Despite extensive research efforts, a preventive human immunodeficiency virus (HIV) vaccine remains one of the major challenges in the field of AIDS research. Experimental strategies which have been proven successful ...Despite extensive research efforts, a preventive human immunodeficiency virus (HIV) vaccine remains one of the major challenges in the field of AIDS research. Experimental strategies which have been proven successful for other viral vaccines are not enough to tackle HIV-1 and new approaches to design effective preventive AIDS vaccines are of utmost importance. Due to enormous diversity among global circulating HIV strains, an effective HIV vaccine must elicit broadly protective antibodies based responses;therefore discovering new broadly neutralizing antibodies (bNAbs) against HIV has become major focus in HIV vaccine research. However further understanding of the viral targets of such antibodies and mechanisms of action of bNAbs is required for advancement of HIV vaccine research. This technical note discusses our current knowledge on the bNAbs and immunoprophylaxis using viral vectors with their relevance in designing of new candidates to HIV-1 vaccines.展开更多
The global spread of Severe Acute Respiratory Syndrome Coronavirus 2.(SARS-CoV-2)and its variant strains,including Alpha,Beta,Gamma,Delta,and now Omicron,pose a significant challenge.With the constant evolution of the...The global spread of Severe Acute Respiratory Syndrome Coronavirus 2.(SARS-CoV-2)and its variant strains,including Alpha,Beta,Gamma,Delta,and now Omicron,pose a significant challenge.With the constant evolution of the virus,Omicron and its subtypes BA.1,BA.2,BA.3,BA.4,and BA.5 have developed the capacity to evade neutralization induced by previous vaccination or infection.This evasion highlights the urgency in discovering new monoclonal antibodies(mAbs)with neutralizing activity,especially broadly neutralizing antibodies(bnAbs),to combat the virus.In the current study,we introduced a fully human neutralizing mAb,CR9,that targets Omicron variants.We demonstrated the mAb’s effectiveness in inhibiting Omicron replication both in vitro and in vivo.Structural analysis using cryo-electron microscopy(cryo-EM)revealed that CR9 binds to an epitope formed by RBD residues,providing a molecular understanding of its neutralization mechanism.Given its potency and specificity,CR9 holds promise as a potential adjunct therapy for treating Omicron infections.Our findings highlight the importance of continuous mAb discovery and characterization in addressing the evolving threat of COVID-19.展开更多
A study published in Nature'by Gonelli and colleagues reveals that potent,broadly neutralizing antibodies(bNAbs)delay viremic simian immunodeficiency virus(SIV)infection in rhesus macaques but do not fully prevent...A study published in Nature'by Gonelli and colleagues reveals that potent,broadly neutralizing antibodies(bNAbs)delay viremic simian immunodeficiency virus(SIV)infection in rhesus macaques but do not fully prevent subclinical infections.Despite bNAb concentrations being significantly higher than supposed protective thresholds,transient viral"blips"occurred,which suggests that bNAb prophylaxis can mask subclinical infections and has implications for the interpretation of HIV-1 prevention trials.展开更多
Remarkable progress has been achieved for prophylactic and therapeutic interventions against human immunodeficiency virus type I(HIV-1)through antiretroviral therapy.However,vaccine development has remained challengin...Remarkable progress has been achieved for prophylactic and therapeutic interventions against human immunodeficiency virus type I(HIV-1)through antiretroviral therapy.However,vaccine development has remained challenging.Recent discoveries in broadly neutralizing monoclonal antibodies(bNAbs)has led to the development of multiple novel vaccine approaches for inducing bNAbs-like antibody response.Structural and dynamic studies revealed several vulnerable sites and states of the HIV-1 envelop glycoprotein(Env)during infection.Our review aims to highlight these discoveries and rejuvenate our endeavor in HIV-1 vaccine design and development.展开更多
We report on broadly wavelength-tunable passive mode-locking with high power operating at the 2 μm water absorption band in a Tm:CYA crystal laser. With a simple quartz plate, stable mode-locking wavelengths can be t...We report on broadly wavelength-tunable passive mode-locking with high power operating at the 2 μm water absorption band in a Tm:CYA crystal laser. With a simple quartz plate, stable mode-locking wavelengths can be tuned from 1874 to 1973 nm, with a tunable wavelength range up to ~100 nm and maximum output power up to 1.35 W. The bandwidth is narrow as ~6 GHz, corresponding to a high coherence. To our knowledge, this is the first demonstration of wavelength-tunable mode-locking with watt-level in the 2 μm water absorption band.The high temporal coherent laser can be further applied in spectroscopy, the efficient excitation of molecules, sensing, and quantum optics.展开更多
This paper presents a design method to implement an antenna array characterized by ultra-wide beam coverage,low profile,and low Sidelobe Level(SLL)for the application of Unmanned Aerial Vehicle(UAV)air-to-ground commu...This paper presents a design method to implement an antenna array characterized by ultra-wide beam coverage,low profile,and low Sidelobe Level(SLL)for the application of Unmanned Aerial Vehicle(UAV)air-to-ground communication.The array consists of ten broadside-radiating,ultrawide-beamwidth elements that are cascaded by a central-symmetry series-fed network with tapered currents following Dolph-Chebyshev distribution to provide low SLL.First,an innovative design of end-fire Huygens source antenna that is compatible with metal ground is presented.A low-profile,half-mode Microstrip Patch Antenna(MPA)is utilized to serve as the magnetic dipole and a monopole is utilized to serves as the electric dipole,constructing the compact,end-fire,grounded Huygens source antenna.Then,two opposite-oriented end-fire Huygens source antennas are seamlessly integrated into a single antenna element in the form of monopole-loaded MPA to accomplish the ultrawide,broadside-radiating beam.Particular consideration has been applied into the design of series-fed network as well as antenna element to compensate the adverse coupling effects between elements on the radiation performance.Experiment indicates an ultrawide Half-Power Beamwidth(HPBW)of 161°and a low SLL of-25 dB with a high gain of 12 d Bi under a single-layer configuration.The concurrent ultrawide beamwidth and low SLL make it particularly attractive for applications of UAV air-to-ground communication.展开更多
