioxidant enzymes(catalase[CAT],glutathione S-transferase[GST])and total antioxidant capacity(T-AOC)level(P<0.05),and inhibited the mRNA expression of CYP1A1(cytochrome P450 family 1 subfamily A member 1)and phase Ⅱ detoxification enzyme related genes(GPX1,GSTT1,and NQO1)of broilers exposed to AFB_(1)(P<0.05).Meanwhile,PT upregulated the Nrf1 pathway-related mitochondrial biosynthetic genes(Nrf1,mitochondrial transcription factor A[TFAM],mitofusin 1[MFN1])in broilers fed AFB_(1) contaminated diet(P<0.05).In vitro verification study suggested that the use of Nrf2/Nrf1 inhibitors suppressed the ameliorative role of PT on AFB_(1)-induced liver injury of broilers,which was manifested in the mRNA expression of Nrf2,NQO1,GSTT3,Nrf1,TFAM,and other genes decreasing(P<0.05),and down-regulation of the protein expression of Nrf2,total and nucleus p-Nrf2,and total and nucleus p-Nrf1(P<0.05).Conclusion The PT ameliorates oxidative stress and hepatotoxicity by activating the Nrf2-mediated phase Ⅱ detoxification enzymes pathway and maintains mitochondrial homeostasis by activating the Nrf1 signaling pathway in broilers exposed to AFB_(1).展开更多
Background The aim of this study was to determine whether and how Zn proteinate with moderate chelation strength(Zn-Prot M)can alleviate heat stress(HS)-induced intestinal barrier function damage of broilers.A complet...Background The aim of this study was to determine whether and how Zn proteinate with moderate chelation strength(Zn-Prot M)can alleviate heat stress(HS)-induced intestinal barrier function damage of broilers.A completely randomized design was used for comparatively testing the effects of Zn proteinate on HS and non-HS broilers.Under high temperature(HT),a 1(Control,HT-CON)+2(Zn source)×2(added Zn level)factorial arrangement of treatments was used.The 2 added Zn sources were Zn-Prot M and Zn sulfate(ZnS),and the 2 added Zn levels were 30 and 60 mg/kg.Under normal temperature(NT),a CON group(NT-CON)and pair-fed group(NT-PF)were included.Results The results showed that HS significantly reduced mRNA and protein expression levels of claudin-1,occludin,junctional adhesion molecule-A(JAMA),zonula occludens-1(ZO-1)and zinc finger protein A20(A20)in the jejunum,and HS also remarkably increased serum fluorescein isothiocyanate dextran(FITC-D),endotoxin and interleukin(IL)-1βcontents,serum diamine oxidase(DAO)and matrix metalloproteinase(MMP)-2 activities,nuclear factor kappa-B(NF-κB)p65 mRNA expression level,and protein expression levels of NF-κB p65 and MMP-2 in the jejunum.However,dietary supplementation with Zn,especially organic Zn as Zn-Prot M at 60 mg/kg,significantly decreased serum FITC-D,endotoxin and IL-1βcontents,serum DAO and MMP-2 activities,NF-κB p65 mRNA expression level,and protein expression levels of NF-κB p65 and MMP-2 in the jejunum of HS broilers,and notably promoted mRNA and protein expression levels of claudin-1,ZO-1 and A20.Conclusions Our results suggest that dietary Zn,especially 60 mg Zn/kg as Zn-Prot M,can alleviate HS-induced intestinal barrier function damage by promoting the expression of TJ proteins possibly via induction of A20-mediated suppression of the NF-κB p65/MMP-2 pathway in the jejunum of HS broilers.展开更多
Background At presenti heat stress(HS)has become a key factor that impairs broiler breeding industry,which causes growth restriction and poor meat quality of broilers.S elenium(Se)is an excellent antioxidant and plays...Background At presenti heat stress(HS)has become a key factor that impairs broiler breeding industry,which causes growth restriction and poor meat quality of broilers.S elenium(Se)is an excellent antioxidant and plays a unique role in meat quality improvement.Recent years,nano-selenium(NanoSe)has received tremendous attention in livestock production,due to its characteristic and good antibacterial performance in vitro.Here,we developed the heat stressed-broiler model to investigate the protective effects of NanoSe on growth performance and meat quality of broilers and compare whether there are differences with that of other Se sources(Sodium selenite,SS;Selenoyeast,SeY;Selenomethioninec SeMet).Results HS jeopardized the growth performance and caused poor meat quality of breast muscle in broilers,which were accompanied by lowered antioxidant capacity,increased glycolysis,increased anaerobic metabolism of pyruvate,mitochondrial stress and abnormal mitochondrial tricarboxylic acid(TCA)cycle.All Se sources supplementation exhibited protective effects,which increased the Se concentration and promoted the expression of selenoproteins,improved the mitochondrial homeostasis and the antioxidant capacity,and promoted the TCA cycle and the aerobic metabolism of pyruvate,thus improved the breast muscle meat quality of broilers exposed to HS.However,unlike the other three Se sources,the protective effect of NanoSe on meat quality of heat stressed-broilers was not ideal,which exhibited limited impact on the pH value,drip loss and cooking loss of the breast muscle.Compared with the other Se sources,broilers received NanoSe showed the lowest levels of slow MyHC,the highest levels of fast MyHC and glycogen,the highest mRNA levels of glycolysis-related genes(PFKM and PKM),the highest protein expression of H5P60 and CLPP,and the lowest enzyme activities of GSH-Px,citroyl synthetase(CS)and isocitrate dehydrogenase(ICD)in breast muscle.Consistent with the SS,the Se deposition in breast muscle of broilers received NanoSe was lower than that of broilers received SeY or SeMet.Besides,the regulatory effciency of NanoSe on the expression of key selenoproteins(such as SELENOS)in breast muscle of heat stressed-broilers was also worse than that of other Se Sources.Conclusion Through comparing the meat quality,Se deposition,muscle fiber type conversion,glycolysis,mitochondrial homeostasis,and hond rial TCA cycle-related indicators of breast muscle in heat stressed broilers,we found that the protective effects of organic Se(SeY and SeMet)are better than that of inorganic Se(SS)and NanoSe.As a new Se source,though Nanose showed some protective effect on breast muscle meat quality of heat stressed broilers,the protective effect of NanoSe is not ideal,compared with other Se sources.展开更多
Background Our previous studies demonstrated that divalent organic iron(Fe)proteinate sources with higher complexation or chelation strengths as expressed by the greater quotient of formation(Qf)values displayed highe...Background Our previous studies demonstrated that divalent organic iron(Fe)proteinate sources with higher complexation or chelation strengths as expressed by the greater quotient of formation(Qf)values displayed higher Fe bioavailabilities for broilers.Sodium iron ethylenediaminetetraacetate(NaFeEDTA)is a trivalent organic Fe source with the strongest chelating ligand EDTA.However,the bioavailability of Fe when administered as NaFeEDTA in broilers and other agricultural animals remains untested.Herein,the chemical characteristics of 12 NaFeEDTA products were determined.Of these,one feed grade NaFeEDTA(Qf=2.07×10^(8)),one food grade NaFeEDTA(Qf=3.31×10^(8)),and one Fe proteinate with an extremely strong chelation strength(Fe-Prot ES,Qf value=8,590)were selected.Their bioavailabilities relative to Fe sulfate(FeSO_(4)·7H_(2)O)for broilers fed with a conventional corn-soybean meal diet were evaluated during d 1 to 21 by investigating the effects of the above Fe sources and added Fe levels on the growth performance,hematological indices,Fe contents,activities and gene expressions of Fe-containing enzymes in various tissues of broilers.Results NaFeEDTA sources varied greatly in their chemical characteristics.Plasma Fe concentration(PI),transferrin saturation(TS),liver Fe content,succinate dehydrogenase(SDH)activities in liver,heart,and kidney,catalase(CAT)activity in liver,and SDH mRNA expressions in liver and kidney increased linearly(P<0.05)with increasing levels of Fe supplementation.However,differences among Fe sources were detected(P<0.05)only for PI,liver Fe content,CAT activity in liver,SDH activities in heart and kidney,and SDH mRNA expressions in liver and kidney.Based on slope ratios from multiple linear regressions of the above indices on daily dietary analyzed Fe intake,the average bioavailabilities of Fe-Prot ES,feed grade NaFeEDTA,and food grade NaFeEDTA relative to the inorganic FeSO_(4)·7H_(2)O(100%)for broilers were 139%,155%,and 166%,respectively.Conclusions The bioavailabilities of organic Fe sources relative to FeSO_(4)·7H_(2)O were closely related to their Qf values,and NaFeEDTA sources with higher Qf values showed higher Fe bioavailabilities for broilers fed with a conventional corn-soybean meal diet.展开更多
