期刊文献+
共找到2,010篇文章
< 1 2 101 >
每页显示 20 50 100
Automatic clustering of single-molecule break junction data through task-oriented representation learning
1
作者 Yi-Heng Zhao Shen-Wen Pang +4 位作者 Heng-Zhi Huang Shao-Wen Wu Shao-Hua Sun Zhen-Bing Liu Zhi-Chao Pan 《Rare Metals》 2025年第5期3244-3257,共14页
Clustering is a pivotal data analysis method for deciphering the charge transport properties of single molecules in break junction experiments.However,given the high dimensionality and variability of the data,feature ... Clustering is a pivotal data analysis method for deciphering the charge transport properties of single molecules in break junction experiments.However,given the high dimensionality and variability of the data,feature extraction remains a bottleneck in the development of efficient clustering methods.In this regard,extensive research over the past two decades has focused on feature engineering and dimensionality reduction in break junction conductance.However,extracting highly relevant features without expert knowledge remains an unresolved challenge.To address this issue,we propose a deep clustering method driven by task-oriented representation learning(CTRL)in which the clustering module serves as a guide for the representation learning(RepL)module.First,we determine an optimal autoencoder(AE)structure through a neural architecture search(NAS)to ensure efficient RepL;second,the RepL process is guided by a joint training strategy that combines AE reconstruction loss with the clustering objective.The results demonstrate that CTRL achieves excellent performance on both the generated and experimental data.Further inspection of the RepL step reveals that joint training robustly learns more compact features than the unconstrained AE or traditional dimensionality reduction methods,significantly reducing misclustering possibilities.Our method provides a general end-to-end automatic clustering solution for analyzing single-molecule break junction data. 展开更多
关键词 Single-molecule conductance break junction Deep clustering Representation learning Neural architecture search
原文传递
Generating highly active oxide-phosphide heterostructure through interfacial engineering to break the energy scaling relation toward urea-assisted natural seawater electrolysis
2
作者 Ngoc Quang Tran Nam Hoang Vu +6 位作者 Jianmin Yu Khanh Vy Pham Nguyen Thuy Tien Nguyen Tran Thuy-Kieu Truong Lishan Peng Thi Anh Le Yoshiyuki Kawazoe 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期687-699,I0014,共14页
Urea-assisted natural seawater electrolysis is an emerging technology that is effective for grid-scale carbon-neutral hydrogen mass production yet challenging.Circumventing scaling relations is an effective strategy t... Urea-assisted natural seawater electrolysis is an emerging technology that is effective for grid-scale carbon-neutral hydrogen mass production yet challenging.Circumventing scaling relations is an effective strategy to break through the bottleneck of natural seawater splitting.Herein,by DFT calculation,we demonstrated that the interface boundaries between Ni_(2)P and MoO_(2) play an essential role in the selfrelaxation of the Ni-O interfacial bond,effectively modulating a coordination number of intermediates to control independently their adsorption-free energy,thus circumventing the adsorption-energy scaling relation.Following this conceptual model,a well-defined 3D F-doped Ni_(2)P-MoO_(2) heterostructure microrod array was rationally designed via an interfacial engineering strategy toward urea-assisted natural seawater electrolysis.As a result,the F-Ni_(2)P-MoO_(2) exhibits eminently active and durable bifunctional catalysts for both HER and OER in acid,alkaline,and alkaline sea water-based electrolytes.By in-situ analysis,we found that a thin amorphous layer of NiOOH,which is evolved from the Ni_(2)P during anodic reaction,is real catalytic active sites for the OER and UOR processes.Remarkable,such electrode-assembled urea-assisted natural seawater electrolyzer requires low voltages of 1.29 and 1.75 V to drive 10 and600 mA cm^(-2)and demonstrates superior durability by operating continuously for 100 h at 100 mA cm^(-2),beyond commercial Pt/C||RuO_(2) and most previous reports. 展开更多