6G is desired to support more intelligence networks and this trend attaches importance to the self-healing capability if degradation emerges in the cellular networks.As a primary component of selfhealing networks,faul...6G is desired to support more intelligence networks and this trend attaches importance to the self-healing capability if degradation emerges in the cellular networks.As a primary component of selfhealing networks,fault detection is investigated in this paper.Considering the fast response and low timeand-computational consumption,it is the first time that the Online Broad Learning System(OBLS)is applied to identify outages in cellular networks.In addition,the Automatic-constructed Online Broad Learning System(AOBLS)is put forward to rationalize its structure and consequently avoid over-fitting and under-fitting.Furthermore,a multi-layer classification structure is proposed to further improve the classification performance.To face the challenges caused by imbalanced data in fault detection problems,a novel weighting strategy is derived to achieve the Multilayer Automatic-constructed Weighted Online Broad Learning System(MAWOBLS)and ensemble learning with retrained Support Vector Machine(SVM),denoted as EMAWOBLS,for superior treatment with this imbalance issue.Simulation results show that the proposed algorithm has excellent performance in detecting faults with satisfactory time usage.展开更多
BACKGROUND Leiomyomas or fibroids commonly originate from the uterus;extrauterine leiomyomas are rare and most often arise from the broad ligament.Diagnosing broad ligament leiomyomas becomes particularly challenging ...BACKGROUND Leiomyomas or fibroids commonly originate from the uterus;extrauterine leiomyomas are rare and most often arise from the broad ligament.Diagnosing broad ligament leiomyomas becomes particularly challenging when they undergo degenerative changes because their clinical and radiological features often mimic those of ovarian tumors.We report a rare case of a giant broad ligament fibroid with cystic degeneration,which was initially mistaken for an ovarian mass.CASE SUMMARY A 49-year-old woman presented with mild abdominal distension and pain as the only symptoms.Upon abdominal examination,a large mass measuring approximately 30 cm and extending from the pelvic cavity to just below the xiphoid process was identified.Both transvaginal ultrasound and contrast-enhanced computed tomography suggested an ovarian origin of the mass.However,laparotomy confirmed that the mass originated from the right broad ligament.The mass was separated from the uterus and bilateral ovaries,with no involvement of the uterus or ovaries.The mass was completely resected with respecting the patient’s desire to retain her uterus and adnexa.Postoperative histopathological examination confirmed leiomyoma with cystic degeneration.CONCLUSION Broad ligament myomas mimic ovarian tumors;accurate diagnosis and careful operation are critical to avoid complications and ensure safety.展开更多
Wheat leaf rust,caused by Puccinia triticina(Pt),is one of the most devastating diseases in common wheat(Triticum aestivum L.)and can lead to heavy yield loss(Chai et al.2020).Leaf rust can result in 50%yield loss dur...Wheat leaf rust,caused by Puccinia triticina(Pt),is one of the most devastating diseases in common wheat(Triticum aestivum L.)and can lead to heavy yield loss(Chai et al.2020).Leaf rust can result in 50%yield loss during epidemic years(Huerta-Espino et al.2011;Gebrewahid et al.2020;Kolomiets et al.2021).Breeding varieties resistant to leaf rust have been recognized as the most effective and economical method to mitigate wheat losses caused by Pt.The narrow genetic basis of wheat constrains the number of cultivars resistant to leaf rust(Jin et al.2021).展开更多
On 18 December 2024,Liu Hongcai,Vice-President of CAFIU met with Seiji Yamamoto,Director General of the Broad National Alliance for Independence,Peace and Democracy of Japan.The two sides exchanged views on China-Japa...On 18 December 2024,Liu Hongcai,Vice-President of CAFIU met with Seiji Yamamoto,Director General of the Broad National Alliance for Independence,Peace and Democracy of Japan.The two sides exchanged views on China-Japan relations,people-to-people exchanges and cooperation between the two organisations.展开更多
In this paper, the containment control problem in nonlinear multi-agent systems(NMASs) under denial-of-service(DoS) attacks is addressed. Firstly, a prediction model is obtained using the broad learning technique to t...In this paper, the containment control problem in nonlinear multi-agent systems(NMASs) under denial-of-service(DoS) attacks is addressed. Firstly, a prediction model is obtained using the broad learning technique to train historical data generated by the system offline without DoS attacks. Secondly, the dynamic linearization method is used to obtain the equivalent linearization model of NMASs. Then, a novel model-free adaptive predictive control(MFAPC) framework based on historical and online data generated by the system is proposed, which combines the trained prediction model with the model-free adaptive control method. The development of the MFAPC method motivates a much simpler robust predictive control solution that is convenient to use in the case of DoS attacks. Meanwhile, the MFAPC algorithm provides a unified predictive framework for solving consensus tracking and containment control problems. The boundedness of the containment error can be proven by using the contraction mapping principle and the mathematical induction method. Finally, the proposed MFAPC is assessed through comparative experiments.展开更多
Bi_(2)YbO_(4)Cl with a fluorite layer structure belongs to the family of the bismuth rare-earth oxyhalides Bi_(2)REO_(4)X(X=Cl,B r,I).However,the synthesis and photoelectric properties of Bi_(2)YbO_(4)Cl have almost n...Bi_(2)YbO_(4)Cl with a fluorite layer structure belongs to the family of the bismuth rare-earth oxyhalides Bi_(2)REO_(4)X(X=Cl,B r,I).However,the synthesis and photoelectric properties of Bi_(2)YbO_(4)Cl have almost not been reported.In this work,Bi_(2)YbO_(4)Cl was synthesized using the solid-state method and the solvothermal method.Yb3+ions show a strong characteristic absorption peak at 980 nm,which was measured by ultraviolet-visible-near-infrared absorption spectra.The transient photoconductivity of Bi_(2)YbO_(4)Cl was obtained by time-resolved terahertz spectroscopy system under 400 and 800 nm laser excitations,respectively.The frequency-dependent transient photoconductivity analysis reveals the Drude-Smith behavior in Bi_(2)YbO_(4)Cl.Under photoexcitation,the hot charge carriers with a long relaxation lifetime and a carrier mobility of 48 cm^(2)/(V·s) are obtained.The synthesis of Bi_(2)YbO_(4)Cl is of great significance for the development of novel photocatalytic and photo harvesting materials with broad spectral response.展开更多