Background Global warming leading to heat stress(HS)is becoming a major challenge for broiler production.This study aimed to explore the protective effects of seaweed(Enteromorpha prolifera)polysaccharides(EPS)on the ...Background Global warming leading to heat stress(HS)is becoming a major challenge for broiler production.This study aimed to explore the protective effects of seaweed(Enteromorpha prolifera)polysaccharides(EPS)on the intestinal barrier function,microbial ecology,and performance of broilers under HS.A total of 144 yellow-feathered broilers(male,56 days old)with 682.59±7.38 g were randomly assigned to 3 groups:1)TN(thermal neutral zone,23.6±1.8℃),2)HS(heat stress,33.2±1.5℃ for 10 h/d),and 3)HSE(HS+0.1%EPS).Each group contained 6 replicates with 8 broilers per replicate.The study was conducted for 4 weeks;feed intake and body weights were measured at the end of weeks 2 and 4.At the end of the feeding trial,small intestine samples were collected for histomorphology,antioxidant,secretory immunoglobulin A(s Ig A)content,apoptosis,gene and protein expression analysis;cecal contents were also collected for microbiota analysis based on 16S r DNA sequencing.Results Dietary EPS promoted the average daily gain(ADG)of broilers during 3–4 weeks of HS(P<0.05).At the end of HS on broilers,the activity of total superoxide dismutase(T-SOD),glutathione S-transferase(GST),and the content of s Ig A in jejunum were improved by EPS supplementation(P<0.05).Besides,dietary EPS reduced the epithelial cell apoptosis of jejunum and ileum in heat-stressed broilers(P<0.05).Addition of EPS in HS group broilers'diet upregulated the relative m RNA expression of Occludin,ZO-1,γ-GCLc and IL-10 of the jejunum(P<0.05),whereas downregulated the relative m RNA expression of NF-κB p65,TNF-αand IL-1βof the jejunum(P<0.05).Dietary EPS increased the protein expression of Occludin and ZO-1,whereas it reduced the protein expression of NF-κB p65 and MLCK(P<0.01)and tended to decrease the protein expression of TNF-α(P=0.094)in heat-stressed broilers.Furthermore,the proportions of Bacteroides and Oscillospira among the three groups were positively associated with jejunal apoptosis and pro-inflammatory cytokine expression(P<0.05)and negatively correlated with jejunal Occludin level(P<0.05).However,the proportions of Lactobacillus,Barnesiella,Subdoligranulum,Megasphaera,Collinsella,and Blautia among the three groups were positively related to ADG(P<0.05).Conclusions EPS can be used as a feed additive in yellow-feathered broilers.It effectively improves growth performance and alleviates HS-induced intestinal injury by relieving inflammatory damage and improving the tight junction proteins expression.These beneficial effects may be related to inhibiting NF-κB/MLCK signaling pathway activation and regulation of cecal microbiota.展开更多
Excessive abdominal fat deposition reduces the feed efficiency and increase the cost of production in broilers.Therefore,it is an important task for poultry breeders to breed broilers with low abdominal fat.Abdominal ...Excessive abdominal fat deposition reduces the feed efficiency and increase the cost of production in broilers.Therefore,it is an important task for poultry breeders to breed broilers with low abdominal fat.Abdominal fat deposition is a highly complex biological process,and its molecular basis remains elusive.In this study,we performed transcriptome analysis to compare gene expression profiles at different stages of abdominal fat deposition to identify the key genes and pathways involved in abdominal fat accumulation.We found that abdominal fat weight(AFW)increased gradually from day 35(D35)to 91(D91),and then decreased at day 119(D119).Accordingly,after detecting differentially expressed genes(DEGs)by comparing gene expression profiles at D35 vs.D63 and D35 vs.D91,and identifying gene modules associated with fat deposition by weighted gene co-expression network analysis(WGCNA),we performed intersection analysis of the detected DEGs and WGCNA gene modules and identified 394 and 435 intersecting genes,respectively.The results of the Gene Ontology(GO)functional enrichment analysis and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway enrichment analyses showed that the steroid hormone biosynthesis and insulin signaling pathways were co-enriched in all intersecting genes,steroid hormones have been shown that regulated insulin signaling pathway,indicating the importance of the steroid hormone biosynthesis pathway in the development of broiler abdominal fat.We then identified 6 hub genes(ACTB,SOX9,RHOBTB2,PDLIM3,NEDD9,and DOCK4)related to abdominal fat deposition.Further analysis also revealed that there were direct interactions between 6 hub genes.SOX9 has been shown to bind to proteins required for steroid hormone receptor binding,and RHOBTB2 indirectly regulates the steroid hormones biosynthesis through cyclin factor,and ultimately affect fat deposition.Our results suggest that the genes RHOBTB2 and SOX9 play an important role in fat deposition in broilers,by regulating steroid hormone synthesis.These findings provide new targets and directions for further studies on the mechanisms of fat deposition in chicken.展开更多
The accumulation of growth-promoting antibiotic residues in animal products and the resistance developed by bacteria in poultry farms has led to a search for natural compounds derived from plants. This study was desig...The accumulation of growth-promoting antibiotic residues in animal products and the resistance developed by bacteria in poultry farms has led to a search for natural compounds derived from plants. This study was designed to promote the production performance of broiler chickens using fresh Cupressus sempervirens leaves infusion. Fresh Cupressus sempervirens leaves were harvested, washed, chopped and ground to a paste using a blender and fermented for three days in a closed container at a rate of 500 g/L of water. The solution obtained was filtered and added at the rate of 2, 4, 6, 8 and 10 ml/L of drinking water. The chickens fed on the graded level of the solution were compared to a control ration without an additive and positive control group supplemented with 1 g antibiotic/kg feed. At the finisher phase and throughout the study period, water intake increased significantly (P < 0.05) with increasing levels of infusion. Feed intake decreased significantly (P < 0.05) with 2 and 4 ml of infusion/L drinking water. Live weight and weight gain were significantly (P < 0.05) higher with 6 ml/L, while feed conversion significantly (P < 0.05) decreased with the same treatment compared with the control treatment without additives (T0). Carcass characteristics were not significantly (P > 0.05) affected by the inclusion of Cupressus sempervirens infusion. Haematological parameters significantly (P < 0.05) increase independently of the rate of incorporation of the infusion into the drinking water, with the exception of RBCs, MCHT and PCT. Serum content in total protein, globulins, LDL cholesterol and triglycerides were significantly (P < 0.05) high with 8 and 10 ml Cupressus sempervirens infusion/litre drinking water as compared to all other treatments. AST, ALT, urea, creatine, albumin, total cholesterol and HDL-cholesterol were not significantly affected. The lactic acid bacteria load increased significantly (P E. coli and salmonella counts decreased significantly (P < 0.05) with infusion compared to the control without additive. In conclusion, 6 ml of Cupressus sempervirens infusion can be used as an alternative to antibiotic feed additives to promote growth performance in broilers.展开更多
Excessive abdominal fat deposition seriously restricts the production efficiency of broilers.Several studies found that dietary supplemental manganese(Mn)could effectively reduce the abdominal fat deposition of broile...Excessive abdominal fat deposition seriously restricts the production efficiency of broilers.Several studies found that dietary supplemental manganese(Mn)could effectively reduce the abdominal fat deposition of broilers,but the underlying mechanisms remain unclear.The present study aimed to investigate the effect of dietary supplementation with the inorganic or organic Mn on abdominal fat deposition,and enzyme activity and gene expression involved in lipid metabolism in the abdominal fat of male or female broilers.A total of 4201-d-old AA broilers(half males and half females)were randomly allotted by body weight and gender to 1 of 6 treatments with 10 replicates cages of 7 chicks per cage in a completely randomized design involving a 3(dietary Mn addition)×2(gender)factorial arrangement.Male or female broilers were fed with the Mn-unsupplemented basal diets containing 17.52 mg Mn kg^(-1)(d 1-21)and 15.62 mg Mn kg^(-1)(d 22-42)by analysis or the basal diets supplemented with 110 mg Mn kg^(-1)(d 1-21)and 80 mg Mn kg^(-1)(d 22-42)as either the Mn sulfate or the Mn proteinate with moderate chelation strength(Mn-Prot M)for 42 d.The results showed that the interaction between dietary Mn addition and gender had no impact(P>0.05)on any of the measured parameters;abdominal fat percentage of broilers was decreased(P<0.003)by Mn addition;Mn addition increased(P<0.004)adipose triglyceride lipase(ATGL)activity,while Mn-Prot M decreased(P<0.002)the fatty acid synthase(FAS)activity in the abdominal fat of broilers compared to the control;Mn addition decreased(P<0.009)diacylglycerol acyltransferase 2(DGAT2)mRNA expression level and peroxisome proliferator-activated receptor γ(PPARγ)mRNA and protein expression levels,but up-regulated(P<0.05)the ATGL mRNA and protein expression levels in the abdominal fat of broilers.It was concluded that dietary supplementation with Mn inhibited the abdominal fat deposition of broilers possibly via decreasing the expression of PPARγand DGAT2 as well as increasing the expression and activity of ATGL in the abdominal fat of broilers,and Mn-Prot M was more effective in inhibiting the FAS acitivity.展开更多