关键词 Interfacial engineering break scaling relationships Doping Natural seawater splitting Urea electrolysis
在线阅读 下载PDF
Quasi-visualizable detection of deep sub-wavelength defects in patterned wafers by breaking the optical form birefringence 被引量:1
3
作者 Jiamin Liu Jinlong Zhu +8 位作者 Zhe Yu Xianrui Feng Zedi Li Lei Zhong Jinsong Zhang Honggang Gu Xiuguo Chen Hao Jiang Shiyuan Liu 《International Journal of Extreme Manufacturing》 2025年第1期623-639,共17页
In integrated circuit(IC)manufacturing,fast,nondestructive,and precise detection of defects in patterned wafers,realized by bright-field microscopy,is one of the critical factors for ensuring the final performance and... In integrated circuit(IC)manufacturing,fast,nondestructive,and precise detection of defects in patterned wafers,realized by bright-field microscopy,is one of the critical factors for ensuring the final performance and yields of chips.With the critical dimensions of IC nanostructures continuing to shrink,directly imaging or classifying deep-subwavelength defects by bright-field microscopy is challenging due to the well-known diffraction barrier,the weak scattering effect,and the faint correlation between the scattering cross-section and the defect morphology.Herein,we propose an optical far-field inspection method based on the form-birefringence scattering imaging of the defective nanostructure,which can identify and classify various defects without requiring optical super-resolution.The technique is built upon the principle of breaking the optical form birefringence of the original periodic nanostructures by the defect perturbation under the anisotropic illumination modes,such as the orthogonally polarized plane waves,then combined with the high-order difference of far-field images.We validated the feasibility and effectiveness of the proposed method in detecting deep subwavelength defects through rigid vector imaging modeling and optical detection experiments of various defective nanostructures based on polarization microscopy.On this basis,an intelligent classification algorithm for typical patterned defects based on a dual-channel AlexNet neural network has been proposed,stabilizing the classification accuracy ofλ/16-sized defects with highly similar features at more than 90%.The strong classification capability of the two-channel network on typical patterned defects can be attributed to the high-order difference image and its transverse gradient being used as the network’s input,which highlights the polarization modulation difference between different patterned defects more significantly than conventional bright-field microscopy results.This work will provide a new but easy-to-operate method for detecting and classifying deep-subwavelength defects in patterned wafers or photomasks,which thus endows current online inspection equipment with more missions in advanced IC manufacturing. 展开更多
关键词 defect inspection form birefringence breaking high order difference anisotropic illumination modes deep-subwavelength sensitivity defect classification
在线阅读 下载PDF
Breaking barriers: MS-BDF tools in the quality control of insect-derived traditional Chinese medicine 被引量:1
4
作者 Caixia Yuan Dandan Zhang +2 位作者 Hairong Zhang Jiyang Dong Caisheng Wu 《Journal of Pharmaceutical Analysis》 2025年第6期1403-1405,共3页
Insect-derived traditional Chinese medicine(TCM)constitutes an essential component of TCM,with the earliest records found in“52 Bingfang”(Prescriptions of fifty-two diseases,which is one of the earliest Chinese medi... Insect-derived traditional Chinese medicine(TCM)constitutes an essential component of TCM,with the earliest records found in“52 Bingfang”(Prescriptions of fifty-two diseases,which is one of the earliest Chinese medical prescriptions). 展开更多
关键词 traditional chinese medicine tcm constitutes chinese medical prescriptions prescriptions fifty two diseases ms bdf tools insect derived traditional chinese medicine quality control breaking barriers TCM
暂未订购
Engineering circularly polarized luminescence through symmetry manipulation in achiral tetraphenylpyrazine structures
5
作者 Yuanpeng Ye Longfei Yao Guofeng Liu 《Chinese Journal of Structural Chemistry》 2025年第2期20-24,共5页