Coronaviruses are single-stranded,positive-sense RNA enveloped viruses that have posed a significant threat to human health over the past few decades,particularly severe acute respiratory syndrome coronavirus(SARS-CoV...Coronaviruses are single-stranded,positive-sense RNA enveloped viruses that have posed a significant threat to human health over the past few decades,particularly severe acute respiratory syndrome coronavirus(SARS-CoV),Middle East respiratory syndrome coronavirus(MERS-CoV),and SARS-CoV-2.These viruses have caused widespread infections and fatalities,with profound impacts on global economies,social life,and public health systems.Due to their broad host range in natural settings and the consequent high potential for zoonotic spillover events,a thorough investigation of the common viral mechanisms and the identification of druggable targets for pan-coronavirus antiviral development are of utmost importance.展开更多
Investors greet China's first QDII products with caution Ms. Wang, a financial planner at one of China's largest state-owned banks, takes five phone inquiries a day from clients I about its new QDII products, ...Investors greet China's first QDII products with caution Ms. Wang, a financial planner at one of China's largest state-owned banks, takes five phone inquiries a day from clients I about its new QDII products, with most clients saying they will consider it. "I have an enquiry about your bank's QDII products. What are the returns?展开更多
The advent of“intelligent era”brings our life more convenience,but the electromagnetic radiation sur-rounding us not only greatly threatens human health,also makes information leakage and hidden trouble to national ...The advent of“intelligent era”brings our life more convenience,but the electromagnetic radiation sur-rounding us not only greatly threatens human health,also makes information leakage and hidden trouble to national defense security.Hence,it is very urgent to develop novel electromagnetic wave absorption materials with lightweight,strong absorption,tunable absorption frequency and broad band absorption.Herein,a novel electromagnetic wave absorber is obtained by constructing La_(0.8)CoO_(3)-rGO nanocompos-ite,where La_(0.8)CoO_(3)nanoparticles are anchored on graphene nanosheets by the electrostatic interaction between GO and La_(0.8)CoO_(3).The effect of hybridization ratio of La_(0.8)CoO_(3)and rGO on microwave ab-sorption properties is carefully studied.The optimal reflection loss of La_(0.8)CoO_(3)-rGO nanocomposite can reach-62.34 dB with the maximum effective bandwidth of 6.08 GHz,presenting 48.78%and 245.45%increment compared to bare La_(0.8)CoO_(3)nanoparticles,respectively.The effective absorption bandwidth covers a broad electromagnetic wave absorption band from Ku band to the C band by tailoring thickness of the absorbers from 2.4 mm to 4.4 mm.The fascinating electromagnetic wave absorption performance is attributed to the synergy effect of La_(0.8)CoO_(3)and rGO,which integrates magnetic and dielectric loss caused by resonance,conductance,relaxation,and scattering loss.This result confirms that La_(0.8)CoO_(3)-rGO nanocomposite is potential candidates toward high-efficiency microwave absorbers and provides a valuable pathway for designing high-performance microwave attenuation materials in the future.展开更多
Ingenious microstructure design and rational composition collocation have been proved to be an effective strategy for developing efficient electromagnetic wave(EMW)absorbers.It would be promising to fabricate a hollow...Ingenious microstructure design and rational composition collocation have been proved to be an effective strategy for developing efficient electromagnetic wave(EMW)absorbers.It would be promising to fabricate a hollow structured composite integrating multiple loss mechanisms(conduction,magnetic,and polarization losses)for excellent EMW absorption.Herein,a novel dielectric-magnetic compound of ZnO/Ni@C hollow microsphere was prepared through hydrothermal reactions followed by an in-situ chemical vapor deposition(CVD).In this ternary composite,abundant ZnO/Ni heterostructures formed the hollow microsphere skeletons and provided unique Schottky junctions,which endowed the composite with improved impedance matching and strong polarization loss.Meanwhile,the amorphouspolycrystalline carbon layer deposited on the surface of each microsphere enhanced the conduction and interfacial polarization losses.In addition,the magnetic Ni nanoparticles induced magnetic loss.Benefiting from the synergistic effect of the hollow structure and multiple loss mechanisms,the ternary composite exhibits an effective absorption bandwidth as wide as 6.55 GHz at a thickness of only 1.85 mm,accompanied by a minimum reflection loss of–39.8 dB.Besides,the radar cross-section and the electromagnetic field simulation further verify the superior EMW absorption performance of the composites.Our work provides a new reference for the fabrication of dielectric-magnetic ternary hollow microspheres as EMW absorbers with thin thickness and broad bandwidth.展开更多
The popularity of the Internet of Things(IoT)has enabled a large number of vulnerable devices to connect to the Internet,bringing huge security risks.As a network-level security authentication method,device fingerprin...The popularity of the Internet of Things(IoT)has enabled a large number of vulnerable devices to connect to the Internet,bringing huge security risks.As a network-level security authentication method,device fingerprint based on machine learning has attracted considerable attention because it can detect vulnerable devices in complex and heterogeneous access phases.However,flexible and diversified IoT devices with limited resources increase dif-ficulty of the device fingerprint authentication method executed in IoT,because it needs to retrain the model network to deal with incremental features or types.To address this problem,a device fingerprinting mechanism based on a Broad Learning System(BLS)is proposed in this paper.The mechanism firstly characterizes IoT devices by traffic analysis based on the identifiable differences of the traffic data of IoT devices,and extracts feature parameters of the traffic packets.A hierarchical hybrid sampling method is designed at the preprocessing phase to improve the imbalanced data distribution and reconstruct the fingerprint dataset.The complexity of the dataset is reduced using Principal Component Analysis(PCA)and the device type is identified by training weights using BLS.The experimental results show that the proposed method can achieve state-of-the-art accuracy and spend less training time than other existing methods.展开更多