Background Broilers stand out as one of the fastest-growing livestock globally,making a substantial contribution to animal meat production.However,the molecular and epigenetic mechanisms underlying the rapid growth an...Background Broilers stand out as one of the fastest-growing livestock globally,making a substantial contribution to animal meat production.However,the molecular and epigenetic mechanisms underlying the rapid growth and development of broiler chickens are still unclear.This study aims to explore muscle development patterns and regulatory networks during the postnatal rapid growth phase of fast-growing broilers.We measured the growth performance of Cornish(CC)and White Plymouth Rock(RR)over a 42-d period.Pectoral muscle samples from both CC and RR were randomly collected at day 21 after hatching(D21)and D42 for RNA-seq and ATAC-seq library construction.Results The consistent increase in body weight and pectoral muscle weight across both breeds was observed as they matured,with CC outpacing RR in terms of weight at each stage of development.Differential expression analysis identified 398 and 1,129 genes in the two dimensions of breeds and ages,respectively.A total of 75,149 ATAC-seq peaks were annotated in promoter,exon,intron and intergenic regions,with a higher number of peaks in the promoter and intronic regions.The age-biased genes and breed-biased genes of RNA-seq were combined with the ATAC-seq data for subsequent analysis.The results spotlighted the upregulation of ACTC1 and FDPS at D21,which were primarily associated with muscle structure development by gene cluster enrichment.Additionally,a noteworthy upregulation of MUSTN1,FOS and TGFB3 was spotted in broiler chickens at D42,which were involved in cell differentiation and muscle regeneration after injury,suggesting a regulatory role of muscle growth and repair.Conclusions This work provided a regulatory network of postnatal broiler chickens and revealed ACTC1 and MUSTN1 as the key responsible for muscle development and regeneration.Our findings highlight that rapid growth in broiler chickens triggers ongoing muscle damage and subsequent regeneration.These findings provide a foundation for future research to investigate the functional aspects of muscle development.展开更多
This study aimed to investigate the dose-effect of iron on growth performance,antioxidant function.intestinal morphology,and mRNA expression of jejunal tight junction protein in 1-to21-d-old yellow-feathered broilers....This study aimed to investigate the dose-effect of iron on growth performance,antioxidant function.intestinal morphology,and mRNA expression of jejunal tight junction protein in 1-to21-d-old yellow-feathered broilers.A total of 7201-d-old yellow-feathered maleb roilers were allocated to 9 treatments with 8 replicate cages of 10 birds per cage.The dietary treatments were consisted of a basal diet(contained 79.6 mg Fe kg^(-1))supplemented with 0,20,40,60,80,160,320,640,and 1,280 mg Fe kg^(-1)in the form of FeSO_(4)·7H_(2)O.Compared with the birds in the control group,birds supplemented with 20mg Fe kg^(-1)had higher average daily gain(ADG)(P<0.0001).Adding 640 and 1,280 mg Fe kg^(-1)significantly decreased ADG(P<0.0001)and average daily feed intake(ADFI)(P<0.0001)compared with supplementation of 20mg Fe kg^(-1).Malondialdehyde(MDA)concentration in plasma and duodenum increased linearly(P<0.0001),but MDA concentration in liver and jejunum increased linearly(P<0.05)or quadratically(P<0.05)with increased dietary Fe concentration.The villus height(VH)in duodenum and jejunum,and the ratio of villus height to crypt depth(V/C)in duodenum decreased linearly(P?0.05)as dietary Feincreased.As dietary Fe increased,the jejunal relative mRNA abundance of claudin-1 decreased linearly(P=0.001),but the jejunal relative mRNA abundance of zona occludens-1(ZO-1)and occludin decreased linearly(P?0.05)or quadratically(P?0.05).Compared with the supplementation of 20 mg Fe kg^(-1),the supplementation of640 mg Fe kg^(-1)or higher increased(P?0.05)MDA concentrations in plasma,duodenum,and jejunum,decreased VH in the duodenum and jejunum,and the addition of 1,280 mg Fe kg^(-1)reduced(P?0.05)the jejunal tight junction protein(claudin-1,ZO-1,occludin)mRNA abundance.In summary,640 mg of supplemental Fe kg^(-1)or greater was associated with decreased growth performance,increased oxidative stress,disrupted intestinal morphology,and reduced mRNA expression of jejunal tight junction protein.展开更多
Selenium is an essential trace element for humans and animals.As the active center of selenoproteins,the addition of selenium is beneficial to enhance the antioxidant ability.However,the high cost limits the applicati...Selenium is an essential trace element for humans and animals.As the active center of selenoproteins,the addition of selenium is beneficial to enhance the antioxidant ability.However,the high cost limits the application of organic Se in agriculture animal production.Selenized glucose(SeGlu)is a newly invented organoselenium material with good stability,low toxicity and low cost.This assay found that SeGlu was able to increase selenium deposition in liver of newborn broilers,and enhance the antioxidant capacity of liver by elevating the activities of antioxidant enzymes such as total superoxide dismutase and glutathione peroxidase.This paper as the first example clarifying the mechanism of SeGlu to enhance the antioxidant ability of chicks,shows that SeGlu can be used as an organic selenium enrichment additive for early nutrition of poultry.As a cross-discipline study involving chemistry,biology and agriculture animal science,the work may be beneficial for studies in related fields and prompt the development of the selenium science.展开更多
Background Wooden breast(WB)myopathy is a common myopathy found in commercial broiler chickens worldwide.Histological examination has revealed that WB myopathy is accompanied by damage to the pectoralis major(PM)muscl...Background Wooden breast(WB)myopathy is a common myopathy found in commercial broiler chickens worldwide.Histological examination has revealed that WB myopathy is accompanied by damage to the pectoralis major(PM)muscle.However,the underlying mechanisms responsible for the formation of WB in broilers have not been fully elucidated.This study aimed to investigate the potential role of hypoxia-mediated programmed cell death(PCD)in the formation of WB myopathy.Results Histological examination and biochemical analysis were performed on the PM muscle of the control(CON)and WB groups.A significantly increased thickness of the breast muscle in the top,middle,and bottom portions(P<0.01)was found along with pathological structure damage of myofibers in the WB group.The number of capillaries per fiber in PM muscle,and the levels of p O_(2) and s O_(2) in the blood,were significantly decreased(P<0.01),while the levels of p CO_(2) and TCO_(2) in the blood were significantly increased(P<0.05),suggesting hypoxic conditions in the PM muscle of the WB group.We further evaluated the PCD-related pathways including autophagy,apoptosis,and necroptosis to understand the consequence response to enhanced hypoxic conditions in the PM muscle of birds with WB.The ratio of LC3 II to LC3 I,and the autophagy-related factors HIF-1α,BNIP3,Beclin1,AMPKα,and ULK1 at the m RNA and protein levels,were all significantly upregulated(P<0.05),showing that autophagy occurred in the PM muscle of the WB group.The apoptotic index,as well as the expressions of Bax,Cytc,caspase 9,and caspase 3,were significantly increased(P<0.05),whereas Bcl-2 was significantly decreased(P<0.05)in the WB-affected PM muscle,indicating the occurrence of apoptosis mediated by the mitochondrial pathway.Additionally,the expressions of necroptosis-related factors RIP1,RIP3,and MLKL,as well as NF-κB and the pro-inflammatory cytokines TNF-α,IL-1β,and IL-6,were all significantly enhanced(P<0.05)in the WB-affected PM muscle.Conclusions The WB myopathy reduces blood supply and induces hypoxia in the PM muscle,which is closely related to the occurrence of PCD including apoptosis,autophagy,and necroptosis within myofibers,and finally leads to abnormal muscle damage and the development of WB in broilers.展开更多
Background This study investigated effects of different methionine(Met)supplementation levels in a reduced protein diet on growth performance,intestinal health,and different physiological parameters in broilers under ...Background This study investigated effects of different methionine(Met)supplementation levels in a reduced protein diet on growth performance,intestinal health,and different physiological parameters in broilers under Eimeria challenge.A total of 600 fourteen-day-old Cobb500 male broilers were challenged with E.maxima,E.tenella,and E.acervulina,and randomly allocated in a 2×5 factorial arrangement.Birds received normal protein diets(20%crude protein,NCP)or reduced protein diets(17%crude protein,LCP),containing 2.8,4.4,6.0,7.6,and 9.2 g/kg of Met.Results On 6 and 9 days post inoculation(DPI),increasing Met level linearly improved the growth performance(P<0.05).Total oocyst shedding linearly increased as Met level increased(P<0.05).Duodenal villus height(VH):crypt depth(CD)in the LCP groups were higher on 6 DPI(P<0.01)while lower on 9 DPI(P<0.05)compared to the NCP groups.Jejunal CD and duodenal VH:CD changed quadratically as Met level increased(P<0.05).On 6 DPI,liver glutathione(GSH)and glutathione disulfide(GSSG)linearly increased as Met level increased(P<0.05).On 9 DPI,GSSG quadratically increased,whereas GSH:GSSG quadratically decreased as Met levels increased(P<0.05).The expression of amino acid transporters linearly decreased as Met level increased(P<0.05).The expression of zonula occludens 2 and claudin-1 linearly increased on 6 DPI whereas decreased on 9 DPI as Met level increased(P<0.05).The expressions of cytokines were lower in the LCP groups than the NCP groups(P<0.05).Interaction effects were found for the expression of IL-10 and TNFαon 6 DPI(P<0.05),where it only changed quadratically in the NCP group as Met level increased.The expression of Met and folate metabolism genes were lower in the LCP groups than the NCP groups on 9 DPI(P<0.05).The expression of these genes linearly or quadratically decreased as Met level increased(P<0.05).Conclusion These results revealed the regulatory roles of Met in different physiological parameters including oxidative status,intestinal health,and nutrient metabolism in birds fed reduced protein diet and challenged with Eimeria.展开更多
基金funded by the Ghent University Special Research Fund(BOF.PDO.2022.0002.01)Projects of International Cooperation of Henan Province(232102520016)National Natural Science Foundation of Henan Province(242300420159).
