A cylindrical chamber with a rotating bottom holds significant potential for application in cell culture bioreactors due to its ability to generate more stable swirling flows.In order to control vortex breakdown withi...A cylindrical chamber with a rotating bottom holds significant potential for application in cell culture bioreactors due to its ability to generate more stable swirling flows.In order to control vortex breakdown within the chamber,this study first establishes a computational fluid dynamics simulation coupled with the level set method.Verified by experimental results in literature,this method accurately simulates the position and shape of vortex breakdown,and also predicts the critical Reynolds numbers for the appearance and detachment of vortex breakdown bubbles from the center.Additionally,it precisely captures the gas-liquid interface and depicts the vortex breakdown phenomenon in the air above the liquid for the first time.Finally,it predicts the impact of physical property of gas-liquid systems on vortex breakdown in response to significant changes in viscosity of microbial process systems.展开更多
To delay the vortex breakdown position of the slender delta wing,this study innovativelyproposes the application of control near the Leading-Edge Vortex(LEV)core sweeping path,whichis called Coupled Core Rotation Dual...To delay the vortex breakdown position of the slender delta wing,this study innovativelyproposes the application of control near the Leading-Edge Vortex(LEV)core sweeping path,whichis called Coupled Core Rotation Dual Synthetic Jets(CCR-DSJ)control.The results show that thevortex breakdown points at each angle of attack are moved backward after control,and the max-imum delayed displacement is 32.4%of the root chord at 30°.Besides,there is a linear relationshipbetween the breakdown position and the angle of attack after control,indicating that CCR-DSJcontrol has a significant effect on the pressure gradient of the vortex axis.Furthermore,the lift coef-ficient C_(L)is enhanced after control,with a maximum CLincrement of 0.078 at 27°,and an effectiveincrement interval of[25°,32°].This interval is different from most previous studies,which isdirectly related to the position of the actuators.According to the lift change mechanism,the anglesof attack are divided into three stages:Stage 1(a=15°–25°),Stage 2(a=25°–32°),and Stage 3(a=32°–40°).In conclusion,CCR-DSJ control can significantly change the pressure distribution,thereby offering promising prospects for the flight stage of the slender delta wing.展开更多
Electrolyte selection for Plasma Electrolytic Oxidation(PEO)of magnesium is important as this determines composition,morphology and properties of resultant coatings that are urgently sought after for protection of Mg ...Electrolyte selection for Plasma Electrolytic Oxidation(PEO)of magnesium is important as this determines composition,morphology and properties of resultant coatings that are urgently sought after for protection of Mg alloys from corrosion and wear in harsh environments.However,electrolyte design is often performed heuristically,which hampers the development and optimisation of new PEO processes.Here,we attempt to achieve a mechanistic understanding of electrochemical and microstructural aspects of anodic films evolution at the prebreakdown stages of PEO treatments of magnesium in aqueous alkaline solutions of NaAlO_(2),Na_(3)PO_(4),Na F and Na_(2)SiO_(3).Systematic studies have shown that magnesium self-passivation by MgO/Mg(OH)_(2)can be compromised by both chemical and mechanical instabilities developed due to side effects of anodic reactions.Stable initiation of PEO process requires maintaining surface passivity in a wide range of p H,which can be achieved only by combining self-depositing passivators with those binding dissolved magnesium into insoluble compounds.展开更多
The demand for energy-efficient and environmental-friendly power grid construction has made the exploitation of bio-based electrical epoxy resins with excellent properties increasingly important.This work developed th...The demand for energy-efficient and environmental-friendly power grid construction has made the exploitation of bio-based electrical epoxy resins with excellent properties increasingly important.This work developed the bio-based electrotechnical epoxy resins based on magnolol.High-performance epoxy resin(DGEMT)with a double crosslinked points and its composites(Al_(2)O_(3)/DGEMT)were obtained taking advantages of the two bifunctional groups(allyl and phenolic hydroxyl groups)of magnolol.Benefitting from the distinctive structure of DGEMT,the Al_(2)O_(3)/DGEMT composites exhibited the advantages of intrinsically high thermal conductivity,high insulation,and low dielectric loss.The AC breakdown strength and thermal conductivity of Al_(2)O_(3)/DGEMT composites were 35.5 kV/mm and 1.19 W·m-1·K-1,respectively,which were 15.6%and 52.6%higher than those of petroleum-based composites(Al_(2)O_(3)/DGEBA).And its dielectric loss tanδ=0.0046 was 20.7%lower than that of Al_(2)O_(3)/DGEBA.Furthermore,the mechanical,thermal and processing properties of Al_(2)O_(3)/DGEMT are fully comparable to those of Al_(2)O_(3)/DGEBA.This work confirms the feasibility of manufacturing environmentally friendly power equipment using bio-based epoxy resins,which has excellent engineering applications.展开更多
The protection effectiveness of traditional Lightning Strike Protection(LSP)for composite rotor blade of helicopter can be diminished due to the explosion risk in overlapping attachment under lightning strike,so a new...The protection effectiveness of traditional Lightning Strike Protection(LSP)for composite rotor blade of helicopter can be diminished due to the explosion risk in overlapping attachment under lightning strike,so a new protection method based on Air Breakdown and insulating adhesive layer(AB-LSP method)was designed to avoid it.In this study,a numerical method was developed to simulate the electrical breakdown,and verified by experiment results.Based on this method,a Finite Element Model(FEM)was established to investigate the effect of two factors(breakdown strength and initial ablation temperature of adhesive layer)on the LSP effectiveness.The results show that the breakdown strength impacts more to the ablation damage in composite than that of high-temperature resistance.Then,another FEM was established to predict the ablation damage by lightning strike in the AB-LSP method protected composite rotor blade.The mechanisms and potential key parameters(magnitude of lightning current,discharge channel location,adhesive layer thickness,and air gap width)that could affect the protection effectiveness were analyzed.The introduction of air breakdown changes the current conduction path and reduces explosion risk.After rational design,this method can offer effective lightning protection for composite helicopter rotor blade and other composite structures.展开更多