Data-driven surrogate models that assist with efficient evolutionary algorithms to find the optimal development scheme have been widely used to solve reservoir production optimization problems.However,existing researc...Data-driven surrogate models that assist with efficient evolutionary algorithms to find the optimal development scheme have been widely used to solve reservoir production optimization problems.However,existing research suggests that the effectiveness of a surrogate model can vary depending on the complexity of the design problem.A surrogate model that has demonstrated success in one scenario may not perform as well in others.In the absence of prior knowledge,finding a promising surrogate model that performs well for an unknown reservoir is challenging.Moreover,the optimization process often relies on a single evolutionary algorithm,which can yield varying results across different cases.To address these limitations,this paper introduces a novel approach called the multi-surrogate framework with an adaptive selection mechanism(MSFASM)to tackle production optimization problems.MSFASM consists of two stages.In the first stage,a reduced-dimensional broad learning system(BLS)is used to adaptively select the evolutionary algorithm with the best performance during the current optimization period.In the second stage,the multi-objective algorithm,non-dominated sorting genetic algorithm II(NSGA-II),is used as an optimizer to find a set of Pareto solutions with good performance on multiple surrogate models.A novel optimal point criterion is utilized in this stage to select the Pareto solutions,thereby obtaining the desired development schemes without increasing the computational load of the numerical simulator.The two stages are combined using sequential transfer learning.From the two most important perspectives of an evolutionary algorithm and a surrogate model,the proposed method improves adaptability to optimization problems of various reservoir types.To verify the effectiveness of the proposed method,four 100-dimensional benchmark functions and two reservoir models are tested,and the results are compared with those obtained by six other surrogate-model-based methods.The results demonstrate that our approach can obtain the maximum net present value(NPV)of the target production optimization problems.展开更多
High-efficiency and low-cost knowledge sharing can improve the decision-making ability of autonomous vehicles by mining knowledge from the Internet of Vehicles(IoVs).However,it is challenging to ensure high efficiency...High-efficiency and low-cost knowledge sharing can improve the decision-making ability of autonomous vehicles by mining knowledge from the Internet of Vehicles(IoVs).However,it is challenging to ensure high efficiency of local data learning models while preventing privacy leakage in a high mobility environment.In order to protect data privacy and improve data learning efficiency in knowledge sharing,we propose an asynchronous federated broad learning(FBL)framework that integrates broad learning(BL)into federated learning(FL).In FBL,we design a broad fully connected model(BFCM)as a local model for training client data.To enhance the wireless channel quality for knowledge sharing and reduce the communication and computation cost of participating clients,we construct a joint resource allocation and reconfigurable intelligent surface(RIS)configuration optimization framework for FBL.The problem is decoupled into two convex subproblems.Aiming to improve the resource scheduling efficiency in FBL,a double Davidon–Fletcher–Powell(DDFP)algorithm is presented to solve the time slot allocation and RIS configuration problem.Based on the results of resource scheduling,we design a reward-allocation algorithm based on federated incentive learning(FIL)in FBL to compensate clients for their costs.The simulation results show that the proposed FBL framework achieves better performance than the comparison models in terms of efficiency,accuracy,and cost for knowledge sharing in the IoV.展开更多
Sunlight-driven photocatalysis,which can produce clean fuels and mitigate environmental pollution,has received extensive research attention due to its potential for addressing both energy shortages and environmental c...Sunlight-driven photocatalysis,which can produce clean fuels and mitigate environmental pollution,has received extensive research attention due to its potential for addressing both energy shortages and environmental crises.Bismuth(Bi)-based photocatalysts with broad spectrum solar-light absorption and tunable structures,exhibit promising applications in solar-driven photocatalysis.Oxygen vacancy(OV)engineering is a widely recognized strategy that shows great potential for accelerating charge separation and small molecule activation.Based on OV engineering,this review focuses on Bi-based photocatalysts and provides a comprehensive overview including synthetic methods,regulation strategies,and applications in photocatalytic field.The synthetic methods of Bibased photocatalysts with OVs(BPOVs)are classified into hydrothermal,solvothermal,ultraviolet light reduction,calcination,chemical etching,and mechanical methods based on different reaction types,which provide the possibility for the structural regulation of BPOVs,including dimensional regulation,vacancy creation,elemental doping,and heterojunction fabrication.Furthermore,this review also highlights the photocatalytic applications of BPOVs,including CO_(2)reduction,N2 fixation,H2 generation,O_(2)evolution,pollutant degradation,cancer therapy,and bacteria inactivation.Finally,the conclusion and prospects toward the future development of BPOVs photocatalysts are presented.展开更多
文摘Despite extensive research efforts, a preventive human immunodeficiency virus (HIV) vaccine remains one of the major challenges in the field of AIDS research. Experimental strategies which have been proven successful for other viral vaccines are not enough to tackle HIV-1 and new approaches to design effective preventive AIDS vaccines are of utmost importance. Due to enormous diversity among global circulating HIV strains, an effective HIV vaccine must elicit broadly protective antibodies based responses;therefore discovering new broadly neutralizing antibodies (bNAbs) against HIV has become major focus in HIV vaccine research. However further understanding of the viral targets of such antibodies and mechanisms of action of bNAbs is required for advancement of HIV vaccine research. This technical note discusses our current knowledge on the bNAbs and immunoprophylaxis using viral vectors with their relevance in designing of new candidates to HIV-1 vaccines.