文摘Background Heat stress(HS) incidence is associated with the accumulation of reactive substances, which might be associated with bone loss. N-Acetylcysteine(NAC) exhibits strong antioxidants due to its sulfhydryl group and being as the precursor for endogenous glutathione synthesis. Therefore, interplay between oxidative stress and bone turnover of broilers and the effects of dietary NAC inclusion on antioxidant capability and “gut-bone” axis were evaluated during chronic HS.Results Implementing cyclic chronic HS(34 ℃ for 7 h/d) evoked reactive oxygen species excessive production and oxidant stress, which was accompanied by compromised tibia mass. The RNA-seq of proximal tibia also revealed the enrichment of oxidation–reduction process and inflammatory outbursts during HS. Although no notable alterations in the growth performance and cecal microbiota were found, the diet contained 2 g/kg NAC enhanced the antioxidant capability of heat-stressed broiler chickens by upregulating the expression of Nrf2 in the ileum, tibia, and bone marrow. Simultaneously, NAC tended to hinder NF-κB pathway activation and decreased the m RNA levels of the proinflammatory cytokines in both the ileum and bone marrow. As a result, NAC suppressed osteoclastogenesis and osteoclast activity, thereby increasing osteocyte-related gene expression. Furthermore, the inclusion of NAC tended to increase the ash content and density of the whole tibia, as well as improve cortical thickness and bone volume of the diaphysis.Conclusions These findings HS-mediated outburst of oxidant stress accelerates bone resorption and negatively regulates the bone quality of tibia, which is inhibited by NAC in broilers.
基金National Natural Science Foundation of China(32072780,31872374)National Key Research and Development Program of China(2016YFD0500501,2018YFD0500405)Earmarked Fund for Jiangsu Agricultural Industry Technology System(JATS[2024]).
文摘Background Chronic heat stress(CHS)is a detrimental environmental stressor with a negative impact on the meat quality of broilers.However,the underlying mechanisms are not fully understood.This study investigates the effects of CHS on long non-coding RNA(lncRNA)expression and muscle injury in broilers,with a focus on its implications for meat quality.Results The results showed that CHS diminished breast muscle yield,elevated abdominal fat deposition,induced cellular apoptosis(P<0.05),and caused myofibrosis.Transcriptomic analysis revealed 151 differentially expressed(DE)lncRNAs when comparing the normal control(NC)and HS groups,214 DE lncRNAs when comparing the HS and PF groups,and 79 DE lncRNAs when comparing the NC and pair-fed(PF)groups.After eliminating the confounding effect of feed intake,68 lncRNAs were identified,primarily associated with cellular growth and death,signal transduc-tion,and metabolic regulation.Notably,the apoptosis-related pathway P53,lysosomes,and the fibrosis-related gene TGF-β2 were significantly upregulated by lncRNAs.Conclusions These findings indicate that chronic heat stress induces cellular apoptosis and muscle injury through lncRNA,leading to connective tissue accumulation,which likely contributes to reduced breast muscle yield and meat quality in broilers.
基金supported by the Russian Science Foundation(No.22-16-00128),“Investigation of the Toxic Effect of Glyphosates on the Functional State of the Bird Intestinal Microbial Community,Their Growth and Development,and the Development of a Biological Product Based on the Glyphosate Degrading Strain”.
文摘Drugs and pesticide residues in broiler feed can compromise the therapeutic and production benefits of antibiotic(ANT)application and affect gene expression.In this study,we analyzed the expression of 13 key pancreatic genes and blood physiology parameters after administering one maximum residue limit of herbicide glyphosate(GLY),two ANTs,and one anticoccidial drug(AD).A total of 260 Ross 308 broilers aged 1-40 d were divided into the following four groups of 65 birds each:control group,which was fed the main diet(MD),and three experimental groups,which were fed MD supplemented with GLY,GLY+ANTs(enrofloxacin and colistin methanesulfonate),and GLY+AD(ammonium maduramicin),respectively.The results showed that the addition of GLY,GLY+ANTs,and GLY+AD caused significant changes in the expression of several genes of physiological and economic importance.In particular,genes related to inflammation and apoptosis(interleukin 6(IL6),prostaglandin-endoperoxide synthase 2(PTGS2),and caspase 6(CASP6))were downregulated by up to 99.1%,and those related to antioxidant protection(catalase(CAT),superoxide dismutase 1(SOD1)and peroxiredoxin 6(PRDX6))by up to 98.6%,compared to controls.There was also a significant decline in the values of immunological characteristics in the blood serum observed in the experimental groups,and certain changes in gene expression were concordant with changes in the functioning of the pancreas and blood.The changes revealed in gene expression and blood indices in response to GLY,ANTs,and AD provide insights into the possible mechanisms of action of these agents at the molecular level.Specifically,these changes may be indicative of physiological mechanisms to overcome the negative effects of GLY,GLY+ANTs,and GLY+AD in broilers.
基金funded by National Key R&D Program of China(2023YFD1301200)the science and technology innovation Program of Hunan Province(2021RC3091).
文摘Background Tryptophan is essential for nutrition,immunity and neural activity,but cannot be synthesized endogenously.Certain natural products influence host health by modulating the gut microbiota to promote the production of tryptophan metabolites.Sanguinarine(SAN)enhances broiler immunity,however,its low bioavailability and underlying mechanisms remain unclear.This study aimed to decode the mechanisms by which sanguinarine enhances intestinal immune function in broilers.Methods Liquid chromatography-tandem mass spectrometry(LC-MS/MS)was employed to identify the main metabolites of sanguinarine in the intestine.Subsequently,equal concentrations of sanguinarine and its metabolites were separately added to the diets.The effects of sanguinarine and its metabolites on the intestinal immune function of broiler chickens were evaluated using 16S rRNA gene amplicon sequencing and tryptophan metabolomics approaches.Results We determined that dihydrosanguinarine(DHSA)is the main metabolite of sanguinarine in the intestine.Both compounds increased average daily gain and reduced feed efficiency,thereby improving growth performance.They also enhanced ileal villus height and the villus-to-crypt(V/C)ratio while decreasing crypt depth and upregulating the mRNA expression of tight junction proteins ZO-1,occludin and claudin-1.Furthermore,both compounds promoted the proliferation of intestinal Lactobacillus species,a tryptophan-metabolizing bacterium,stimulated short-chain fatty acid production,and lowered intestinal pH.They regulated tryptophan metabolism by increasing the diversity and content of indole tryptophan metabolites,activating the aryl hydrocarbon receptor(AhR)pathway,and elevating the mRNA levels of CYP1A1,CYP1B1,SLC3A1,IDO2 and TPH1.Inflammatory cytokines IL-1β and IL-6 were inhibited,while anti-inflammatory cytokines IL-10 and IL-22,serum SIgA concentration,and intestinal MUC2 expression were increased.Notably,DHSA exhibited a more pronounced effect on enhancing immune function compared to SAN.Conclusions SAN is converted to DHSA in vivo,which increases its bioavailability.DHSA regulates tryptophan metabolism by activating the AhR pathway and modulating immune-related factors through changes in the gut microbiota.Notably,DHSA significantly increases the abundance of Lactobacillus,a key tryptophan-metabolizing bacterium,thereby enhancing intestinal immune function and improving broiler growth performance.
