Liquid breakup in fuel spray and atomization significantly affects the consequent mixture formation, combustion behavior, and emission formation processes in a direct injection diesel engine. In this paper, different ...Liquid breakup in fuel spray and atomization significantly affects the consequent mixture formation, combustion behavior, and emission formation processes in a direct injection diesel engine. In this paper, different models for liquid breakup processes in high-pressure dense diesel sprays and its impact on multi-dimensional diesel engine simulation have been evaluated against experi- mental observations, along with the influence of the liquid breakup models and the sensitivity of model parameters on diesel sprays and diesel engine simulations. It is found that the modified Kelvin-Helmholtz (KH)-Rayleigh-Taylor (RT) breakup model gives the most reasonable predicted results in both engine simulation and high-pressure diesel spray simulation. For the standard KH-RT model, the model constant Cbl for the breakup length has a significant effect on the predictability of the model, and a fixed value of the constant Cbl cannot provide a satisfactory result for different operation conditions. The Taylor-analogy- breakup (TAB) based models and the RT model do not provide reasonable predictions for the characteristics of high-pressure sprays and simulated engine performance and emissions.展开更多
Diesel spray is injected at high pressure. So, upper stream region of spray is high Weber number condition. However, even if the fuel is injected at high pressure, the downstream region of spray is corresponding to re...Diesel spray is injected at high pressure. So, upper stream region of spray is high Weber number condition. However, even if the fuel is injected at high pressure, the downstream region of spray is corresponding to relatively low Weber number condition. Thus, KH (Kelvin-Helmholtz) model modeled for high Weber number conditions and MTAB (modified Taylor analogy breakup) model are used for primary and secondary breakup processes respectively. This study is focused on the development of new hybrid breakup model The calculations are performed by LES (large eddy simulation) incorporated into KIVA code. LES of non-evaporating diesel spray are performed using KH & RT (Rayleigh-Taylor) model, MTAB model and KH-MTAB model. Then, LES with these models were compared with experimental results. As the result, the availability of KH-MTAB model is showed. It is found that KH-MTAB is good agreement with experimental results of penetration and SMD (Sauter mean diameter) in relatively low density conditions.展开更多
Various types of models including engineering models and evolution models have been developed to understand space debris environment since 1960s. Evolution model, consisting of a set of supporting models such as Launc...Various types of models including engineering models and evolution models have been developed to understand space debris environment since 1960s. Evolution model, consisting of a set of supporting models such as Launch Model, Breakup Model and Atmosphere Model, can reliably predicts the evolution of space debris environment. Of these supporting models, Breakup Model is employed to describe the distribution of debris and debris cloud during a explosion or collision case which is one of the main factors affecting the amount of total space debris. An analytical orbit debris environment model referred to as the "Particles In Boxes" model has been introduced. By regarding the orbit debris as the freedom particles running in the huge volume, the sources and sinks mechanism is established. Then the PIB model is expanded to the case of multiple species in multiple tier system. Combined with breakup model, the evolution of orbit debris environment is predicted.展开更多
Ice jams and ice dams in rivers will cause significant rises of water levels. Under extreme conditions, the ice flooding during winter or early spring may occur. In this paper, by considering the fluid-solid coupling ...Ice jams and ice dams in rivers will cause significant rises of water levels. Under extreme conditions, the ice flooding during winter or early spring may occur. In this paper, by considering the fluid-solid coupling effect caused by the water and the ice cover, the mechanisms of the mechanical breakup of the river ice cover are studied. A formula is obtained for determining whether or not the mechanical breakup process would happen under the hydraulic pressure of the flow. Combined with the hydraulic model under the ice covered flow, a numerical model is built and the interaction between the discharge, the hydraulic pressure under the ice cover and the date for the mechanical breakup of the river ice cover is simulated. The simulated results of the dates for the mecha- nical breakup of the river ice cover agree very well with the field observations of the breakups of the river ice cover in the Hequ Reach of the Yellow River. Therefore, the numerical model might serve as a good preliminary step in studying the breakup of the river ice-cover, evidencing many important parameters that affect the ice-cover process,展开更多
There are many factors that may lead to the breakup of shore fast ice, such as wind, wave, tide and so on. This paper mainly analyzed the ice breakup on the shallow beach due to tidal fluctuation. The theoretical mode...There are many factors that may lead to the breakup of shore fast ice, such as wind, wave, tide and so on. This paper mainly analyzed the ice breakup on the shallow beach due to tidal fluctuation. The theoretical model was set up and the fitting range was given. The calculated result shows that the slope angle α, the ice thickness h, and the ice length l are key factors in determining the ice breakup length l p.展开更多
文摘Liquid breakup in fuel spray and atomization significantly affects the consequent mixture formation, combustion behavior, and emission formation processes in a direct injection diesel engine. In this paper, different models for liquid breakup processes in high-pressure dense diesel sprays and its impact on multi-dimensional diesel engine simulation have been evaluated against experi- mental observations, along with the influence of the liquid breakup models and the sensitivity of model parameters on diesel sprays and diesel engine simulations. It is found that the modified Kelvin-Helmholtz (KH)-Rayleigh-Taylor (RT) breakup model gives the most reasonable predicted results in both engine simulation and high-pressure diesel spray simulation. For the standard KH-RT model, the model constant Cbl for the breakup length has a significant effect on the predictability of the model, and a fixed value of the constant Cbl cannot provide a satisfactory result for different operation conditions. The Taylor-analogy- breakup (TAB) based models and the RT model do not provide reasonable predictions for the characteristics of high-pressure sprays and simulated engine performance and emissions.