基金supported by the CAMS Innovation Fund for Medical Sciences(2021-I2M-1-037,2021-I2M-1-038)the National Research and Development Project of China(grant no.2023YFF0724800)+2 种基金the CAMS Initiative for Innovative Medicine of China(grant no.2021-I2M-1-035)the National Science and Technology Infrastructure of China(Project No.National Pathogen Resource Center-NPRC-32)We thank Changwen Ke from Guangdong Provincial Center for Disease Control and Prevention for providing SARS-CoV-2 BA.2,BA.2.12.1,BA.4,and BA.5 as a gift.We thank the Scripps Institute for providing the pComb3H and PIGG vectors.
文摘The global spread of Severe Acute Respiratory Syndrome Coronavirus 2.(SARS-CoV-2)and its variant strains,including Alpha,Beta,Gamma,Delta,and now Omicron,pose a significant challenge.With the constant evolution of the virus,Omicron and its subtypes BA.1,BA.2,BA.3,BA.4,and BA.5 have developed the capacity to evade neutralization induced by previous vaccination or infection.This evasion highlights the urgency in discovering new monoclonal antibodies(mAbs)with neutralizing activity,especially broadly neutralizing antibodies(bnAbs),to combat the virus.In the current study,we introduced a fully human neutralizing mAb,CR9,that targets Omicron variants.We demonstrated the mAb’s effectiveness in inhibiting Omicron replication both in vitro and in vivo.Structural analysis using cryo-electron microscopy(cryo-EM)revealed that CR9 binds to an epitope formed by RBD residues,providing a molecular understanding of its neutralization mechanism.Given its potency and specificity,CR9 holds promise as a potential adjunct therapy for treating Omicron infections.Our findings highlight the importance of continuous mAb discovery and characterization in addressing the evolving threat of COVID-19.
文摘A study published in Nature'by Gonelli and colleagues reveals that potent,broadly neutralizing antibodies(bNAbs)delay viremic simian immunodeficiency virus(SIV)infection in rhesus macaques but do not fully prevent subclinical infections.Despite bNAb concentrations being significantly higher than supposed protective thresholds,transient viral"blips"occurred,which suggests that bNAb prophylaxis can mask subclinical infections and has implications for the interpretation of HIV-1 prevention trials.
文摘Remarkable progress has been achieved for prophylactic and therapeutic interventions against human immunodeficiency virus type I(HIV-1)through antiretroviral therapy.However,vaccine development has remained challenging.Recent discoveries in broadly neutralizing monoclonal antibodies(bNAbs)has led to the development of multiple novel vaccine approaches for inducing bNAbs-like antibody response.Structural and dynamic studies revealed several vulnerable sites and states of the HIV-1 envelop glycoprotein(Env)during infection.Our review aims to highlight these discoveries and rejuvenate our endeavor in HIV-1 vaccine design and development.
基金Natural Science Foundation of Jiangsu Province(BK20160221)Natural Science Foundation of Xuzhou,China(KC16SG247)+1 种基金Doctoral Research Funding of Jiangsu Normal University(15XLR024)Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘We report on broadly wavelength-tunable passive mode-locking with high power operating at the 2 μm water absorption band in a Tm:CYA crystal laser. With a simple quartz plate, stable mode-locking wavelengths can be tuned from 1874 to 1973 nm, with a tunable wavelength range up to ~100 nm and maximum output power up to 1.35 W. The bandwidth is narrow as ~6 GHz, corresponding to a high coherence. To our knowledge, this is the first demonstration of wavelength-tunable mode-locking with watt-level in the 2 μm water absorption band.The high temporal coherent laser can be further applied in spectroscopy, the efficient excitation of molecules, sensing, and quantum optics.
基金supported by the National Natural Science Foundation of China(No.62371080 and 62031006)the National Science Foundation of Chongqing,China(No.CSTB2022NSCQ-MSX0597)the Venture&Innovation Support Program for Chongqing Overseas Returnees,China(No.cx2022063)。
文摘This paper presents a design method to implement an antenna array characterized by ultra-wide beam coverage,low profile,and low Sidelobe Level(SLL)for the application of Unmanned Aerial Vehicle(UAV)air-to-ground communication.The array consists of ten broadside-radiating,ultrawide-beamwidth elements that are cascaded by a central-symmetry series-fed network with tapered currents following Dolph-Chebyshev distribution to provide low SLL.First,an innovative design of end-fire Huygens source antenna that is compatible with metal ground is presented.A low-profile,half-mode Microstrip Patch Antenna(MPA)is utilized to serve as the magnetic dipole and a monopole is utilized to serves as the electric dipole,constructing the compact,end-fire,grounded Huygens source antenna.Then,two opposite-oriented end-fire Huygens source antennas are seamlessly integrated into a single antenna element in the form of monopole-loaded MPA to accomplish the ultrawide,broadside-radiating beam.Particular consideration has been applied into the design of series-fed network as well as antenna element to compensate the adverse coupling effects between elements on the radiation performance.Experiment indicates an ultrawide Half-Power Beamwidth(HPBW)of 161°and a low SLL of-25 dB with a high gain of 12 d Bi under a single-layer configuration.The concurrent ultrawide beamwidth and low SLL make it particularly attractive for applications of UAV air-to-ground communication.