Symmetry breaking,a critical phenomenon in both natural and artificial systems,is pivotal in constructing chiral structures from achiral building units.This study focuses on the achiral molecule 8,8',8'',8... Symmetry breaking,a critical phenomenon in both natural and artificial systems,is pivotal in constructing chiral structures from achiral building units.This study focuses on the achiral molecule 8,8',8'',8'''-((pyrazine-2,3,5,6-tetrayltetrakis(benzene-4,1-iyl))tetrakis(oxy))tetrakis(octan-1-ol)(TPP-C8OH),an aggregation-induced emission(AIE)molecule,to explore its symmetry breaking behavior in supramolecular assembly.By analyzing TPP-C8OH in various solvents—both non-chiral and chiral—we find that chiral solvents significantly enhance the molecule's symmetry breaking and chiroptical properties.Specially,alcohol solvents,particularly dodecyl alcohol,facilitate the formation of helical structures with both left-handed(M)and right-handed(P)helices within single twisted nanoribbons.This observation contrasts with previously reported symmetry breaking phenomena in assembly systems.Chiral solvents induce assemblies with distinct helical orientations,resulting in notable circularly polarized luminescence(CPL)and circular dichroism(CD)signals.This study elucidates the impact of solvent choice on symmetry breaking and chiral assembly,offering insights into the design of advanced chiral materials with tailored self-assembly processes. 展开更多
关键词 Symmetry breaking Supramolecular chirality Tetraphenylpyrazine Circularly polarized luminescence SELF-ASSEMBLY
原文传递
Interpretable machine learning for chiral induced symmetry breaking of spin density boosting hydrogen evolution
6
作者 Xin Song Zhonghua Li +1 位作者 Li Sheng Yang Liu 《Journal of Energy Chemistry》 2025年第4期68-78,共11页
The integration of machine learning and electrocatalysis presents nota ble advancements in designing and predicting the performance of chiral materials for hydrogen evolution reactions(HER).This study utilizes theoret... The integration of machine learning and electrocatalysis presents nota ble advancements in designing and predicting the performance of chiral materials for hydrogen evolution reactions(HER).This study utilizes theoretical calculations and machine learning techniques to assess the HER performance of both chiral and achiral M-N-SWCNTs(M=In,Bi,and Sb)single-atom catalysts(SACs).The stability preferences of metal atoms are dependent on chirality when interacting with chiral SWCNTs.The HER activity of the right-handed In-N-SWCNT is 5.71 times greater than its achiral counterpart,whereas the left-handed In-N-SWCNT exhibits a 5.12-fold enhancement.The calculated hydrogen adsorption free energy for the right-handed In-N-SWCNT reaches as low as-0.02 eV.This enhancement is attributed to the symmetry breaking in spin density distribution,transitioning from C_(2V)in achiral SACs to C_(2)in chiral SACs,which facilitates active site transfer and enhances local spin density.Right-handed M-N-SWCNTs exhibit superiorα-electron separation and transport efficiency relative to left-handed variants,owing to the chiral induced spin selectivity(CISS)effect,with spin-upα-electron density reaching 3.43×10^(-3)e/Bohr^(3)at active sites.Machine learning provides deeper insights,revealing that the interplay of weak spatial electronic effects and appropriate curvature-chirality effects significantly enhances HER performance.A weaker spatial electronic effect correlates with higher HER activity,larger exchange current density,and higher turnover frequency.The curvature-chirality effect undersco res the influence of intrinsic structures on HER performance.These findings offer critical insights into the role of chirality in electrocatalysis and propose innovative approaches for optimizing HER through chirality. 展开更多
关键词 Symmetry breaking Machine learning Spin density CISS DFT Hydrogen evolution reaction
在线阅读 下载PDF
Study on the Breaking Force and Efficacy Evaluation of Lipsticks Containing Carnauba Wax and Shea Butter
7
作者 Zi Yusha Liu Jianwei +4 位作者 Jiang Xiuyu Hu Weiren Sheng Wenli Gui Yuhao Peng Xianwu 《China Detergent & Cosmetics》 2025年第2期56-61,共6页