基金financially supported article publication charges under the program"Regional Initiative of Excellence"(RID/SP/0017/2024/01)funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant Agreement No. 955374。
文摘Background Hatch weight(HW)affects broiler growth and low HW(LHW)often leads to suboptimal performance.Sodium butyrate(SB)has been shown to promote growth through enhanced intestinal health.This study investi-gated how broilers with different HW responded to in ovo SB injection and whether SB could enhance gut health and performance in LHW chicks.Ross 308 broiler eggs were injected on incubation d 12 with physiological saline(control)or SB at 0.1%(SB1),0.3%(SB3),or 0.5%(SB5).Post-hatch,male chicks from each treatment were categorized as high HW(HHW)or LHW and assigned to 8 groups in a 4×2 factorial design.Production parameters were recorded periodically.Intestinal weight,length,and gene expression related to gut barrier function and immune response were examined on d 14 and 42.Cecal microbiota dynamics and predicted functionality were analyzed using 16S rRNA gene sequencing.Results SB treatments did not affect hatchability.HHW-control group exhibited consistently better weight gain and FCR than LHW-control group.SB dose-dependently influenced performance and gut health in both HW catego-ries,with greater effects in LHW broilers at 0.3%.LHW-SB3 group attained highest body weight on d 42,exceeding controls but not significantly differing from HHW-SB3 group.LHW-SB3 group showed upregulation of gut-barrier genes CLDN1 in ileum,TJP1 in jejunum and anti-inflammatory cytokine IL-10 in both jejunum and ileum on d 14.Addi-tionally,LHW-SB3 group upregulated mucin-producing MUC6 gene in ileum,while HHW-SB5 group increased pro-inflammatory IL-12p40 cytokine in caecum on d 42.LHW-SB3 group demonstrated shorter relative intestinal lengths,while HHW-SB5 had longer lengths.HHW-control group had higher bacterial diversity and growth-promoting bacte-ria while LHW-control group harbored the potential pathogen Helicobacter.SB reshaped gut microbiota biodiversity,composition,and predicted metabolic pathways in both HW categories.The LHW-SB3 group exhibited highest alpha diversity on d 14 and most beneficial bacteria at all timepoints.HHW-SB5 group presented increased pathogenic Escherichia-Shigella and Campylobacter on d 42.Conclusions HW significantly affects subsequent performance and SB has differential effects based on HW.LHW chicks benefited more from 0.3%SB,showing improvements in growth,intestinal development,health,and gut microbiota characteristics.
基金The National Key R&D Program of China(2023YFD2000802)provided financial contributions。
文摘Background Salmonella Typhimurium(S.Typhimurium)is a common pathogenic microorganism and poses a threat to the efficiency of poultry farms.As signaling molecules regulating the interaction between the host and gut microbiota,bile acids(BAs)play a protective role in maintaining gut homeostasis.However,the antibacterial effect of BAs on Salmonella infection in broilers has remained unexplored.Therefore,the aim of this study was to investigate the potential role of feeding BAs in protecting against S.Typhimurium infection in broilers.Methods A total of 1441-day-old Arbor Acres male broilers were randomly assigned to 4 groups,including non-challenged birds fed a basal diet(CON),S.Typhimurium-challenged birds(ST),S.Typhimurium-challenged birds treated with 0.15 g/kg antibiotic after infection(ST-ANT),and S.Typhimurium-challenged birds fed a basal diet supplemented with 350 mg/kg of BAs(ST-BA).Results BAs supplementation ameliorated weight loss induced by S.Typhimurium infection and reduced the colonization of Salmonella in the liver and small intestine in broilers(P<0.05).Compared to the ST group,broilers in ST-BA group had a higher ileal mucosal thickness and villus height,and BAs also ameliorated the increase of diamine oxidase(DAO)level in serum(P<0.05).It was observed that the mucus layer thickness and the number of villous and cryptic goblet cells(GCs)were increased in the ST-BA group,consistent with the upregulation of MUC2 gene expression in the ileal mucosa(P<0.05).Moreover,the m RNA expressions of Toll-like receptor 5(TLR5),Toll-like receptor 4(TLR4),and interleukin 1 beta(IL1b)were downregulated in the ileum by BAs treatment(P<0.05).16S rDNA sequencing analysis revealed that,compared to ST group,BAs ameliorated the decreases in Bacteroidota,Bacteroidaceae and Bacteroides abundances,which were negatively correlated with serum DAO activity,and the increases in Campylobacterota,Campylobacteraceae and Campylobacter abundances,which were negatively correlated with body weight but positively correlated with serum D-lactic acid(D-LA)levels(P<0.05).Conclusions Dietary BAs supplementation strengthens the intestinal mucosal barrier and reverses dysbiosis of gut microbiota,which eventually relieves the damage to the intestinal barrier and weight loss induced by S.Typhimurium infection in broilers.
基金Department of Veterinary Sciences“Ricerca Locale–Linea A”.
文摘Background The present experiment aimed to evaluate the effects of commercially processed former foodstuffs(cFF)as dietary substitutes of corn,soybean meal and soybean oil on the growth performance,apparent total tract digestibil-ity(ATTD),hematobiochemical profiles,and liver gene abundance in broiler chickens.Two hundred one-day-old male ROSS-308 chicks were assigned to 4 dietary groups(5 replicates of ten birds per replicate)according to their average body weight(BW,38.0±0.11 g).All groups received a two-phase feeding program:starter,d 1–12 and grower,d 12–33.The control group(cFF0)was fed a standard commercial feed based on corn,soybean meal and soybean oil.The other three groups received diets in which the feed based on corn,soybean meal,and soybean oil was partially replaced with cFF at a substitution level of 6.25%(cFF6.25),12.5%(cFF12.5)or 25%(cFF25)for the following 33 d.Results The growth performance data showed no differences in BW or average daily gain among groups,although the average daily feed intake decreased during the grower period(12–33 d)and over entire experimental period(1–33 d)in a linear manner as the cFF inclusion level rose(P=0.026),positively affecting the gain to feed ratio(P=0.001).The ATTD of dry matter of the cFF-fed groups were greater with respect to control group and increased throughout the experimental period,whereas the ATTD of ether extract linearly decreased with increasing levels of cFF-fed groups compared with control group and throughout the experimental period(P<0.05).Additionally,a lin-ear increase in the heterophil to lymphocyte ratio,serum cholesterol,triglycerides and alanine-aminotransferase were observed with increasing dietary levels of cFF(P<0.05);however,no differences were observed in lipoprotein lipase or sterol regulatory element binding transcription factor gene abundance.Conclusions The results of this experiment demonstrate that it is possible to incorporate cFF into nutritionally balanced diets for broiler chickens,even up to 25%substitution levels,for up to 33 d without adversely impacting the overall growth performance of male broiler chickens raised under commercial conditions.Further studies are essential to validate the hematological trait findings.
基金funded by the Characteristic Innovation Project of the Guangdong Provincial Department of Education(2024 KTSCX198)Guangdong Basic and Applied Basic Research Foundation(2024 A1515012201)Guangdong Feed Industry Technology System(2024 CXTD14).
文摘Background Aflatoxin B_(1)(AFB_(1))risks animal and human health,and the liver is considered the most crucial detoxification organ.Phlorotannin(PT)is a polyhydroxy phenol that has a wide range of biological activities,including antioxidation and hepatoprotection,which can promote the ability of liver detoxification.This study aimed to elucidate the protective effect of PT on AFB_(1)-induced liver damage in broilers.Results In vivo experiment showed that the PT reduced AFB_(1) content and AFB_(1)-exo-8,9-epoxide DNA(AFBODNA)concentration in serum and liver(P<0.05),improved the histomorphology of liver and hepatic mitochondria,and activated nuclear factor erythroid 2-related factor 2(Nrf2)-related antioxidant and detoxification pathway by upregulating the activities of antioxidant enzymes(catalase[CAT],glutathione S-transferase[GST])and total antioxidant capacity(T-AOC)level(P<0.05),and inhibited the mRNA expression of CYP1A1(cytochrome P450 family 1 subfamily A member 1)and phase Ⅱ detoxification enzyme related genes(GPX1,GSTT1,and NQO1)of broilers exposed to AFB_(1)(P<0.05).Meanwhile,PT upregulated the Nrf1 pathway-related mitochondrial biosynthetic genes(Nrf1,mitochondrial transcription factor A[TFAM],mitofusin 1[MFN1])in broilers fed AFB_(1) contaminated diet(P<0.05).In vitro verification study suggested that the use of Nrf2/Nrf1 inhibitors suppressed the ameliorative role of PT on AFB_(1)-induced liver injury of broilers,which was manifested in the mRNA expression of Nrf2,NQO1,GSTT3,Nrf1,TFAM,and other genes decreasing(P<0.05),and down-regulation of the protein expression of Nrf2,total and nucleus p-Nrf2,and total and nucleus p-Nrf1(P<0.05).Conclusion The PT ameliorates oxidative stress and hepatotoxicity by activating the Nrf2-mediated phase Ⅱ detoxification enzymes pathway and maintains mitochondrial homeostasis by activating the Nrf1 signaling pathway in broilers exposed to AFB_(1).
基金Key International Cooperation Program of the National Natural Science Foundation of China(32120103011)Jiangsu Shuang Chuang Tuan Dui program(JSSCTD202147)+1 种基金Jiangsu Shuang Chuang Ren Cai program(JSSCRC2021541)Initiation Funds of Yangzhou University for Distinguished Scientists.