基金supported in part by the National Key Research and Development Project under Grant 2020YFB1806805partially funded through a grant from Qualcomm。
文摘6G is desired to support more intelligence networks and this trend attaches importance to the self-healing capability if degradation emerges in the cellular networks.As a primary component of selfhealing networks,fault detection is investigated in this paper.Considering the fast response and low timeand-computational consumption,it is the first time that the Online Broad Learning System(OBLS)is applied to identify outages in cellular networks.In addition,the Automatic-constructed Online Broad Learning System(AOBLS)is put forward to rationalize its structure and consequently avoid over-fitting and under-fitting.Furthermore,a multi-layer classification structure is proposed to further improve the classification performance.To face the challenges caused by imbalanced data in fault detection problems,a novel weighting strategy is derived to achieve the Multilayer Automatic-constructed Weighted Online Broad Learning System(MAWOBLS)and ensemble learning with retrained Support Vector Machine(SVM),denoted as EMAWOBLS,for superior treatment with this imbalance issue.Simulation results show that the proposed algorithm has excellent performance in detecting faults with satisfactory time usage.
文摘BACKGROUND Leiomyomas or fibroids commonly originate from the uterus;extrauterine leiomyomas are rare and most often arise from the broad ligament.Diagnosing broad ligament leiomyomas becomes particularly challenging when they undergo degenerative changes because their clinical and radiological features often mimic those of ovarian tumors.We report a rare case of a giant broad ligament fibroid with cystic degeneration,which was initially mistaken for an ovarian mass.CASE SUMMARY A 49-year-old woman presented with mild abdominal distension and pain as the only symptoms.Upon abdominal examination,a large mass measuring approximately 30 cm and extending from the pelvic cavity to just below the xiphoid process was identified.Both transvaginal ultrasound and contrast-enhanced computed tomography suggested an ovarian origin of the mass.However,laparotomy confirmed that the mass originated from the right broad ligament.The mass was separated from the uterus and bilateral ovaries,with no involvement of the uterus or ovaries.The mass was completely resected with respecting the patient’s desire to retain her uterus and adnexa.Postoperative histopathological examination confirmed leiomyoma with cystic degeneration.CONCLUSION Broad ligament myomas mimic ovarian tumors;accurate diagnosis and careful operation are critical to avoid complications and ensure safety.
基金funded by the National Natural Science Foundation of China(32272083)。
文摘Wheat leaf rust,caused by Puccinia triticina(Pt),is one of the most devastating diseases in common wheat(Triticum aestivum L.)and can lead to heavy yield loss(Chai et al.2020).Leaf rust can result in 50%yield loss during epidemic years(Huerta-Espino et al.2011;Gebrewahid et al.2020;Kolomiets et al.2021).Breeding varieties resistant to leaf rust have been recognized as the most effective and economical method to mitigate wheat losses caused by Pt.The narrow genetic basis of wheat constrains the number of cultivars resistant to leaf rust(Jin et al.2021).
文摘On 18 December 2024,Liu Hongcai,Vice-President of CAFIU met with Seiji Yamamoto,Director General of the Broad National Alliance for Independence,Peace and Democracy of Japan.The two sides exchanged views on China-Japan relations,people-to-people exchanges and cooperation between the two organisations.
基金supported in part by the National Natural Science Foundation of China(62403396,62433018,62373113)the Guangdong Basic and Applied Basic Research Foundation(2023A1515011527,2023B1515120010)the Postdoctoral Fellowship Program of CPSF(GZB20240621)
文摘In this paper, the containment control problem in nonlinear multi-agent systems(NMASs) under denial-of-service(DoS) attacks is addressed. Firstly, a prediction model is obtained using the broad learning technique to train historical data generated by the system offline without DoS attacks. Secondly, the dynamic linearization method is used to obtain the equivalent linearization model of NMASs. Then, a novel model-free adaptive predictive control(MFAPC) framework based on historical and online data generated by the system is proposed, which combines the trained prediction model with the model-free adaptive control method. The development of the MFAPC method motivates a much simpler robust predictive control solution that is convenient to use in the case of DoS attacks. Meanwhile, the MFAPC algorithm provides a unified predictive framework for solving consensus tracking and containment control problems. The boundedness of the containment error can be proven by using the contraction mapping principle and the mathematical induction method. Finally, the proposed MFAPC is assessed through comparative experiments.
基金Project supported by the National Natural Science Foundation of China (61988102)the Key-Area Research and Development Program of Guangdong Province(2019B090917007)the Science and Technology Planning Project of Guangdong Province (2019B090909011)。
文摘Bi_(2)YbO_(4)Cl with a fluorite layer structure belongs to the family of the bismuth rare-earth oxyhalides Bi_(2)REO_(4)X(X=Cl,B r,I).However,the synthesis and photoelectric properties of Bi_(2)YbO_(4)Cl have almost not been reported.In this work,Bi_(2)YbO_(4)Cl was synthesized using the solid-state method and the solvothermal method.Yb3+ions show a strong characteristic absorption peak at 980 nm,which was measured by ultraviolet-visible-near-infrared absorption spectra.The transient photoconductivity of Bi_(2)YbO_(4)Cl was obtained by time-resolved terahertz spectroscopy system under 400 and 800 nm laser excitations,respectively.The frequency-dependent transient photoconductivity analysis reveals the Drude-Smith behavior in Bi_(2)YbO_(4)Cl.Under photoexcitation,the hot charge carriers with a long relaxation lifetime and a carrier mobility of 48 cm^(2)/(V·s) are obtained.The synthesis of Bi_(2)YbO_(4)Cl is of great significance for the development of novel photocatalytic and photo harvesting materials with broad spectral response.