Starting from the perspective of formula and efficacy,orthogonal experiments were first performed to explore the optimal ratio of three raw materials that potentially affect breaking force of lipsticks,verification ex... Starting from the perspective of formula and efficacy,orthogonal experiments were first performed to explore the optimal ratio of three raw materials that potentially affect breaking force of lipsticks,verification experiment on humans was then conducted to test the efficacy of the lipstick formula.Results showed that when the ratio of carnauba wax,shea butter and myristyl isopropyl ester was 3∶7∶3,the breaking force was optimal.After the subjects used the lipstick formula for 14 days,the moisture content of the lip stratum corneum significantly increased by 23.51% (P﹤0.05),the transepidermal water loss (TEWL) rate significantly decreased by 20.61%,the skin glossiness increased significantly by 9.88%,and the skin scale index decreased significantly by 55.76%. 展开更多
关键词 carnauba wax shea butter breaking strength lipsticks
在线阅读 下载PDF
A groundbreaking work bridging theory and practice:A review of Urbanization and Production of Space:A Multi-scalar Empirical Study Based on China's Cases
8
作者 Uchendu Eugene Chigbu 《Journal of Geographical Sciences》 2025年第2期455-456,共2页
At its core,Urbanization and Production of Space provides a comprehensive analysis of the intricate relationship between urbanization and the production of space,particularly within the rapidly evolving context of Chi... At its core,Urbanization and Production of Space provides a comprehensive analysis of the intricate relationship between urbanization and the production of space,particularly within the rapidly evolving context of China's urban transformation.As one of the most populous and dynamically urbanizing nations,China serves as a compelling case for understanding the broader global implications of spatial restructuring. 展开更多
关键词 URBANIZATION transformation breakING
原文传递
Record-breaking bifunctional oxygen electrocatalyst accomplished by a data-driven approach for zinc-air batteries
9
作者 Deviprasath Chinnadurai Zhi Wei Seh 《Journal of Energy Chemistry》 2025年第1期144-145,共2页
Rechargeable zinc-air batteries(ZABs) have recently drawn great attention in energy research due to their high theoretical capacity,low costs, and inherently safe nature [1–3]. However, the sluggish cathode reactions... Rechargeable zinc-air batteries(ZABs) have recently drawn great attention in energy research due to their high theoretical capacity,low costs, and inherently safe nature [1–3]. However, the sluggish cathode reactions necessitate the development of bifunctional oxygen electrocatalysts with lower ΔE indicator values. The ΔE indicator is commonly employed to quantitatively evaluate the electrocatalytic activity of a bifunctional oxygen electrocatalyst,representing the overall overpotential from oxygen reduction reaction(ORR) to oxygen evolution reaction(OER). 展开更多
关键词 breakING representing accomplished
在线阅读 下载PDF
Short-and Long-lived Break Events during the South China Sea Summer Monsoon and Their Associations with Intraseasonal Oscillations
10
作者 Minghao BI Ke XU +1 位作者 Xiaoxuan ZHAO Riyu LU 《Advances in Atmospheric Sciences》 2025年第5期855-869,共15页
This study conducts a comparative investigation between short-lived(3-8 days)and long-lived(9-24 days)break events of the South China Sea summer monsoon during 1979-2020,focusing on their statistical characteristics a... This study conducts a comparative investigation between short-lived(3-8 days)and long-lived(9-24 days)break events of the South China Sea summer monsoon during 1979-2020,focusing on their statistical characteristics and potential mechanisms for their different persistence.Results suggest that both types of events are characterized by anomalously suppressed convection accompanied by an anomalous anticyclone during the break period.However,these convection and circulation anomalies exhibit more localized patterns for short-lived events,but possess larger spatial scales and stronger intensities for long-lived events.The influence of tropical intraseasonal oscillations(ISOs)on short-and long-lived events is explored to interpret their different durations.It is found that for short-lived events,the 10-25-day oscillation is dominant in initiating and terminating the break,while the impact of the 30-60-day oscillation is secondary,thus resulting in a brief break period.In contrast,for long-lived events,the 10-25-day oscillation contributes to break development rather than its initiation,and concurrently,the 30-60-day oscillation shows a remarkable enhancement and plays a decisive role in prolonging the break duration.Furthermore,we find that long-lived events are preceded by significant ISO activities approximately two weeks before their occurrence,which can be regarded as efficient predictors.Associated with these precursory ISOs,the occurrence probability of break days for long-lived events can rise up to triple their original probability(35.43%vs.11.21%). 展开更多