Scrap metals are typically covered with surface contaminants,such as paint,dust,and rust,which can significantly affect the emission spectrum during laser-induced breakdown spectroscopy(LIBS)based sorting.In this stud...Scrap metals are typically covered with surface contaminants,such as paint,dust,and rust,which can significantly affect the emission spectrum during laser-induced breakdown spectroscopy(LIBS)based sorting.In this study,the effects of paint layers on metal surfaces during LIBS classification were investigated.LIBS spectra were collected from metal surfaces painted with black and white paints by ablation with a nanosecond pulsed laser(wavelength=1064 nm,pulse width=7 ns).For the black-painted samples,the LIBS spectra showed a broad background emission,emission lines unrelated to the target metals,large shot-to-shot variation,and a relatively low signal intensity of the target metal,causing poor classification accuracy even at high shot numbers.Cleaning the black paint layer by ablating over a wide area prior to LIBS analysis resulted in high classification accuracy with fewer shot numbers.A method to determine the number of cleaning shots necessary to obtain high classification accuracy and high throughput is proposed on the basis of the change in LIBS signal intensity during cleaning shots.For the white-painted samples,the paint peeled off the metal surface after the first shot,and strong LIBS signals were measured after the following shot,which were attributed to the nanoparticles generated by the ablation of the paint,allowing an accurate classification after only two shots.The results demonstrate that different approaches must be employed depending on the paint color to achieve high classification accuracy with fewer shot numbers.展开更多
Horizontal well intensive fracturing is a critical technology used to stimulate unconventional oil and gas reservoirs.Accurate prediction of wellbore breakdown pressure is conducive to optimal fracturing design and im...Horizontal well intensive fracturing is a critical technology used to stimulate unconventional oil and gas reservoirs.Accurate prediction of wellbore breakdown pressure is conducive to optimal fracturing design and improvement of the reservoir stimulation effect.In this work,the three-dimensional displacement discontinuity method(DDM)is used to characterize fracture deformation and fracture closure after the pumping pressure relief.The influences of key parameters such as the minimum horizontal principal stress,fracture spacing,the Young's modulus,the Poisson's ratio and pumping pressure on the breakdown pressure are analyzed.The results show that,assuming that the fracture half-length is a,the breakdown pressure outside the fracture surface area increases significantly within 2a in the direction of the minimum horizontal principal stress and a in the directions of the vertical stress and maximum horizontal principal stress before pressure relief.The breakdown pressure of the modified zipper-type fracturing in the later stage is lower.When the fracture spacing is small,the fracture breakdown pressure decreases after the modified zipper-type fracturing of two horizontal wells.The fracture breakdown pressure of the first fractured well reaches a maximum when the fracture spacing is a-1.5a,and the breakdown pressure decreases with increasing well spacing.展开更多
Space ion electric propulsion has been widely used in the north-south position maintenance and orbit transfer missions for high-orbit satellites.However,unexpected electric breakdown by ion electric propulsion systems...Space ion electric propulsion has been widely used in the north-south position maintenance and orbit transfer missions for high-orbit satellites.However,unexpected electric breakdown by ion electric propulsion systems is still a challenging problem that needs to be solved,as it affects reliability.Based on the analysis of in-orbit and ground test data of ion thrusters from simulation and experimental results,the main influencing factors of induced electric breakdown are clarified and the mechanisms of induced electric breakdown are analyzed.It is found that the main factors inducing breakdown are the voltage and electric field strength between the grids.In addition,by monitoring the waveform of plasma discharge,the temporal characteristics of breakdown can be defined as three stages of“breakdown-spark-loop response”.Thus,three kinds of engineering suppression methods for breakdown of static vacuum with periodic short-term heating,electrode surface polishing and sealing insulation with plasma,add energy suppression circuit are carried out,and the experimental results show that the electric breakdown frequency can be reduced by about 30%.展开更多
Background The study objective was to test the hypothesis that low crude protein(CP)diet with crystalline amino acids(CAA)supplementation improves Lys utilization efficiency for milk production and reduces protein tur...Background The study objective was to test the hypothesis that low crude protein(CP)diet with crystalline amino acids(CAA)supplementation improves Lys utilization efficiency for milk production and reduces protein turnover and muscle protein breakdown.Eighteen lactating multiparous Yorkshire sows were allotted to 1 of 2 isocaloric diets(10.80 MJ/kg net energy):control(CON;19.24%CP)and reduced CP with“optimal”AA profile(OPT;14.00%CP).Sow body weight and backfat were recorded on d 1 and 21 of lactation and piglets were weighed on d 1,14,18,and 21 of lactation.Between d 14 and 18,a subset of 9 sows(CON=4,OPT=5)was infused with a mixed solution of 3-[methyl-2H3]histidine(bolus injection)and[13C]bicarbonate(priming dose)first,then a constant 2-h[13C]bicarbonate infusion followed by a 6-h primed constant[1-13C]lysine infusion.Serial blood and milk sampling were performed to determine plasma and milk Lys enrichment,Lys oxidation rate,whole body protein turnover,and muscle protein breakdown.Results Over the 21-d lactation period,compared to CON,sows fed OPT had greater litter growth rate(P<0.05).Compared to CON,sows fed OPT had greater efficiency of Lys(P<0.05),Lys mammary flux(P<0.01)and whole-body protein turnover efficiency(P<0.05).Compared to CON,sows fed OPT tended to have lower whole body protein breakdown rate(P=0.069).Muscle protein breakdown rate did not differ between OPT and CON(P=0.197).Conclusion Feeding an improved AA balance diet increased efficiency of Lys and reduced whole-body protein turnover and protein breakdown.These results imply that the lower maternal N retention observed in lactating sows fed improved AA balance diets in previous studies may be a result of greater partitioning of AA towards milk rather than greater body protein breakdown.展开更多
Laser-induced breakdown spectroscopy(LIBS)has become a widely used atomic spectroscopic technique for rapid coal analysis.However,the vast amount of spectral information in LIBS contains signal uncertainty,which can a...Laser-induced breakdown spectroscopy(LIBS)has become a widely used atomic spectroscopic technique for rapid coal analysis.However,the vast amount of spectral information in LIBS contains signal uncertainty,which can affect its quantification performance.In this work,we propose a hybrid variable selection method to improve the performance of LIBS quantification.Important variables are first identified using Pearson's correlation coefficient,mutual information,least absolute shrinkage and selection operator(LASSO)and random forest,and then filtered and combined with empirical variables related to fingerprint elements of coal ash content.Subsequently,these variables are fed into a partial least squares regression(PLSR).Additionally,in some models,certain variables unrelated to ash content are removed manually to study the impact of variable deselection on model performance.The proposed hybrid strategy was tested on three LIBS datasets for quantitative analysis of coal ash content and compared with the corresponding data-driven baseline method.It is significantly better than the variable selection only method based on empirical knowledge and in most cases outperforms the baseline method.The results showed that on all three datasets the hybrid strategy for variable selection combining empirical knowledge and data-driven algorithms achieved the lowest root mean square error of prediction(RMSEP)values of 1.605,3.478 and 1.647,respectively,which were significantly lower than those obtained from multiple linear regression using only 12 empirical variables,which are 1.959,3.718 and 2.181,respectively.The LASSO-PLSR model with empirical support and 20 selected variables exhibited a significantly improved performance after variable deselection,with RMSEP values dropping from 1.635,3.962 and 1.647 to 1.483,3.086 and 1.567,respectively.Such results demonstrate that using empirical knowledge as a support for datadriven variable selection can be a viable approach to improve the accuracy and reliability of LIBS quantification.展开更多