文摘Background The aim of this study was to determine whether and how Zn proteinate with moderate chelation strength(Zn-Prot M)can alleviate heat stress(HS)-induced intestinal barrier function damage of broilers.A completely randomized design was used for comparatively testing the effects of Zn proteinate on HS and non-HS broilers.Under high temperature(HT),a 1(Control,HT-CON)+2(Zn source)×2(added Zn level)factorial arrangement of treatments was used.The 2 added Zn sources were Zn-Prot M and Zn sulfate(ZnS),and the 2 added Zn levels were 30 and 60 mg/kg.Under normal temperature(NT),a CON group(NT-CON)and pair-fed group(NT-PF)were included.Results The results showed that HS significantly reduced mRNA and protein expression levels of claudin-1,occludin,junctional adhesion molecule-A(JAMA),zonula occludens-1(ZO-1)and zinc finger protein A20(A20)in the jejunum,and HS also remarkably increased serum fluorescein isothiocyanate dextran(FITC-D),endotoxin and interleukin(IL)-1βcontents,serum diamine oxidase(DAO)and matrix metalloproteinase(MMP)-2 activities,nuclear factor kappa-B(NF-κB)p65 mRNA expression level,and protein expression levels of NF-κB p65 and MMP-2 in the jejunum.However,dietary supplementation with Zn,especially organic Zn as Zn-Prot M at 60 mg/kg,significantly decreased serum FITC-D,endotoxin and IL-1βcontents,serum DAO and MMP-2 activities,NF-κB p65 mRNA expression level,and protein expression levels of NF-κB p65 and MMP-2 in the jejunum of HS broilers,and notably promoted mRNA and protein expression levels of claudin-1,ZO-1 and A20.Conclusions Our results suggest that dietary Zn,especially 60 mg Zn/kg as Zn-Prot M,can alleviate HS-induced intestinal barrier function damage by promoting the expression of TJ proteins possibly via induction of A20-mediated suppression of the NF-κB p65/MMP-2 pathway in the jejunum of HS broilers.
基金supported partly by the National Natural Science Foundation of China(No.31772643)the Special Research Funding for Discipline Construction in Sichuan Agricultural University(No.03570126)。
文摘Background At presenti heat stress(HS)has become a key factor that impairs broiler breeding industry,which causes growth restriction and poor meat quality of broilers.S elenium(Se)is an excellent antioxidant and plays a unique role in meat quality improvement.Recent years,nano-selenium(NanoSe)has received tremendous attention in livestock production,due to its characteristic and good antibacterial performance in vitro.Here,we developed the heat stressed-broiler model to investigate the protective effects of NanoSe on growth performance and meat quality of broilers and compare whether there are differences with that of other Se sources(Sodium selenite,SS;Selenoyeast,SeY;Selenomethioninec SeMet).Results HS jeopardized the growth performance and caused poor meat quality of breast muscle in broilers,which were accompanied by lowered antioxidant capacity,increased glycolysis,increased anaerobic metabolism of pyruvate,mitochondrial stress and abnormal mitochondrial tricarboxylic acid(TCA)cycle.All Se sources supplementation exhibited protective effects,which increased the Se concentration and promoted the expression of selenoproteins,improved the mitochondrial homeostasis and the antioxidant capacity,and promoted the TCA cycle and the aerobic metabolism of pyruvate,thus improved the breast muscle meat quality of broilers exposed to HS.However,unlike the other three Se sources,the protective effect of NanoSe on meat quality of heat stressed-broilers was not ideal,which exhibited limited impact on the pH value,drip loss and cooking loss of the breast muscle.Compared with the other Se sources,broilers received NanoSe showed the lowest levels of slow MyHC,the highest levels of fast MyHC and glycogen,the highest mRNA levels of glycolysis-related genes(PFKM and PKM),the highest protein expression of H5P60 and CLPP,and the lowest enzyme activities of GSH-Px,citroyl synthetase(CS)and isocitrate dehydrogenase(ICD)in breast muscle.Consistent with the SS,the Se deposition in breast muscle of broilers received NanoSe was lower than that of broilers received SeY or SeMet.Besides,the regulatory effciency of NanoSe on the expression of key selenoproteins(such as SELENOS)in breast muscle of heat stressed-broilers was also worse than that of other Se Sources.Conclusion Through comparing the meat quality,Se deposition,muscle fiber type conversion,glycolysis,mitochondrial homeostasis,and hond rial TCA cycle-related indicators of breast muscle in heat stressed broilers,we found that the protective effects of organic Se(SeY and SeMet)are better than that of inorganic Se(SS)and NanoSe.As a new Se source,though Nanose showed some protective effect on breast muscle meat quality of heat stressed broilers,the protective effect of NanoSe is not ideal,compared with other Se sources.
基金funded by Jiangsu Shuang Chuang Tuan Dui program (JSSCTD202147)Jiangsu Shuang Chuang Ren Cai program (JSSCRC2021541)+1 种基金Young Elite Scientists Sponsorship Program by CAST (2022QNRC001)the Initiation Funds of Yangzhou University for Distinguished Scientists
文摘Background Our previous studies demonstrated that divalent organic iron(Fe)proteinate sources with higher complexation or chelation strengths as expressed by the greater quotient of formation(Qf)values displayed higher Fe bioavailabilities for broilers.Sodium iron ethylenediaminetetraacetate(NaFeEDTA)is a trivalent organic Fe source with the strongest chelating ligand EDTA.However,the bioavailability of Fe when administered as NaFeEDTA in broilers and other agricultural animals remains untested.Herein,the chemical characteristics of 12 NaFeEDTA products were determined.Of these,one feed grade NaFeEDTA(Qf=2.07×10^(8)),one food grade NaFeEDTA(Qf=3.31×10^(8)),and one Fe proteinate with an extremely strong chelation strength(Fe-Prot ES,Qf value=8,590)were selected.Their bioavailabilities relative to Fe sulfate(FeSO_(4)·7H_(2)O)for broilers fed with a conventional corn-soybean meal diet were evaluated during d 1 to 21 by investigating the effects of the above Fe sources and added Fe levels on the growth performance,hematological indices,Fe contents,activities and gene expressions of Fe-containing enzymes in various tissues of broilers.Results NaFeEDTA sources varied greatly in their chemical characteristics.Plasma Fe concentration(PI),transferrin saturation(TS),liver Fe content,succinate dehydrogenase(SDH)activities in liver,heart,and kidney,catalase(CAT)activity in liver,and SDH mRNA expressions in liver and kidney increased linearly(P<0.05)with increasing levels of Fe supplementation.However,differences among Fe sources were detected(P<0.05)only for PI,liver Fe content,CAT activity in liver,SDH activities in heart and kidney,and SDH mRNA expressions in liver and kidney.Based on slope ratios from multiple linear regressions of the above indices on daily dietary analyzed Fe intake,the average bioavailabilities of Fe-Prot ES,feed grade NaFeEDTA,and food grade NaFeEDTA relative to the inorganic FeSO_(4)·7H_(2)O(100%)for broilers were 139%,155%,and 166%,respectively.Conclusions The bioavailabilities of organic Fe sources relative to FeSO_(4)·7H_(2)O were closely related to their Qf values,and NaFeEDTA sources with higher Qf values showed higher Fe bioavailabilities for broilers fed with a conventional corn-soybean meal diet.
基金funded by the National Nature Science Foundation of China(32002196)。
文摘Background Global warming leading to heat stress(HS)is becoming a major challenge for broiler production.This study aimed to explore the protective effects of seaweed(Enteromorpha prolifera)polysaccharides(EPS)on the intestinal barrier function,microbial ecology,and performance of broilers under HS.A total of 144 yellow-feathered broilers(male,56 days old)with 682.59±7.38 g were randomly assigned to 3 groups:1)TN(thermal neutral zone,23.6±1.8℃),2)HS(heat stress,33.2±1.5℃ for 10 h/d),and 3)HSE(HS+0.1%EPS).Each group contained 6 replicates with 8 broilers per replicate.The study was conducted for 4 weeks;feed intake and body weights were measured at the end of weeks 2 and 4.At the end of the feeding trial,small intestine samples were collected for histomorphology,antioxidant,secretory immunoglobulin A(s Ig A)content,apoptosis,gene and protein expression analysis;cecal contents were also collected for microbiota analysis based on 16S r DNA sequencing.Results Dietary EPS promoted the average daily gain(ADG)of broilers during 3–4 weeks of HS(P<0.05).At the end of HS on broilers,the activity of total superoxide dismutase(T-SOD),glutathione S-transferase(GST),and the content of s Ig A in jejunum were improved by EPS supplementation(P<0.05).Besides,dietary EPS reduced the epithelial cell apoptosis of jejunum and ileum in heat-stressed broilers(P<0.05).Addition of EPS in HS group broilers'diet upregulated the relative m RNA expression of Occludin,ZO-1,γ-GCLc and IL-10 of the jejunum(P<0.05),whereas downregulated the relative m RNA expression of NF-κB p65,TNF-αand IL-1βof the jejunum(P<0.05).Dietary EPS increased the protein expression of Occludin and ZO-1,whereas it reduced the protein expression of NF-κB p65 and MLCK(P<0.01)and tended to decrease the protein expression of TNF-α(P=0.094)in heat-stressed broilers.Furthermore,the proportions of Bacteroides and Oscillospira among the three groups were positively associated with jejunal apoptosis and pro-inflammatory cytokine expression(P<0.05)and negatively correlated with jejunal Occludin level(P<0.05).However,the proportions of Lactobacillus,Barnesiella,Subdoligranulum,Megasphaera,Collinsella,and Blautia among the three groups were positively related to ADG(P<0.05).Conclusions EPS can be used as a feed additive in yellow-feathered broilers.It effectively improves growth performance and alleviates HS-induced intestinal injury by relieving inflammatory damage and improving the tight junction proteins expression.These beneficial effects may be related to inhibiting NF-κB/MLCK signaling pathway activation and regulation of cecal microbiota.