关键词 South China Sea summer monsoon monsoon break intraseasonal oscillations atmospheric circulation convection
在线阅读 下载PDF
Scanning tunneling microscopy study on symmetry breaking of charge density wave in FeGe
11
作者 Jiakang Zhang Ziyuan Chen +8 位作者 Xueliang Wu Mingzhe Li Yuanji Li Ruotong Yin Jiashuo Gong Shiyuan Wang Aifeng Wang Dong-Lai Feng Ya-Jun Yan 《Chinese Physics B》 2025年第4期55-61,共7页
The complex symmetry breaking states in AV3Sb5 family have attracted extreme research attention,but controversy still exists,especially in the question of time reversal symmetry breaking of the charge density wave(CDW... The complex symmetry breaking states in AV3Sb5 family have attracted extreme research attention,but controversy still exists,especially in the question of time reversal symmetry breaking of the charge density wave(CDW).Most recently,a chiral CDW has been suggested in kagome magnet FeGe,but the related study is very rare.Here,we use a scanning tunneling microscope to study the symmetry breaking behavior of both the short-and long-range CDWs in FeGe.Different from previous studies,our study reveals an isotropic long-range CDW without obvious symmetry breaking,while local rotational symmetry breaking appears in the short-range CDW,which may be related to the existence of strong structural disorders.Moreover,the charge distribution of the short-range CDW is inert to the applied external magnetic fields and the detailed spin arrangements of FeGe,inconsistent with the expectation of a chiral CDW associated with chiral flux.Our results rule out the existence of spontaneous chiral and rotational symmetry breaking in the CDW state of FeGe,putting strong constraints on the further understanding of CDW mechanism. 展开更多
关键词 symmetry breaking kagome magnet charge density wave
原文传递
The flow field characteristics and rock breaking ability of cone-straight abrasive jet,rotary abrasive jet,and straight-rotating mixed abrasive jet
12
作者 Jing-Bin Li Ergun Kuru +3 位作者 Wen-Bin Li Chen-Rui Guo Gen-Sheng Li Zhong-Wei Huang 《Petroleum Science》 2025年第6期2457-2464,共8页
Radial jet drilling(RJD)technology is expected to be a technology for the efficient exploitation of geothermal resources.However,the low rock-breaking efficiency is the major obstacle hindering the development of RJD ... Radial jet drilling(RJD)technology is expected to be a technology for the efficient exploitation of geothermal resources.However,the low rock-breaking efficiency is the major obstacle hindering the development of RJD technology.The flow field characteristics and rock breaking ability of cone-straight abrasive jet,rotary abrasive jet,and straight-rotating mixed abrasive jet are analyzed by numerical simulations and experiments.Results show that the axial velocity of the cone-straight abrasive jet is high,the tangential velocity is basically zero,the radial velocity is also small,and the jet impact area is concentrated in the center.A deep hole with a diameter of only 25 mm is formed when the cone-straight abrasive jet breaks the granite.Due to the presence of the guiding impeller,the rotary abrasive jet basically has no axial velocity and has the highest tangential and radial velocity,so it can break the granite to form a hole with a diameter of about 55 mm and a central bulge.The straight-rotating mixed abrasive jet has a large axial/tangential/radial velocity at the same time,so it can break the granite to form a hole with a diameter of about 52 mm with a low bulge.The results show that the straight-rotating mixed abrasive jet combines the advantages of the cone-straight jet and the rotary jet,and is more suitable for the RJD technology.The research results can provide reference for the development of efficient rock-breaking and hole-forming technology,and promote the development of RJD technology in the field of geothermal development. 展开更多