Epoxy resin(EP)has been widely utilized in electrical equipment and electronic devices due to its fascinating electric,thermal,and mechanical properties.However,the complex insulation structures of modern power device...Epoxy resin(EP)has been widely utilized in electrical equipment and electronic devices due to its fascinating electric,thermal,and mechanical properties.However,the complex insulation structures of modern power devices in high-voltage direct current systems pose several challenges for EP-based dielectrics.The most significant among these challenges is the need for EP to stably operate under greater electric fields,requiring superior breakdown strength.This paper summarizes the key factors influencing the breakdown strength of EP and reviews reported methods for enhancing this property.Recognizing the limitations of existing approaches,we propose that the emerging technology of molecule design offers a potentially optimal solution for developing EP with enhanced breakdown strength.Furthermore,we anticipate the future development direction of EP with satisfactory insulation properties.We believe that enhancing the breakdown theory of solid dielectrics,exploring new research and development methodologies,and creating environmentally friendly EP with high performance are primary focus areas.We hope that this paper will offer guidance and support for the future development of EP with superior breakdown strength,proving valuable in advancing EP-based dielectrics.展开更多
The development of nanoelectronics and nanotechnologies has been boosted significantly by the emergence of 2D materials because of their atomic thickness and peculiar properties,and developing a universal,precise patte...The development of nanoelectronics and nanotechnologies has been boosted significantly by the emergence of 2D materials because of their atomic thickness and peculiar properties,and developing a universal,precise patterning technology for single-layer 2D materials is critical for assembling nanodevices.Demonstrated here is a nanomachining technique using electrical breakdown by an AFM tip to fabricate nanopores,nanostrips,and other nanostructures on demand.This can be achieved by voltage scanning or applying a constant voltage while moving the tip.By measuring the electrical current,the formation process on single-layer materials was shown quantitatively.The present results provide evidence of successful pattern fabrication on single-layer MoS2,boron nitride,and graphene,although further confirmation is still needed.The proposed method holds promise as a general nanomachining technology for the future.展开更多
This study proposes a batch rapid quantitative analysis method for multiple elements by combining the advantages of standard curve(SC)and calibration-free laser-induced breakdown spectroscopy(CF-LIBS)technology to ach...This study proposes a batch rapid quantitative analysis method for multiple elements by combining the advantages of standard curve(SC)and calibration-free laser-induced breakdown spectroscopy(CF-LIBS)technology to achieve synchronous,rapid,and accurate measurement of elements in a large number of samples,namely,SC-assisted CF-LIBS.Al alloy standard samples,divided into calibration and test samples,were applied to validate the proposed method.SC was built based on the characteristic line of Pb and Cr in the calibration sample,and the contents of Pb and Cr in the test sample were calculated with relative errors of 6%and 4%,respectively.SC built using Cr with multiple characteristic lines yielded better calculation results.The relative contents of ten elements in the test sample were calculated using CF-LIBS.Subsequently,the SC-assisted CF-LIBS was executed,with the majority of the calculation relative errors falling within the range of 2%-5%.Finally,the Al and Na contents of the Al alloy were predicted.The results demonstrate that it effectively enables the rapid and accurate quantitative analysis of multiple elements after a single-element SC analysis of the tested samples.Furthermore,this quantitative analysis method was successfully applied to soil and Astragalus samples,realizing an accurate calculation of the contents of multiple elements.Thus,it is important to advance the LIBS quantitative analysis and its related applications.展开更多
Rapid online analysis of liquid slag is essential for optimizing the quality and energy efficiency of steel production. To investigate the key factors that affect the online measurement of refined slag using laser-ind...Rapid online analysis of liquid slag is essential for optimizing the quality and energy efficiency of steel production. To investigate the key factors that affect the online measurement of refined slag using laser-induced breakdown spectroscopy(LIBS), this study examined the effects of slag composition and temperature on the intensity and stability of the LIBS spectra. The experimental temperature was controlled at three levels: 1350℃, 1400℃, and 1450℃. The results showed that slag composition and temperature significantly affected the intensity and stability of the LIBS spectra. Increasing the Fe content and temperature in the slag reduces its viscosity, resulting in an enhanced intensity and stability of the LIBS spectra. Additionally, 42 refined slag samples were quantitatively analyzed for Fe, Si, Ca, Mg, Al, and Mn at 1350℃, 1400℃, and 1450℃.The normalized full spectrum combined with partial least squares(PLS) quantification modeling was used, using the Ca Ⅱ 317.91 nm spectral line as an internal standard. The results show that using the internal standard normalization method can significantly reduce the influence of spectral fluctuations. Meanwhile, a temperature of 1450℃ has been found to yield superior results compared to both 1350℃ and 1400℃, and it is advantageous to conduct a quantitative analysis of the slag when it is in a “water-like” state with low viscosity.展开更多
Taking three typical soft samples prepared respectively by loose packings of 77-,95-,and 109-μm copper grains as examples,we perform an experiment to investigate the energy-dependent laser-induced breakdown spectrosc...Taking three typical soft samples prepared respectively by loose packings of 77-,95-,and 109-μm copper grains as examples,we perform an experiment to investigate the energy-dependent laser-induced breakdown spectroscopy(LIBS)of soft materials.We discovered a reversal phenomenon in the trend of energy dependence of plasma emission intensity:increasing initially and then decreasing separated by a well-defined critical energy.The trend reversal is attributed to the laser-induced recoil pressure at the critical energy just matching the sample's yield strength.As a result,a one-to-one correspondence can be well established between the samples'yield stress and the critical energy that is easily obtainable from LIBS measurements.This allows us to propose an innovative method for estimating the yield stress of soft materials via LIBS with attractive advantages including in-situ remote detection,real-time data collection,and minimal destructive to sample.展开更多