文摘Diesel spray is injected at high pressure. So, upper stream region of spray is high Weber number condition. However, even if the fuel is injected at high pressure, the downstream region of spray is corresponding to relatively low Weber number condition. Thus, KH (Kelvin-Helmholtz) model modeled for high Weber number conditions and MTAB (modified Taylor analogy breakup) model are used for primary and secondary breakup processes respectively. This study is focused on the development of new hybrid breakup model The calculations are performed by LES (large eddy simulation) incorporated into KIVA code. LES of non-evaporating diesel spray are performed using KH & RT (Rayleigh-Taylor) model, MTAB model and KH-MTAB model. Then, LES with these models were compared with experimental results. As the result, the availability of KH-MTAB model is showed. It is found that KH-MTAB is good agreement with experimental results of penetration and SMD (Sauter mean diameter) in relatively low density conditions.
文摘Various types of models including engineering models and evolution models have been developed to understand space debris environment since 1960s. Evolution model, consisting of a set of supporting models such as Launch Model, Breakup Model and Atmosphere Model, can reliably predicts the evolution of space debris environment. Of these supporting models, Breakup Model is employed to describe the distribution of debris and debris cloud during a explosion or collision case which is one of the main factors affecting the amount of total space debris. An analytical orbit debris environment model referred to as the "Particles In Boxes" model has been introduced. By regarding the orbit debris as the freedom particles running in the huge volume, the sources and sinks mechanism is established. Then the PIB model is expanded to the case of multiple species in multiple tier system. Combined with breakup model, the evolution of orbit debris environment is predicted.
基金supported by the National Natural Science Foundation of China (Grant No. 50979021)the Natural Science Foundation of Anhui Province (Grant No. 090415217)supported by the Hefei University of Technology (Grant No. GDBJ2008-020-Seed Grant for Ph. D.)
文摘Ice jams and ice dams in rivers will cause significant rises of water levels. Under extreme conditions, the ice flooding during winter or early spring may occur. In this paper, by considering the fluid-solid coupling effect caused by the water and the ice cover, the mechanisms of the mechanical breakup of the river ice cover are studied. A formula is obtained for determining whether or not the mechanical breakup process would happen under the hydraulic pressure of the flow. Combined with the hydraulic model under the ice covered flow, a numerical model is built and the interaction between the discharge, the hydraulic pressure under the ice cover and the date for the mechanical breakup of the river ice cover is simulated. The simulated results of the dates for the mecha- nical breakup of the river ice cover agree very well with the field observations of the breakups of the river ice cover in the Hequ Reach of the Yellow River. Therefore, the numerical model might serve as a good preliminary step in studying the breakup of the river ice-cover, evidencing many important parameters that affect the ice-cover process,
文摘There are many factors that may lead to the breakup of shore fast ice, such as wind, wave, tide and so on. This paper mainly analyzed the ice breakup on the shallow beach due to tidal fluctuation. The theoretical model was set up and the fitting range was given. The calculated result shows that the slope angle α, the ice thickness h, and the ice length l are key factors in determining the ice breakup length l p.