Far-field intensity and diffraction efficiency of the blazed reflection gratings illuminated with broad-bandwidth and divergent beam are investigated.When the spectral width and divergence of the incident beam with a ...Far-field intensity and diffraction efficiency of the blazed reflection gratings illuminated with broad-bandwidth and divergent beam are investigated.When the spectral width and divergence of the incident beam with a constant energy increase,the maximum intensity decreases,and the half width at e-2 of the maximum intensity becomes wider.Diffraction efficiency has no deterioration for the blazed grating with a proper groove shape even when the incident light contains a broad range of wavelengths and comes from a wide range of angles.展开更多
Microwave absorbing materials(MAMs)are playing an increasingly essential role in the development of wireless communications,high-power electronic devices,and advanced target detection technology.MAMs with a broad-band...Microwave absorbing materials(MAMs)are playing an increasingly essential role in the development of wireless communications,high-power electronic devices,and advanced target detection technology.MAMs with a broad-bandwidth response are particularly important in the area of communication security,radiation prevention,electronic reliability,and military stealth.Although considerable progress has been made in the design and preparation of MAMs with a broad-bandwidth response,a number of challenges still remain,and the structure–function relationship of MAMs is still far from being completely understood.Herein,the advances in the design and research of MAMs with a broad-bandwidth response are outlined.The main strategies for expanding the effective absorption bandwidth of MAMs are comprehensively summarized considering three perspectives:the chemical combination strategy,morphological control strategy,and macrostructure control strategy.Several important results as well as design principles and absorption mechanisms are highlighted.A coherent explanation detailing the influence of the chemical composition and structure of various materials on the microwave absorption properties of MAMs is provided.The main challenges,new opportunities,and future perspectives in this promising field are also presented.展开更多
Vibration energy harvesting is to transform the ambient mechanical energy to electricity. How to reduce the resonance frequency and improve the conversion efficiency is very important. In this paper, a layer-separated...Vibration energy harvesting is to transform the ambient mechanical energy to electricity. How to reduce the resonance frequency and improve the conversion efficiency is very important. In this paper, a layer-separated piezoelectric cantilever beam is proposed for the vibration energy harvester(VEH) for low-frequency and wide-bandwidth operation, which can transform the mechanical impact energy to electric energy. First,the electromechanical coupling equation is obtained by the Euler-Bernoulli beam theory.Based on the average method, the approximate analytical solution is derived and the voltage response is obtained. Furthermore, the physical prototype is fabricated, and the vibration experiment is conducted to validate the theoretical principle. The experimental results show that the maximum power of 0.445 μW of the layer-separated VEH is about3.11 times higher than that of the non-impact harvester when the excitation acceleration is 0.2 g. The operating frequency bandwidth can be widened by increasing the stiffness of the fundamental layer and decreasing the gap distance of the system. But the increasing of operating frequency bandwidth comes at the cost of reducing peak voltage. The theoretical simulation and the experimental results demonstrate good agreement which indicates that the proposed impact-driving VEH device has advantages for low-frequency and wide-bandwidth. The high performance provides great prospect to scavenge the vibration energy in environment.展开更多
基金Key Technologies R&D Programme of Hubei Province(2005AA101B10)
文摘Far-field intensity and diffraction efficiency of the blazed reflection gratings illuminated with broad-bandwidth and divergent beam are investigated.When the spectral width and divergence of the incident beam with a constant energy increase,the maximum intensity decreases,and the half width at e-2 of the maximum intensity becomes wider.Diffraction efficiency has no deterioration for the blazed grating with a proper groove shape even when the incident light contains a broad range of wavelengths and comes from a wide range of angles.
基金supported by the National Natural Science Foundation of China(Nos.21771151 and 21931009).
文摘Microwave absorbing materials(MAMs)are playing an increasingly essential role in the development of wireless communications,high-power electronic devices,and advanced target detection technology.MAMs with a broad-bandwidth response are particularly important in the area of communication security,radiation prevention,electronic reliability,and military stealth.Although considerable progress has been made in the design and preparation of MAMs with a broad-bandwidth response,a number of challenges still remain,and the structure–function relationship of MAMs is still far from being completely understood.Herein,the advances in the design and research of MAMs with a broad-bandwidth response are outlined.The main strategies for expanding the effective absorption bandwidth of MAMs are comprehensively summarized considering three perspectives:the chemical combination strategy,morphological control strategy,and macrostructure control strategy.Several important results as well as design principles and absorption mechanisms are highlighted.A coherent explanation detailing the influence of the chemical composition and structure of various materials on the microwave absorption properties of MAMs is provided.The main challenges,new opportunities,and future perspectives in this promising field are also presented.
基金Project supported by the National Natural Science Foundation of China(Nos.11672008,11702188,and 1832002)
文摘Vibration energy harvesting is to transform the ambient mechanical energy to electricity. How to reduce the resonance frequency and improve the conversion efficiency is very important. In this paper, a layer-separated piezoelectric cantilever beam is proposed for the vibration energy harvester(VEH) for low-frequency and wide-bandwidth operation, which can transform the mechanical impact energy to electric energy. First,the electromechanical coupling equation is obtained by the Euler-Bernoulli beam theory.Based on the average method, the approximate analytical solution is derived and the voltage response is obtained. Furthermore, the physical prototype is fabricated, and the vibration experiment is conducted to validate the theoretical principle. The experimental results show that the maximum power of 0.445 μW of the layer-separated VEH is about3.11 times higher than that of the non-impact harvester when the excitation acceleration is 0.2 g. The operating frequency bandwidth can be widened by increasing the stiffness of the fundamental layer and decreasing the gap distance of the system. But the increasing of operating frequency bandwidth comes at the cost of reducing peak voltage. The theoretical simulation and the experimental results demonstrate good agreement which indicates that the proposed impact-driving VEH device has advantages for low-frequency and wide-bandwidth. The high performance provides great prospect to scavenge the vibration energy in environment.