In this work, laser-induced breakdown spectroscopy(LIBS) was applied for the detection of Pb in Tieguanyin tea and ash. Firstly, the Tieguanyin tea and ash containing Pb were prepared, and the difference of intensitie...In this work, laser-induced breakdown spectroscopy(LIBS) was applied for the detection of Pb in Tieguanyin tea and ash. Firstly, the Tieguanyin tea and ash containing Pb were prepared, and the difference of intensities of Pb I spectral lines before and after the ashing treatment was studied. It was found that the intensities of Pb I lines increased by 30 times and the standard deviation of background signal decreased by 41% after the ashing treatment. Therefore, the enrichment of Pb element by ashing treatment was used to detect Pb in tea with high sensitivity. Then, the calibration curve of Pb was established using spectral lines without self-absorption, and the determination coefficient(R^(2)) for the linear fitting of calibration curve was 0.979 9. Finally, it was found that the limit of detection of Pb was 233.8 ppb. Compared with the results of other works which detect Pb directly, the enrichment of Pb by ashing treatment improved the detection sensitivity of Pb by about 200 times. In addition, this method can be applied to the high sensitivity detection of other heavy metals, such as Cr, Cd, Hg, etc in plants, Chinese herbal medicine, flour, rice, coal and other solid materials.展开更多
A non-contact method for millimeter-scale inspection of material surface flatness via Laser-Induced Breakdown Spectroscopy(LIBS)is investigated experimentally.The experiment is performed using a planished surface of a...A non-contact method for millimeter-scale inspection of material surface flatness via Laser-Induced Breakdown Spectroscopy(LIBS)is investigated experimentally.The experiment is performed using a planished surface of an alloy steel sample to simulate its various flatness,ranging from 0 to 4.4 mm,by adjusting the laser focal plane to the surface distance with a step length of 0.2 mm.It is found that LIBS measurements are successful in inspecting the flatness differences among these simulated cases,implying that the method investigated here is feasible.It is also found that,for achieving the inspection of surface flatness within such a wide range,when univariate analysis is applied,a piecewise calibration model must be constructed.This is due to the complex dependence of plasma formation conditions on the surface flatness,which inevitably complicates the inspection procedure.To solve the problem,a multivariate analysis with the help of Back-Propagation Neural Network(BPNN)algorithms is applied to further construct the calibration model.By detailed analysis of the model performance,we demonstrate that a unified calibration model can be well established based on BPNN algorithms for unambiguous millimeter-scale range inspection of surface flatness with a resolution of about 0.2 mm.展开更多
In contrast to conventional transformers, power electronic transformers, as an integral component of new energy power system, are often subjected to high-frequency and transient electrical stresses, leading to heighte...In contrast to conventional transformers, power electronic transformers, as an integral component of new energy power system, are often subjected to high-frequency and transient electrical stresses, leading to heightened concerns regarding insulation failures. Meanwhile, the underlying mechanism behind discharge breakdown failure and nanofiller enhancement under high-frequency electrical stress remains unclear. An electric-thermal coupled discharge breakdown phase field model was constructed to study the evolution of the breakdown path in polyimide nanocomposite insulation subjected to high-frequency stress. The investigation focused on analyzing the effect of various factors, including frequency, temperature, and nanofiller shape, on the breakdown path of Polyimide(PI) composites. Additionally, it elucidated the enhancement mechanism of nano-modified composite insulation at the mesoscopic scale. The results indicated that with increasing frequency and temperature, the discharge breakdown path demonstrates accelerated development, accompanied by a gradual dominance of Joule heat energy. This enhancement is attributed to the dispersed electric field distribution and the hindering effect of the nanosheets. The research findings offer a theoretical foundation and methodological framework to inform the optimal design and performance management of new insulating materials utilized in high-frequency power equipment.展开更多
Recent work has validated a new method for estimating the grain size of microgranular materials in the range of tens to hundreds of micrometers using laser-induced breakdown spectroscopy(LIBS).In this situation,a piec...Recent work has validated a new method for estimating the grain size of microgranular materials in the range of tens to hundreds of micrometers using laser-induced breakdown spectroscopy(LIBS).In this situation,a piecewise univariate model must be constructed to estimate grain size due to the complex dependence of the plasma formation environment on grain size.In the present work,we tentatively construct a unified calibration model suitable for LIBS-based estimation of those grain sizes.Specifically,two unified multivariate calibration models are constructed based on back-propagation neural network(BPNN)algorithms using feature selection strategies with and without considering prior information.By detailed analysis of the performances of the two multivariate models,it was found that a unified calibration model can be successfully constructed based on BPNN algorithms for estimating the grain size in the range of tens to hundreds of micrometers.It was also found that the model constructed with a priorguided feature selection strategy had better prediction performance.This study has practical significance in developing the technology for material analysis using LIBS,especially when the LIBS signal exhibits a complex dependence on the material parameter to be estimated.展开更多
基金National Natural Science Foundation of China(22178228,22178326)
文摘A cylindrical chamber with a rotating bottom holds significant potential for application in cell culture bioreactors due to its ability to generate more stable swirling flows.In order to control vortex breakdown within the chamber,this study first establishes a computational fluid dynamics simulation coupled with the level set method.Verified by experimental results in literature,this method accurately simulates the position and shape of vortex breakdown,and also predicts the critical Reynolds numbers for the appearance and detachment of vortex breakdown bubbles from the center.Additionally,it precisely captures the gas-liquid interface and depicts the vortex breakdown phenomenon in the air above the liquid for the first time.Finally,it predicts the impact of physical property of gas-liquid systems on vortex breakdown in response to significant changes in viscosity of microbial process systems.