基金funded by the grants from the Beijing Natural Science Foundation,China(6202028)the National Natural Science Foundation of China(32172723)+2 种基金the State Key Laboratory of Animal Nutrition,China(2004DA125184G2109)the Agricultural Science and Technology Innovation Program,China(ASTIP-IAS04)the China Agriculture Research System of MOF and MARA(CARS-41).
文摘Excessive abdominal fat deposition reduces the feed efficiency and increase the cost of production in broilers.Therefore,it is an important task for poultry breeders to breed broilers with low abdominal fat.Abdominal fat deposition is a highly complex biological process,and its molecular basis remains elusive.In this study,we performed transcriptome analysis to compare gene expression profiles at different stages of abdominal fat deposition to identify the key genes and pathways involved in abdominal fat accumulation.We found that abdominal fat weight(AFW)increased gradually from day 35(D35)to 91(D91),and then decreased at day 119(D119).Accordingly,after detecting differentially expressed genes(DEGs)by comparing gene expression profiles at D35 vs.D63 and D35 vs.D91,and identifying gene modules associated with fat deposition by weighted gene co-expression network analysis(WGCNA),we performed intersection analysis of the detected DEGs and WGCNA gene modules and identified 394 and 435 intersecting genes,respectively.The results of the Gene Ontology(GO)functional enrichment analysis and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway enrichment analyses showed that the steroid hormone biosynthesis and insulin signaling pathways were co-enriched in all intersecting genes,steroid hormones have been shown that regulated insulin signaling pathway,indicating the importance of the steroid hormone biosynthesis pathway in the development of broiler abdominal fat.We then identified 6 hub genes(ACTB,SOX9,RHOBTB2,PDLIM3,NEDD9,and DOCK4)related to abdominal fat deposition.Further analysis also revealed that there were direct interactions between 6 hub genes.SOX9 has been shown to bind to proteins required for steroid hormone receptor binding,and RHOBTB2 indirectly regulates the steroid hormones biosynthesis through cyclin factor,and ultimately affect fat deposition.Our results suggest that the genes RHOBTB2 and SOX9 play an important role in fat deposition in broilers,by regulating steroid hormone synthesis.These findings provide new targets and directions for further studies on the mechanisms of fat deposition in chicken.
文摘The accumulation of growth-promoting antibiotic residues in animal products and the resistance developed by bacteria in poultry farms has led to a search for natural compounds derived from plants. This study was designed to promote the production performance of broiler chickens using fresh Cupressus sempervirens leaves infusion. Fresh Cupressus sempervirens leaves were harvested, washed, chopped and ground to a paste using a blender and fermented for three days in a closed container at a rate of 500 g/L of water. The solution obtained was filtered and added at the rate of 2, 4, 6, 8 and 10 ml/L of drinking water. The chickens fed on the graded level of the solution were compared to a control ration without an additive and positive control group supplemented with 1 g antibiotic/kg feed. At the finisher phase and throughout the study period, water intake increased significantly (P < 0.05) with increasing levels of infusion. Feed intake decreased significantly (P < 0.05) with 2 and 4 ml of infusion/L drinking water. Live weight and weight gain were significantly (P < 0.05) higher with 6 ml/L, while feed conversion significantly (P < 0.05) decreased with the same treatment compared with the control treatment without additives (T0). Carcass characteristics were not significantly (P > 0.05) affected by the inclusion of Cupressus sempervirens infusion. Haematological parameters significantly (P < 0.05) increase independently of the rate of incorporation of the infusion into the drinking water, with the exception of RBCs, MCHT and PCT. Serum content in total protein, globulins, LDL cholesterol and triglycerides were significantly (P < 0.05) high with 8 and 10 ml Cupressus sempervirens infusion/litre drinking water as compared to all other treatments. AST, ALT, urea, creatine, albumin, total cholesterol and HDL-cholesterol were not significantly affected. The lactic acid bacteria load increased significantly (P E. coli and salmonella counts decreased significantly (P < 0.05) with infusion compared to the control without additive. In conclusion, 6 ml of Cupressus sempervirens infusion can be used as an alternative to antibiotic feed additives to promote growth performance in broilers.
基金financially supported by the National Natural Science Foundation of China(32102559)the Jiangsu Shuang Chuang Tuan Dui Program,China(JSSCTD202147)the Jiangsu Shuang Chuang Ren Cai Program,China(JSSCRC2021541)。
文摘Excessive abdominal fat deposition seriously restricts the production efficiency of broilers.Several studies found that dietary supplemental manganese(Mn)could effectively reduce the abdominal fat deposition of broilers,but the underlying mechanisms remain unclear.The present study aimed to investigate the effect of dietary supplementation with the inorganic or organic Mn on abdominal fat deposition,and enzyme activity and gene expression involved in lipid metabolism in the abdominal fat of male or female broilers.A total of 4201-d-old AA broilers(half males and half females)were randomly allotted by body weight and gender to 1 of 6 treatments with 10 replicates cages of 7 chicks per cage in a completely randomized design involving a 3(dietary Mn addition)×2(gender)factorial arrangement.Male or female broilers were fed with the Mn-unsupplemented basal diets containing 17.52 mg Mn kg^(-1)(d 1-21)and 15.62 mg Mn kg^(-1)(d 22-42)by analysis or the basal diets supplemented with 110 mg Mn kg^(-1)(d 1-21)and 80 mg Mn kg^(-1)(d 22-42)as either the Mn sulfate or the Mn proteinate with moderate chelation strength(Mn-Prot M)for 42 d.The results showed that the interaction between dietary Mn addition and gender had no impact(P>0.05)on any of the measured parameters;abdominal fat percentage of broilers was decreased(P<0.003)by Mn addition;Mn addition increased(P<0.004)adipose triglyceride lipase(ATGL)activity,while Mn-Prot M decreased(P<0.002)the fatty acid synthase(FAS)activity in the abdominal fat of broilers compared to the control;Mn addition decreased(P<0.009)diacylglycerol acyltransferase 2(DGAT2)mRNA expression level and peroxisome proliferator-activated receptor γ(PPARγ)mRNA and protein expression levels,but up-regulated(P<0.05)the ATGL mRNA and protein expression levels in the abdominal fat of broilers.It was concluded that dietary supplementation with Mn inhibited the abdominal fat deposition of broilers possibly via decreasing the expression of PPARγand DGAT2 as well as increasing the expression and activity of ATGL in the abdominal fat of broilers,and Mn-Prot M was more effective in inhibiting the FAS acitivity.
基金supported by the National Key Research and Development Program of China(2022YFF1000204)the National Natural Science Foundation of China(32102535)the Key Research and Development Program of Hainan province(ZDYF2023XDNY036)。
文摘Background Broilers stand out as one of the fastest-growing livestock globally,making a substantial contribution to animal meat production.However,the molecular and epigenetic mechanisms underlying the rapid growth and development of broiler chickens are still unclear.This study aims to explore muscle development patterns and regulatory networks during the postnatal rapid growth phase of fast-growing broilers.We measured the growth performance of Cornish(CC)and White Plymouth Rock(RR)over a 42-d period.Pectoral muscle samples from both CC and RR were randomly collected at day 21 after hatching(D21)and D42 for RNA-seq and ATAC-seq library construction.Results The consistent increase in body weight and pectoral muscle weight across both breeds was observed as they matured,with CC outpacing RR in terms of weight at each stage of development.Differential expression analysis identified 398 and 1,129 genes in the two dimensions of breeds and ages,respectively.A total of 75,149 ATAC-seq peaks were annotated in promoter,exon,intron and intergenic regions,with a higher number of peaks in the promoter and intronic regions.The age-biased genes and breed-biased genes of RNA-seq were combined with the ATAC-seq data for subsequent analysis.The results spotlighted the upregulation of ACTC1 and FDPS at D21,which were primarily associated with muscle structure development by gene cluster enrichment.Additionally,a noteworthy upregulation of MUSTN1,FOS and TGFB3 was spotted in broiler chickens at D42,which were involved in cell differentiation and muscle regeneration after injury,suggesting a regulatory role of muscle growth and repair.Conclusions This work provided a regulatory network of postnatal broiler chickens and revealed ACTC1 and MUSTN1 as the key responsible for muscle development and regeneration.Our findings highlight that rapid growth in broiler chickens triggers ongoing muscle damage and subsequent regeneration.These findings provide a foundation for future research to investigate the functional aspects of muscle development.