关键词 Geothermal resources Radial jet drilling Abrasive water jet Flow field simulation Rock breaking ability
原文传递
Universal Behavior in Entanglement Entropy Reveals Quantum Criticality and Underlying Symmetry Breaking
13
作者 Zhe Wang Zehui Deng +5 位作者 Zenan Liu Zhiyan Wang Yi-Ming Ding Long Zhang Wenan Guo Zheng Yan 《Chinese Physics Letters》 2025年第11期341-353,共13页
Entanglement plays a key role in quantum physics, but how much information it can extract from many-body systems is still an open question, particularly regarding quantum criticalities and emergent symmetries. In this... Entanglement plays a key role in quantum physics, but how much information it can extract from many-body systems is still an open question, particularly regarding quantum criticalities and emergent symmetries. In this work, we systematically study the entanglement entropy(EE) and derivative entanglement entropy(DEE) near quantum phase transitions in various quantum many-body systems. A one-parameter scaling relation between the DEE and system size at the critical point has been derived for the first time, which successfully obtains the critical exponent via data collapse. Furthermore, we find that the EE peaks at the(emergent) symmetryenhanced first-order transition, reflecting higher symmetry breaking. This work provides a new paradigm for quantum many-body research from the perspective of EE and DEE. 展开更多
关键词 quantum criticalities derivative entanglement entropy dee entanglement entropy derivative entanglement entropy entanglement entropy ee symmetry breaking emergent symmetries quantum physics
原文传递
Impact rock-breaking mechanisms and energy transfer laws of conical tooth bits in hot dry rocks
14
作者 LIU Qingyou HUANG Tao 《Petroleum Exploration and Development》 2025年第4期1053-1063,共11页
Based on the finite-discrete element method,a three-dimensional numerical model for axial impact rock breaking was established and validated.A computational method for energy conversion during impact rock breaking was... Based on the finite-discrete element method,a three-dimensional numerical model for axial impact rock breaking was established and validated.A computational method for energy conversion during impact rock breaking was proposed,and the effects of conical tooth forward rake angle,rock temperature,and impact velocity on rock breaking characteristics and energy transfer laws were analyzed.The results show that during single impact rock breaking with conical tooth bits,merely 7.52%to 12.51%of the energy is utilized for rock breaking,while a significant 57.26%to 78.10%is dissipated as frictional loss.An insufficient forward rake angle increases tooth penetration depth and frictional loss,whereas an excessive forward rake angle reduces penetration capability,causing bit rebound and greater energy absorption by the drill rod.Thus,an optimal forward rake angle exists.Regarding environmental factors,high temperatures significantly enhance impact-induced rock breaking.Thermal damage from high temperatures reduces rock strength and inhibits its energy absorption.Finally,higher impact velocities intensify rock damage,yet excessively high velocities increase frictional loss and reduce the proportion of energy absorbed by the rock,thereby failing to substantially improve rock breaking efficiency.An optimal impact velocity exists. 展开更多
关键词 hot dry rock finite-discrete element method conical tooth bit forward rake angle impact velocity rock temperature energy transfer rock breaking mechanism
在线阅读 下载PDF
Symmetry Breaking Dynamics in Quantum Many-Body Systems
15
作者 Hui Yu Zi-Xiang Li Shi-Xin Zhang 《Chinese Physics Letters》 2025年第11期150-173,共24页