基金supported by the National Natural Science Foundation of China(Nos.92271110,12072352)the Major National Science and Technology Project,China(No.J2019-Ⅲ-0010-0054)。
文摘To delay the vortex breakdown position of the slender delta wing,this study innovativelyproposes the application of control near the Leading-Edge Vortex(LEV)core sweeping path,whichis called Coupled Core Rotation Dual Synthetic Jets(CCR-DSJ)control.The results show that thevortex breakdown points at each angle of attack are moved backward after control,and the max-imum delayed displacement is 32.4%of the root chord at 30°.Besides,there is a linear relationshipbetween the breakdown position and the angle of attack after control,indicating that CCR-DSJcontrol has a significant effect on the pressure gradient of the vortex axis.Furthermore,the lift coef-ficient C_(L)is enhanced after control,with a maximum CLincrement of 0.078 at 27°,and an effectiveincrement interval of[25°,32°].This interval is different from most previous studies,which isdirectly related to the position of the actuators.According to the lift change mechanism,the anglesof attack are divided into three stages:Stage 1(a=15°–25°),Stage 2(a=25°–32°),and Stage 3(a=32°–40°).In conclusion,CCR-DSJ control can significantly change the pressure distribution,thereby offering promising prospects for the flight stage of the slender delta wing.
基金supported by the UK EPSRC(grant EP/T024607/1,‘Coat IN’)provided by the Henry Royce Institute for Advanced Materials,funded through the UK EPSRC grants EP/R00661X/1,EP/S019367/1,EP/P025021/1 and EP/P025498/1support from the University of Manchester and Chinese Scholarship Council for his Ph D studies。
文摘Electrolyte selection for Plasma Electrolytic Oxidation(PEO)of magnesium is important as this determines composition,morphology and properties of resultant coatings that are urgently sought after for protection of Mg alloys from corrosion and wear in harsh environments.However,electrolyte design is often performed heuristically,which hampers the development and optimisation of new PEO processes.Here,we attempt to achieve a mechanistic understanding of electrochemical and microstructural aspects of anodic films evolution at the prebreakdown stages of PEO treatments of magnesium in aqueous alkaline solutions of NaAlO_(2),Na_(3)PO_(4),Na F and Na_(2)SiO_(3).Systematic studies have shown that magnesium self-passivation by MgO/Mg(OH)_(2)can be compromised by both chemical and mechanical instabilities developed due to side effects of anodic reactions.Stable initiation of PEO process requires maintaining surface passivity in a wide range of p H,which can be achieved only by combining self-depositing passivators with those binding dissolved magnesium into insoluble compounds.
基金supported by the China Postdoctoral Science Foundation(No.2023M743622)Natural Science Foundation of Ningbo City(No.2024J109)+2 种基金National Natural Science Foundation of China(Nos.E52307038 and U23A20589)Ningbo 2025 Key Scientific Research Programs(Nos.2022Z111,2022Z160 and 2022Z198)the Leading Innovativeand Entrepreneur Team Introduction Program of Zhejiang(No.2021R01005).
文摘The demand for energy-efficient and environmental-friendly power grid construction has made the exploitation of bio-based electrical epoxy resins with excellent properties increasingly important.This work developed the bio-based electrotechnical epoxy resins based on magnolol.High-performance epoxy resin(DGEMT)with a double crosslinked points and its composites(Al_(2)O_(3)/DGEMT)were obtained taking advantages of the two bifunctional groups(allyl and phenolic hydroxyl groups)of magnolol.Benefitting from the distinctive structure of DGEMT,the Al_(2)O_(3)/DGEMT composites exhibited the advantages of intrinsically high thermal conductivity,high insulation,and low dielectric loss.The AC breakdown strength and thermal conductivity of Al_(2)O_(3)/DGEMT composites were 35.5 kV/mm and 1.19 W·m-1·K-1,respectively,which were 15.6%and 52.6%higher than those of petroleum-based composites(Al_(2)O_(3)/DGEBA).And its dielectric loss tanδ=0.0046 was 20.7%lower than that of Al_(2)O_(3)/DGEBA.Furthermore,the mechanical,thermal and processing properties of Al_(2)O_(3)/DGEMT are fully comparable to those of Al_(2)O_(3)/DGEBA.This work confirms the feasibility of manufacturing environmentally friendly power equipment using bio-based epoxy resins,which has excellent engineering applications.
文摘The protection effectiveness of traditional Lightning Strike Protection(LSP)for composite rotor blade of helicopter can be diminished due to the explosion risk in overlapping attachment under lightning strike,so a new protection method based on Air Breakdown and insulating adhesive layer(AB-LSP method)was designed to avoid it.In this study,a numerical method was developed to simulate the electrical breakdown,and verified by experiment results.Based on this method,a Finite Element Model(FEM)was established to investigate the effect of two factors(breakdown strength and initial ablation temperature of adhesive layer)on the LSP effectiveness.The results show that the breakdown strength impacts more to the ablation damage in composite than that of high-temperature resistance.Then,another FEM was established to predict the ablation damage by lightning strike in the AB-LSP method protected composite rotor blade.The mechanisms and potential key parameters(magnitude of lightning current,discharge channel location,adhesive layer thickness,and air gap width)that could affect the protection effectiveness were analyzed.The introduction of air breakdown changes the current conduction path and reduces explosion risk.After rational design,this method can offer effective lightning protection for composite helicopter rotor blade and other composite structures.