基金supported by the Key Research and Development Program,Ministry of Science and Technology of the People’s Republic of China(Nos.2023YFC2606500,2023YFE0206500).
文摘Coronaviruses are single-stranded,positive-sense RNA enveloped viruses that have posed a significant threat to human health over the past few decades,particularly severe acute respiratory syndrome coronavirus(SARS-CoV),Middle East respiratory syndrome coronavirus(MERS-CoV),and SARS-CoV-2.These viruses have caused widespread infections and fatalities,with profound impacts on global economies,social life,and public health systems.Due to their broad host range in natural settings and the consequent high potential for zoonotic spillover events,a thorough investigation of the common viral mechanisms and the identification of druggable targets for pan-coronavirus antiviral development are of utmost importance.
文摘Investors greet China's first QDII products with caution Ms. Wang, a financial planner at one of China's largest state-owned banks, takes five phone inquiries a day from clients I about its new QDII products, with most clients saying they will consider it. "I have an enquiry about your bank's QDII products. What are the returns?
基金supported by Natural Science Foundation of China(Nos.12074095,52273257,52177014,and 51977009)Heilongjiang Provincial Science Foundation for Distin-guished Young Scholars(No.JQ2022A002)2020 Central Govern-ment’s Plan to Support the Talent Training Project of the Reform and Development Fund of Local Universities(No.2020YQ02).
文摘The advent of“intelligent era”brings our life more convenience,but the electromagnetic radiation sur-rounding us not only greatly threatens human health,also makes information leakage and hidden trouble to national defense security.Hence,it is very urgent to develop novel electromagnetic wave absorption materials with lightweight,strong absorption,tunable absorption frequency and broad band absorption.Herein,a novel electromagnetic wave absorber is obtained by constructing La_(0.8)CoO_(3)-rGO nanocompos-ite,where La_(0.8)CoO_(3)nanoparticles are anchored on graphene nanosheets by the electrostatic interaction between GO and La_(0.8)CoO_(3).The effect of hybridization ratio of La_(0.8)CoO_(3)and rGO on microwave ab-sorption properties is carefully studied.The optimal reflection loss of La_(0.8)CoO_(3)-rGO nanocomposite can reach-62.34 dB with the maximum effective bandwidth of 6.08 GHz,presenting 48.78%and 245.45%increment compared to bare La_(0.8)CoO_(3)nanoparticles,respectively.The effective absorption bandwidth covers a broad electromagnetic wave absorption band from Ku band to the C band by tailoring thickness of the absorbers from 2.4 mm to 4.4 mm.The fascinating electromagnetic wave absorption performance is attributed to the synergy effect of La_(0.8)CoO_(3)and rGO,which integrates magnetic and dielectric loss caused by resonance,conductance,relaxation,and scattering loss.This result confirms that La_(0.8)CoO_(3)-rGO nanocomposite is potential candidates toward high-efficiency microwave absorbers and provides a valuable pathway for designing high-performance microwave attenuation materials in the future.
基金supported by the National Natural Science Foundation of China(Nos.52272288 and 51972039)the China Postdoctoral Science Foundation(No.2021M700658).
文摘Ingenious microstructure design and rational composition collocation have been proved to be an effective strategy for developing efficient electromagnetic wave(EMW)absorbers.It would be promising to fabricate a hollow structured composite integrating multiple loss mechanisms(conduction,magnetic,and polarization losses)for excellent EMW absorption.Herein,a novel dielectric-magnetic compound of ZnO/Ni@C hollow microsphere was prepared through hydrothermal reactions followed by an in-situ chemical vapor deposition(CVD).In this ternary composite,abundant ZnO/Ni heterostructures formed the hollow microsphere skeletons and provided unique Schottky junctions,which endowed the composite with improved impedance matching and strong polarization loss.Meanwhile,the amorphouspolycrystalline carbon layer deposited on the surface of each microsphere enhanced the conduction and interfacial polarization losses.In addition,the magnetic Ni nanoparticles induced magnetic loss.Benefiting from the synergistic effect of the hollow structure and multiple loss mechanisms,the ternary composite exhibits an effective absorption bandwidth as wide as 6.55 GHz at a thickness of only 1.85 mm,accompanied by a minimum reflection loss of–39.8 dB.Besides,the radar cross-section and the electromagnetic field simulation further verify the superior EMW absorption performance of the composites.Our work provides a new reference for the fabrication of dielectric-magnetic ternary hollow microspheres as EMW absorbers with thin thickness and broad bandwidth.
基金supported by National Key R&D Program of China(2019YFB2102303)National Natural Science Foundation of China(NSFC61971014,NSFC11675199)Young Backbone Teacher Training Program of Henan Colleges and Universities(2021GGJS170).