Entanglement asymmetry(EA) has emerged as a powerful tool for characterizing symmetry breaking in quantum many-body systems. In this Letter, we explore how symmetry is dynamically broken through the lens of EA in two ... Entanglement asymmetry(EA) has emerged as a powerful tool for characterizing symmetry breaking in quantum many-body systems. In this Letter, we explore how symmetry is dynamically broken through the lens of EA in two distinct scenarios: a non-symmetric Hamiltonian quench and a non-symmetric random quantum circuit, with a particular focus on U(1) symmetry. In the former case, symmetry remains broken in the subsystem at late times, whereas in the latter case, the symmetry is initially broken and subsequently restored, consistent with the principles of quantum thermalization. Notably, the growth of EA exhibits unexpected overshooting behavior at early times in both contexts, contrasting with the behavior of charge variance. We also consider dynamics of non-symmetric initial states under the symmetry-breaking evolution. Due to the competition of symmetry-breaking in both the initial state and Hamiltonian, the early-time EA can increase and decrease, while quantum Mpemba effects remain evident despite the weak symmetry-breaking in both settings. 展开更多
关键词 entanglement asymmetry quantum circuit symmetry breaking quantum many body systems non symmetric Hamiltonian quench quantum thermalization non symmetric random quantum circuit entanglement asymmetry ea
原文传递
On-Chip Degeneracy Breaking of Wood’s Anomaly for Vibrational Strong Coupling
16
作者 Xing Liu Shu Chen +3 位作者 Hao Wang Chengxiao Song Tinghui Xiao Chongxin Shan 《Chinese Physics Letters》 2025年第9期34-49,共16页
Vibrational strong coupling(VSC)provides a promising way towards not only enhanced control of infrared light but also reshaping of molecular properties,which opens up unprecedented opportunities in ultrasensitive infr... Vibrational strong coupling(VSC)provides a promising way towards not only enhanced control of infrared light but also reshaping of molecular properties,which opens up unprecedented opportunities in ultrasensitive infrared spectroscopy,modification of chemical reactions,and exploration of nonlinear quantum effects.Surface plasmon resonance,excited on simple plasmonic resonators in the infrared,has been demonstrated as a means to realize VSC,but suffers from either limited quality factor for realizing large Rabi splitting or poor reconfigurability for precise detuning control.Here we propose and experimentally demonstrate,for the first time,an on-chip plasmonic resonator based on degeneracy breaking of Wood’s anomaly for VSC.Leveraging the low damping rate of the surface state induced by this degeneracy breaking,we achieve a plasmonic resonance with a high-Q factor exceeding~110,resulting in a Rabi splitting up to~112 cm^(-1) with a subwavelength molecular layer.Additionally,the dispersion of the surface state allows for precise control over VSC detuning by simply adjusting the incident angle of excitation light,even in the absence of photons,enabling a broad detuning range up to 300 cm^(-1).These experimental results align well with our analytical model and numerical simulation.This work provides a promising integrated platform for VSC,with various potential applications in on-chip spectroscopy,polariton chemistry,and polariton devices. 展开更多
关键词 plasmonic resonators exploration nonlinear quantum effectssurface plasmon resonanceexcited vibrational strong coupling vsc provides vibrational strong coupling ultrasensitive infrared spectroscopymodification chemical reactionsand chip degeneracy breaking reshaping molecular propertieswhich enhanced control infrared light
原文传递
Tunneling conductance in ferromagnet/superconductor junctions with time-reversal symmetry breaking
17
作者 Li Hong Xin Jian Yang 《Communications in Theoretical Physics》 2025年第4期151-158,共8页
The tunneling conductance of two kinds of tunnel junctions with time-reversal symmetry breaking,normal metal/insulator/ferromagnetic metal/dx_(2-y2)+is-wave superconductor(NM/I/FM/dx_(2-y2)+is-wave SC)and NM/I/FM/dx_(... The tunneling conductance of two kinds of tunnel junctions with time-reversal symmetry breaking,normal metal/insulator/ferromagnetic metal/dx_(2-y2)+is-wave superconductor(NM/I/FM/dx_(2-y2)+is-wave SC)and NM/I/FM/dx_(2-y2)+idxy-wave SC,is calculated using the extended Blonder-Tinkham-Klapwijk theoretical method.The ratio of the subdominant s-wave and dxy-wave components to the dominant dx_(2-y2)-wave component is expressed byΔ_(s)/Δ_(D)andΔ_(d)/Δ_(D),respectively.Results show that for NM/I/FM/dx_(2-y2)+is-wave