基金supported by the R&D Center for Valuable Recycling (Global-Top R&D Program)of the Ministry of Environment (No.2016002250003)。
文摘Scrap metals are typically covered with surface contaminants,such as paint,dust,and rust,which can significantly affect the emission spectrum during laser-induced breakdown spectroscopy(LIBS)based sorting.In this study,the effects of paint layers on metal surfaces during LIBS classification were investigated.LIBS spectra were collected from metal surfaces painted with black and white paints by ablation with a nanosecond pulsed laser(wavelength=1064 nm,pulse width=7 ns).For the black-painted samples,the LIBS spectra showed a broad background emission,emission lines unrelated to the target metals,large shot-to-shot variation,and a relatively low signal intensity of the target metal,causing poor classification accuracy even at high shot numbers.Cleaning the black paint layer by ablating over a wide area prior to LIBS analysis resulted in high classification accuracy with fewer shot numbers.A method to determine the number of cleaning shots necessary to obtain high classification accuracy and high throughput is proposed on the basis of the change in LIBS signal intensity during cleaning shots.For the white-painted samples,the paint peeled off the metal surface after the first shot,and strong LIBS signals were measured after the following shot,which were attributed to the nanoparticles generated by the ablation of the paint,allowing an accurate classification after only two shots.The results demonstrate that different approaches must be employed depending on the paint color to achieve high classification accuracy with fewer shot numbers.
基金supported by the National Natural Science Foundation of China,China(No.52074250).
文摘Horizontal well intensive fracturing is a critical technology used to stimulate unconventional oil and gas reservoirs.Accurate prediction of wellbore breakdown pressure is conducive to optimal fracturing design and improvement of the reservoir stimulation effect.In this work,the three-dimensional displacement discontinuity method(DDM)is used to characterize fracture deformation and fracture closure after the pumping pressure relief.The influences of key parameters such as the minimum horizontal principal stress,fracture spacing,the Young's modulus,the Poisson's ratio and pumping pressure on the breakdown pressure are analyzed.The results show that,assuming that the fracture half-length is a,the breakdown pressure outside the fracture surface area increases significantly within 2a in the direction of the minimum horizontal principal stress and a in the directions of the vertical stress and maximum horizontal principal stress before pressure relief.The breakdown pressure of the modified zipper-type fracturing in the later stage is lower.When the fracture spacing is small,the fracture breakdown pressure decreases after the modified zipper-type fracturing of two horizontal wells.The fracture breakdown pressure of the first fractured well reaches a maximum when the fracture spacing is a-1.5a,and the breakdown pressure decreases with increasing well spacing.
文摘Space ion electric propulsion has been widely used in the north-south position maintenance and orbit transfer missions for high-orbit satellites.However,unexpected electric breakdown by ion electric propulsion systems is still a challenging problem that needs to be solved,as it affects reliability.Based on the analysis of in-orbit and ground test data of ion thrusters from simulation and experimental results,the main influencing factors of induced electric breakdown are clarified and the mechanisms of induced electric breakdown are analyzed.It is found that the main factors inducing breakdown are the voltage and electric field strength between the grids.In addition,by monitoring the waveform of plasma discharge,the temporal characteristics of breakdown can be defined as three stages of“breakdown-spark-loop response”.Thus,three kinds of engineering suppression methods for breakdown of static vacuum with periodic short-term heating,electrode surface polishing and sealing insulation with plasma,add energy suppression circuit are carried out,and the experimental results show that the electric breakdown frequency can be reduced by about 30%.
基金financially supported by funds from the USDA-NIFA(award number 2014-67015-21832)。
文摘Background The study objective was to test the hypothesis that low crude protein(CP)diet with crystalline amino acids(CAA)supplementation improves Lys utilization efficiency for milk production and reduces protein turnover and muscle protein breakdown.Eighteen lactating multiparous Yorkshire sows were allotted to 1 of 2 isocaloric diets(10.80 MJ/kg net energy):control(CON;19.24%CP)and reduced CP with“optimal”AA profile(OPT;14.00%CP).Sow body weight and backfat were recorded on d 1 and 21 of lactation and piglets were weighed on d 1,14,18,and 21 of lactation.Between d 14 and 18,a subset of 9 sows(CON=4,OPT=5)was infused with a mixed solution of 3-[methyl-2H3]histidine(bolus injection)and[13C]bicarbonate(priming dose)first,then a constant 2-h[13C]bicarbonate infusion followed by a 6-h primed constant[1-13C]lysine infusion.Serial blood and milk sampling were performed to determine plasma and milk Lys enrichment,Lys oxidation rate,whole body protein turnover,and muscle protein breakdown.Results Over the 21-d lactation period,compared to CON,sows fed OPT had greater litter growth rate(P<0.05).Compared to CON,sows fed OPT had greater efficiency of Lys(P<0.05),Lys mammary flux(P<0.01)and whole-body protein turnover efficiency(P<0.05).Compared to CON,sows fed OPT tended to have lower whole body protein breakdown rate(P=0.069).Muscle protein breakdown rate did not differ between OPT and CON(P=0.197).Conclusion Feeding an improved AA balance diet increased efficiency of Lys and reduced whole-body protein turnover and protein breakdown.These results imply that the lower maternal N retention observed in lactating sows fed improved AA balance diets in previous studies may be a result of greater partitioning of AA towards milk rather than greater body protein breakdown.