基金supported by the National Natural Science Foundation of China(31501977)the Sichuan Provincial Key R&D Project China(22ZDYF0194)the Double World-Class Project of Southwest Minzu University China(XM2023010)。
文摘This study aimed to investigate the dose-effect of iron on growth performance,antioxidant function.intestinal morphology,and mRNA expression of jejunal tight junction protein in 1-to21-d-old yellow-feathered broilers.A total of 7201-d-old yellow-feathered maleb roilers were allocated to 9 treatments with 8 replicate cages of 10 birds per cage.The dietary treatments were consisted of a basal diet(contained 79.6 mg Fe kg^(-1))supplemented with 0,20,40,60,80,160,320,640,and 1,280 mg Fe kg^(-1)in the form of FeSO_(4)·7H_(2)O.Compared with the birds in the control group,birds supplemented with 20mg Fe kg^(-1)had higher average daily gain(ADG)(P<0.0001).Adding 640 and 1,280 mg Fe kg^(-1)significantly decreased ADG(P<0.0001)and average daily feed intake(ADFI)(P<0.0001)compared with supplementation of 20mg Fe kg^(-1).Malondialdehyde(MDA)concentration in plasma and duodenum increased linearly(P<0.0001),but MDA concentration in liver and jejunum increased linearly(P<0.05)or quadratically(P<0.05)with increased dietary Fe concentration.The villus height(VH)in duodenum and jejunum,and the ratio of villus height to crypt depth(V/C)in duodenum decreased linearly(P?0.05)as dietary Feincreased.As dietary Fe increased,the jejunal relative mRNA abundance of claudin-1 decreased linearly(P=0.001),but the jejunal relative mRNA abundance of zona occludens-1(ZO-1)and occludin decreased linearly(P?0.05)or quadratically(P?0.05).Compared with the supplementation of 20 mg Fe kg^(-1),the supplementation of640 mg Fe kg^(-1)or higher increased(P?0.05)MDA concentrations in plasma,duodenum,and jejunum,decreased VH in the duodenum and jejunum,and the addition of 1,280 mg Fe kg^(-1)reduced(P?0.05)the jejunal tight junction protein(claudin-1,ZO-1,occludin)mRNA abundance.In summary,640 mg of supplemental Fe kg^(-1)or greater was associated with decreased growth performance,increased oxidative stress,disrupted intestinal morphology,and reduced mRNA expression of jejunal tight junction protein.
基金supported by the Open Project of Jiangsu Key Laboratory of Animal genetic Breeding and Molecular Design(No.AGBMD202202)the Jiangsu Agricultural Science and Technology Innovation Fund(Nos.[CX(21)3131]and[CX(20)3010])+2 种基金the“JBGS”Project of Seed Industry Revitalization in Jiangsu Province(Nos.[JBGS[2021]027 and JBGS[2021]105])the Science and Education Integration Project of Yangzhou University(No.[KJRH202115])Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)。
文摘Selenium is an essential trace element for humans and animals.As the active center of selenoproteins,the addition of selenium is beneficial to enhance the antioxidant ability.However,the high cost limits the application of organic Se in agriculture animal production.Selenized glucose(SeGlu)is a newly invented organoselenium material with good stability,low toxicity and low cost.This assay found that SeGlu was able to increase selenium deposition in liver of newborn broilers,and enhance the antioxidant capacity of liver by elevating the activities of antioxidant enzymes such as total superoxide dismutase and glutathione peroxidase.This paper as the first example clarifying the mechanism of SeGlu to enhance the antioxidant ability of chicks,shows that SeGlu can be used as an organic selenium enrichment additive for early nutrition of poultry.As a cross-discipline study involving chemistry,biology and agriculture animal science,the work may be beneficial for studies in related fields and prompt the development of the selenium science.
基金supported by the National Natural Science Foundation of China(32072780 and 32272900)the Earmarked Fund for Jiangsu Agricultural Industry Technology System(JATS[2023]418)。
文摘Background Wooden breast(WB)myopathy is a common myopathy found in commercial broiler chickens worldwide.Histological examination has revealed that WB myopathy is accompanied by damage to the pectoralis major(PM)muscle.However,the underlying mechanisms responsible for the formation of WB in broilers have not been fully elucidated.This study aimed to investigate the potential role of hypoxia-mediated programmed cell death(PCD)in the formation of WB myopathy.Results Histological examination and biochemical analysis were performed on the PM muscle of the control(CON)and WB groups.A significantly increased thickness of the breast muscle in the top,middle,and bottom portions(P<0.01)was found along with pathological structure damage of myofibers in the WB group.The number of capillaries per fiber in PM muscle,and the levels of p O_(2) and s O_(2) in the blood,were significantly decreased(P<0.01),while the levels of p CO_(2) and TCO_(2) in the blood were significantly increased(P<0.05),suggesting hypoxic conditions in the PM muscle of the WB group.We further evaluated the PCD-related pathways including autophagy,apoptosis,and necroptosis to understand the consequence response to enhanced hypoxic conditions in the PM muscle of birds with WB.The ratio of LC3 II to LC3 I,and the autophagy-related factors HIF-1α,BNIP3,Beclin1,AMPKα,and ULK1 at the m RNA and protein levels,were all significantly upregulated(P<0.05),showing that autophagy occurred in the PM muscle of the WB group.The apoptotic index,as well as the expressions of Bax,Cytc,caspase 9,and caspase 3,were significantly increased(P<0.05),whereas Bcl-2 was significantly decreased(P<0.05)in the WB-affected PM muscle,indicating the occurrence of apoptosis mediated by the mitochondrial pathway.Additionally,the expressions of necroptosis-related factors RIP1,RIP3,and MLKL,as well as NF-κB and the pro-inflammatory cytokines TNF-α,IL-1β,and IL-6,were all significantly enhanced(P<0.05)in the WB-affected PM muscle.Conclusions The WB myopathy reduces blood supply and induces hypoxia in the PM muscle,which is closely related to the occurrence of PCD including apoptosis,autophagy,and necroptosis within myofibers,and finally leads to abnormal muscle damage and the development of WB in broilers.
基金financially supported in part by a cooperative agreement 6040–32000-080-000D from United States Department of Agriculture-Agricultural Research Service。
文摘Background This study investigated effects of different methionine(Met)supplementation levels in a reduced protein diet on growth performance,intestinal health,and different physiological parameters in broilers under Eimeria challenge.A total of 600 fourteen-day-old Cobb500 male broilers were challenged with E.maxima,E.tenella,and E.acervulina,and randomly allocated in a 2×5 factorial arrangement.Birds received normal protein diets(20%crude protein,NCP)or reduced protein diets(17%crude protein,LCP),containing 2.8,4.4,6.0,7.6,and 9.2 g/kg of Met.Results On 6 and 9 days post inoculation(DPI),increasing Met level linearly improved the growth performance(P<0.05).Total oocyst shedding linearly increased as Met level increased(P<0.05).Duodenal villus height(VH):crypt depth(CD)in the LCP groups were higher on 6 DPI(P<0.01)while lower on 9 DPI(P<0.05)compared to the NCP groups.Jejunal CD and duodenal VH:CD changed quadratically as Met level increased(P<0.05).On 6 DPI,liver glutathione(GSH)and glutathione disulfide(GSSG)linearly increased as Met level increased(P<0.05).On 9 DPI,GSSG quadratically increased,whereas GSH:GSSG quadratically decreased as Met levels increased(P<0.05).The expression of amino acid transporters linearly decreased as Met level increased(P<0.05).The expression of zonula occludens 2 and claudin-1 linearly increased on 6 DPI whereas decreased on 9 DPI as Met level increased(P<0.05).The expressions of cytokines were lower in the LCP groups than the NCP groups(P<0.05).Interaction effects were found for the expression of IL-10 and TNFαon 6 DPI(P<0.05),where it only changed quadratically in the NCP group as Met level increased.The expression of Met and folate metabolism genes were lower in the LCP groups than the NCP groups on 9 DPI(P<0.05).The expression of these genes linearly or quadratically decreased as Met level increased(P<0.05).Conclusion These results revealed the regulatory roles of Met in different physiological parameters including oxidative status,intestinal health,and nutrient metabolism in birds fed reduced protein diet and challenged with Eimeria.