文摘The popularity of the Internet of Things(IoT)has enabled a large number of vulnerable devices to connect to the Internet,bringing huge security risks.As a network-level security authentication method,device fingerprint based on machine learning has attracted considerable attention because it can detect vulnerable devices in complex and heterogeneous access phases.However,flexible and diversified IoT devices with limited resources increase dif-ficulty of the device fingerprint authentication method executed in IoT,because it needs to retrain the model network to deal with incremental features or types.To address this problem,a device fingerprinting mechanism based on a Broad Learning System(BLS)is proposed in this paper.The mechanism firstly characterizes IoT devices by traffic analysis based on the identifiable differences of the traffic data of IoT devices,and extracts feature parameters of the traffic packets.A hierarchical hybrid sampling method is designed at the preprocessing phase to improve the imbalanced data distribution and reconstruct the fingerprint dataset.The complexity of the dataset is reduced using Principal Component Analysis(PCA)and the device type is identified by training weights using BLS.The experimental results show that the proposed method can achieve state-of-the-art accuracy and spend less training time than other existing methods.
基金This work is supported by the National Natural Science Foundation of China under Grant 52274057,52074340 and 51874335the Major Scientific and Technological Projects of CNPC under Grant ZD2019-183-008+2 种基金the Major Scientific and Technological Projects of CNOOC under Grant CCL2022RCPS0397RSNthe Science and Technology Support Plan for Youth Innovation of University in Shandong Province under Grant 2019KJH002111 Project under Grant B08028.
文摘Data-driven surrogate models that assist with efficient evolutionary algorithms to find the optimal development scheme have been widely used to solve reservoir production optimization problems.However,existing research suggests that the effectiveness of a surrogate model can vary depending on the complexity of the design problem.A surrogate model that has demonstrated success in one scenario may not perform as well in others.In the absence of prior knowledge,finding a promising surrogate model that performs well for an unknown reservoir is challenging.Moreover,the optimization process often relies on a single evolutionary algorithm,which can yield varying results across different cases.To address these limitations,this paper introduces a novel approach called the multi-surrogate framework with an adaptive selection mechanism(MSFASM)to tackle production optimization problems.MSFASM consists of two stages.In the first stage,a reduced-dimensional broad learning system(BLS)is used to adaptively select the evolutionary algorithm with the best performance during the current optimization period.In the second stage,the multi-objective algorithm,non-dominated sorting genetic algorithm II(NSGA-II),is used as an optimizer to find a set of Pareto solutions with good performance on multiple surrogate models.A novel optimal point criterion is utilized in this stage to select the Pareto solutions,thereby obtaining the desired development schemes without increasing the computational load of the numerical simulator.The two stages are combined using sequential transfer learning.From the two most important perspectives of an evolutionary algorithm and a surrogate model,the proposed method improves adaptability to optimization problems of various reservoir types.To verify the effectiveness of the proposed method,four 100-dimensional benchmark functions and two reservoir models are tested,and the results are compared with those obtained by six other surrogate-model-based methods.The results demonstrate that our approach can obtain the maximum net present value(NPV)of the target production optimization problems.
基金supported in part by the National Natural Science Foundation of China(62371116 and 62231020)in part by the Science and Technology Project of Hebei Province Education Department(ZD2022164)+2 种基金in part by the Fundamental Research Funds for the Central Universities(N2223031)in part by the Open Research Project of Xidian University(ISN24-08)Key Laboratory of Cognitive Radio and Information Processing,Ministry of Education(Guilin University of Electronic Technology,China,CRKL210203)。
文摘High-efficiency and low-cost knowledge sharing can improve the decision-making ability of autonomous vehicles by mining knowledge from the Internet of Vehicles(IoVs).However,it is challenging to ensure high efficiency of local data learning models while preventing privacy leakage in a high mobility environment.In order to protect data privacy and improve data learning efficiency in knowledge sharing,we propose an asynchronous federated broad learning(FBL)framework that integrates broad learning(BL)into federated learning(FL).In FBL,we design a broad fully connected model(BFCM)as a local model for training client data.To enhance the wireless channel quality for knowledge sharing and reduce the communication and computation cost of participating clients,we construct a joint resource allocation and reconfigurable intelligent surface(RIS)configuration optimization framework for FBL.The problem is decoupled into two convex subproblems.Aiming to improve the resource scheduling efficiency in FBL,a double Davidon–Fletcher–Powell(DDFP)algorithm is presented to solve the time slot allocation and RIS configuration problem.Based on the results of resource scheduling,we design a reward-allocation algorithm based on federated incentive learning(FIL)in FBL to compensate clients for their costs.The simulation results show that the proposed FBL framework achieves better performance than the comparison models in terms of efficiency,accuracy,and cost for knowledge sharing in the IoV.
基金This work was financially supported by the National Natural Science Foundation of China(NSFC)(No.22308336)the City University of Hong Kong start-up fund.
文摘Sunlight-driven photocatalysis,which can produce clean fuels and mitigate environmental pollution,has received extensive research attention due to its potential for addressing both energy shortages and environmental crises.Bismuth(Bi)-based photocatalysts with broad spectrum solar-light absorption and tunable structures,exhibit promising applications in solar-driven photocatalysis.Oxygen vacancy(OV)engineering is a widely recognized strategy that shows great potential for accelerating charge separation and small molecule activation.Based on OV engineering,this review focuses on Bi-based photocatalysts and provides a comprehensive overview including synthetic methods,regulation strategies,and applications in photocatalytic field.The synthetic methods of Bibased photocatalysts with OVs(BPOVs)are classified into hydrothermal,solvothermal,ultraviolet light reduction,calcination,chemical etching,and mechanical methods based on different reaction types,which provide the possibility for the structural regulation of BPOVs,including dimensional regulation,vacancy creation,elemental doping,and heterojunction fabrication.Furthermore,this review also highlights the photocatalytic applications of BPOVs,including CO_(2)reduction,N2 fixation,H2 generation,O_(2)evolution,pollutant degradation,cancer therapy,and bacteria inactivation.Finally,the conclusion and prospects toward the future development of BPOVs photocatalysts are presented.