基金financial supports from National Natural Science Foundation of China(No.62205172)Huaneng Group Science and Technology Research Project(No.HNKJ22-H105)Tsinghua University Initiative Scientific Research Program and the International Joint Mission on Climate Change and Carbon Neutrality。
文摘Laser-induced breakdown spectroscopy(LIBS)has become a widely used atomic spectroscopic technique for rapid coal analysis.However,the vast amount of spectral information in LIBS contains signal uncertainty,which can affect its quantification performance.In this work,we propose a hybrid variable selection method to improve the performance of LIBS quantification.Important variables are first identified using Pearson's correlation coefficient,mutual information,least absolute shrinkage and selection operator(LASSO)and random forest,and then filtered and combined with empirical variables related to fingerprint elements of coal ash content.Subsequently,these variables are fed into a partial least squares regression(PLSR).Additionally,in some models,certain variables unrelated to ash content are removed manually to study the impact of variable deselection on model performance.The proposed hybrid strategy was tested on three LIBS datasets for quantitative analysis of coal ash content and compared with the corresponding data-driven baseline method.It is significantly better than the variable selection only method based on empirical knowledge and in most cases outperforms the baseline method.The results showed that on all three datasets the hybrid strategy for variable selection combining empirical knowledge and data-driven algorithms achieved the lowest root mean square error of prediction(RMSEP)values of 1.605,3.478 and 1.647,respectively,which were significantly lower than those obtained from multiple linear regression using only 12 empirical variables,which are 1.959,3.718 and 2.181,respectively.The LASSO-PLSR model with empirical support and 20 selected variables exhibited a significantly improved performance after variable deselection,with RMSEP values dropping from 1.635,3.962 and 1.647 to 1.483,3.086 and 1.567,respectively.Such results demonstrate that using empirical knowledge as a support for datadriven variable selection can be a viable approach to improve the accuracy and reliability of LIBS quantification.
文摘Epoxy resin(EP)has been widely utilized in electrical equipment and electronic devices due to its fascinating electric,thermal,and mechanical properties.However,the complex insulation structures of modern power devices in high-voltage direct current systems pose several challenges for EP-based dielectrics.The most significant among these challenges is the need for EP to stably operate under greater electric fields,requiring superior breakdown strength.This paper summarizes the key factors influencing the breakdown strength of EP and reviews reported methods for enhancing this property.Recognizing the limitations of existing approaches,we propose that the emerging technology of molecule design offers a potentially optimal solution for developing EP with enhanced breakdown strength.Furthermore,we anticipate the future development direction of EP with satisfactory insulation properties.We believe that enhancing the breakdown theory of solid dielectrics,exploring new research and development methodologies,and creating environmentally friendly EP with high performance are primary focus areas.We hope that this paper will offer guidance and support for the future development of EP with superior breakdown strength,proving valuable in advancing EP-based dielectrics.
基金supported by the National Natural Science Foundation of China(Grant Nos.12075191,12388101,and 12241201)the Fundamental Research Funds for the Central Universities(Grant No.D5000230120)the Natural Science Basic Research Program of Shaanxi Province(Grant No.2023-JC-YB-541).
文摘The development of nanoelectronics and nanotechnologies has been boosted significantly by the emergence of 2D materials because of their atomic thickness and peculiar properties,and developing a universal,precise patterning technology for single-layer 2D materials is critical for assembling nanodevices.Demonstrated here is a nanomachining technique using electrical breakdown by an AFM tip to fabricate nanopores,nanostrips,and other nanostructures on demand.This can be achieved by voltage scanning or applying a constant voltage while moving the tip.By measuring the electrical current,the formation process on single-layer materials was shown quantitatively.The present results provide evidence of successful pattern fabrication on single-layer MoS2,boron nitride,and graphene,although further confirmation is still needed.The proposed method holds promise as a general nanomachining technology for the future.
基金supported by the Major Science and TechnologyTechnol-ogy Projects in Gansu Province(No.22ZD6FA021-5)Industrial Support Project of Gansu Province(Nos.2023CYZC-19 and 2021CYZC-22)+1 种基金Science and Technol-ogy Project of Gansu Province(Nos.23YFFA0074,22JR5RA137,and 22JR5RA151)Central Leading Local Science and Technology Development Fund Projects(No.23ZYQA293).
文摘This study proposes a batch rapid quantitative analysis method for multiple elements by combining the advantages of standard curve(SC)and calibration-free laser-induced breakdown spectroscopy(CF-LIBS)technology to achieve synchronous,rapid,and accurate measurement of elements in a large number of samples,namely,SC-assisted CF-LIBS.Al alloy standard samples,divided into calibration and test samples,were applied to validate the proposed method.SC was built based on the characteristic line of Pb and Cr in the calibration sample,and the contents of Pb and Cr in the test sample were calculated with relative errors of 6%and 4%,respectively.SC built using Cr with multiple characteristic lines yielded better calculation results.The relative contents of ten elements in the test sample were calculated using CF-LIBS.Subsequently,the SC-assisted CF-LIBS was executed,with the majority of the calculation relative errors falling within the range of 2%-5%.Finally,the Al and Na contents of the Al alloy were predicted.The results demonstrate that it effectively enables the rapid and accurate quantitative analysis of multiple elements after a single-element SC analysis of the tested samples.Furthermore,this quantitative analysis method was successfully applied to soil and Astragalus samples,realizing an accurate calculation of the contents of multiple elements.Thus,it is important to advance the LIBS quantitative analysis and its related applications.
基金financially supported by the National Key R&D Program Projects of China (No.2021YFB3202402)National Natural Science Foundation of China (No.62173321)。
文摘Rapid online analysis of liquid slag is essential for optimizing the quality and energy efficiency of steel production. To investigate the key factors that affect the online measurement of refined slag using laser-induced breakdown spectroscopy(LIBS), this study examined the effects of slag composition and temperature on the intensity and stability of the LIBS spectra. The experimental temperature was controlled at three levels: 1350℃, 1400℃, and 1450℃. The results showed that slag composition and temperature significantly affected the intensity and stability of the LIBS spectra. Increasing the Fe content and temperature in the slag reduces its viscosity, resulting in an enhanced intensity and stability of the LIBS spectra. Additionally, 42 refined slag samples were quantitatively analyzed for Fe, Si, Ca, Mg, Al, and Mn at 1350℃, 1400℃, and 1450℃.The normalized full spectrum combined with partial least squares(PLS) quantification modeling was used, using the Ca Ⅱ 317.91 nm spectral line as an internal standard. The results show that using the internal standard normalization method can significantly reduce the influence of spectral fluctuations. Meanwhile, a temperature of 1450℃ has been found to yield superior results compared to both 1350℃ and 1400℃, and it is advantageous to conduct a quantitative analysis of the slag when it is in a “water-like” state with low viscosity.
基金Project supported by the National Key Research and Development Program of China(Grant No.2017YFA0402300)the National Natural Science Foundation of China(Grant Nos.U2241288 and 11974359).
文摘Taking three typical soft samples prepared respectively by loose packings of 77-,95-,and 109-μm copper grains as examples,we perform an experiment to investigate the energy-dependent laser-induced breakdown spectroscopy(LIBS)of soft materials.We discovered a reversal phenomenon in the trend of energy dependence of plasma emission intensity:increasing initially and then decreasing separated by a well-defined critical energy.The trend reversal is attributed to the laser-induced recoil pressure at the critical energy just matching the sample's yield strength.As a result,a one-to-one correspondence can be well established between the samples'yield stress and the critical energy that is easily obtainable from LIBS measurements.This allows us to propose an innovative method for estimating the yield stress of soft materials via LIBS with attractive advantages including in-situ remote detection,real-time data collection,and minimal destructive to sample.
基金supported by the National Undergraduate Training Programs for Innovation and Entrepreneurship (No.202110060008)。
文摘In this work, laser-induced breakdown spectroscopy(LIBS) was applied for the detection of Pb in Tieguanyin tea and ash. Firstly, the Tieguanyin tea and ash containing Pb were prepared, and the difference of intensities of Pb I spectral lines before and after the ashing treatment was studied. It was found that the intensities of Pb I lines increased by 30 times and the standard deviation of background signal decreased by 41% after the ashing treatment. Therefore, the enrichment of Pb element by ashing treatment was used to detect Pb in tea with high sensitivity. Then, the calibration curve of Pb was established using spectral lines without self-absorption, and the determination coefficient(R^(2)) for the linear fitting of calibration curve was 0.979 9. Finally, it was found that the limit of detection of Pb was 233.8 ppb. Compared with the results of other works which detect Pb directly, the enrichment of Pb by ashing treatment improved the detection sensitivity of Pb by about 200 times. In addition, this method can be applied to the high sensitivity detection of other heavy metals, such as Cr, Cd, Hg, etc in plants, Chinese herbal medicine, flour, rice, coal and other solid materials.
基金supported in part by the National Key Research and Development Program of China(No.2022YFA1602500)National Natural Science Foundation of China program(No.U2241288).
文摘A non-contact method for millimeter-scale inspection of material surface flatness via Laser-Induced Breakdown Spectroscopy(LIBS)is investigated experimentally.The experiment is performed using a planished surface of an alloy steel sample to simulate its various flatness,ranging from 0 to 4.4 mm,by adjusting the laser focal plane to the surface distance with a step length of 0.2 mm.It is found that LIBS measurements are successful in inspecting the flatness differences among these simulated cases,implying that the method investigated here is feasible.It is also found that,for achieving the inspection of surface flatness within such a wide range,when univariate analysis is applied,a piecewise calibration model must be constructed.This is due to the complex dependence of plasma formation conditions on the surface flatness,which inevitably complicates the inspection procedure.To solve the problem,a multivariate analysis with the help of Back-Propagation Neural Network(BPNN)algorithms is applied to further construct the calibration model.By detailed analysis of the model performance,we demonstrate that a unified calibration model can be well established based on BPNN algorithms for unambiguous millimeter-scale range inspection of surface flatness with a resolution of about 0.2 mm.
基金supported in part by the National Key R&D Program of China (No.2021YFB2601404)Beijing Natural Science Foundation (No.3232053)National Natural Science Foundation of China (Nos.51929701 and 52127812)。
文摘In contrast to conventional transformers, power electronic transformers, as an integral component of new energy power system, are often subjected to high-frequency and transient electrical stresses, leading to heightened concerns regarding insulation failures. Meanwhile, the underlying mechanism behind discharge breakdown failure and nanofiller enhancement under high-frequency electrical stress remains unclear. An electric-thermal coupled discharge breakdown phase field model was constructed to study the evolution of the breakdown path in polyimide nanocomposite insulation subjected to high-frequency stress. The investigation focused on analyzing the effect of various factors, including frequency, temperature, and nanofiller shape, on the breakdown path of Polyimide(PI) composites. Additionally, it elucidated the enhancement mechanism of nano-modified composite insulation at the mesoscopic scale. The results indicated that with increasing frequency and temperature, the discharge breakdown path demonstrates accelerated development, accompanied by a gradual dominance of Joule heat energy. This enhancement is attributed to the dispersed electric field distribution and the hindering effect of the nanosheets. The research findings offer a theoretical foundation and methodological framework to inform the optimal design and performance management of new insulating materials utilized in high-frequency power equipment.
基金supported in part by the National Key Research and Development Program of China(No.2017YFA0402300)National Natural Science Foundation of China(Nos.U2241288 and 11974359)Major Science and Technology Project of Gansu Province(No.22ZD6FA021-5)。
文摘Recent work has validated a new method for estimating the grain size of microgranular materials in the range of tens to hundreds of micrometers using laser-induced breakdown spectroscopy(LIBS).In this situation,a piecewise univariate model must be constructed to estimate grain size due to the complex dependence of the plasma formation environment on grain size.In the present work,we tentatively construct a unified calibration model suitable for LIBS-based estimation of those grain sizes.Specifically,two unified multivariate calibration models are constructed based on back-propagation neural network(BPNN)algorithms using feature selection strategies with and without considering prior information.By detailed analysis of the performances of the two multivariate models,it was found that a unified calibration model can be successfully constructed based on BPNN algorithms for estimating the grain size in the range of tens to hundreds of micrometers.It was also found that the model constructed with a priorguided feature selection strategy had better prediction performance.This study has practical significance in developing the technology for material analysis using LIBS,especially when the LIBS signal exhibits a complex dependence on the material parameter to be estimated.