SC tunnel junctions,the splitting of the zero-bias conductance peak(ZBCP)is obtained and the splitting peaks appear at eV/Δ_(0)=±Δ_(s)/Δ_(D)with eV the applied bias voltage andΔ_(0)the zero temperature energy gap of SC.For NM/I/FM/dx_(2-y2)+idxy-wave SC tunnel junctions,there are also conductance peaks at eV/Δ_(0)=±Δ_(d)/Δ_(D)but the ZBCP does not split.For the two types of tunnel junctions,the completely reversed tunnel conductance spectrum indicates that when the exchange energy in FM is increased to a certain value,the proximity effect transforms the tunnel junctions from the'0 state'to the'πstate'.The shortening of the transport quasiparticle lifetime can weaken the proximity effect to smooth out the dips and peaks in the tunnel spectrum.This is considered a possible reason that the ZBCP splitting was not observed in some previous experiments.It is expected that these analysis results can serve as a guide for future experiments and the relevant conclusions can be confirmed. 展开更多
关键词 dx^(2)+y^(2)+is-wave dx^(2)+y^(2)+id_(ay)-wave time-reversal symmetry breaking quasiparticle lifetime effect proximity effect
原文传递
Stress environment of entry driven along gob-side through numerical simulation incorporating the angle of break 被引量:10
18
作者 Guorui Feng Pengfei Wang 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2020年第2期189-196,共8页
Angle of break(AOB)is the acute angle created by the coal seam bedding plane and caving line formed by roof strata movement after extraction of a longwall panel.It has a significant influence on stress redistribution ... Angle of break(AOB)is the acute angle created by the coal seam bedding plane and caving line formed by roof strata movement after extraction of a longwall panel.It has a significant influence on stress redistribution both in the gob and abutment.Throughout numerical simulation investigations up to now,little attention has been paid to it or an AOB of 90°was used,which however,is not realistic.This paper presents a detailed numerical modelling incorporating the AOB against Zhenchengdi Coal Mine.The AOB was obtained through cross-measure boreholes.Hoek-Brown constitutive model was used to simulate the rock masses.Double-yield constitutive model,which was best fitted by Salamon's model,was used to simulate the gob.The results show that a‘‘/\shape"shear failure zone develops around the gob.The shear failure in the floor along the panel edge is due to opposite shear of rock mass on two sides of the caving line,and the number of yielded zones within the gob floor close to the gob edge is smaller.According to the research,the entry was determined to be driven under the gob edge employing splitlevel longwall panel layout(SLPL).The other numerical simulation for SLPL shows that stress around the god-side entry is much smaller than pre-mining stress,and the area of intact rock mass at the elevating section is larger than conventional layout.Numerical modelling was then validated by field observation. 展开更多
关键词 STRESS ENVIRONMENT ANGLE of break Gob-side Numerical simulation Double-yield
在线阅读 下载PDF
Energy dissipation through wind-generated breaking waves 被引量:1
19
作者 张书文 曹瑞雪 谢玲玲 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2012年第5期822-825,共4页
Wave breaking is an important process that controls turbulence properties and fluxes of heat and mass in the upper oceanic layer.A model is described for energy dissipation per unit area at the ocean surface attribute... Wave breaking is an important process that controls turbulence properties and fluxes of heat and mass in the upper oceanic layer.A model is described for energy dissipation per unit area at the ocean surface attributed to wind-generated breaking waves,in terms of ratio of energy dissipation to energy input,windgenerated wave spectrum,and wave growth rate.Also advanced is a vertical distribution model of turbulent kinetic energy,based on an exponential distribution method.The result shows that energy dissipation rate depends heavily on wind speed and sea state.Our results agree well with predictions of previous works. 展开更多
关键词 near-surface dynamics energy dissipation wave breaking
原文传递
Numerical Study of the Ice Breaking Resistance of the Icebreaker in the Yellow River Through Smoothed-Particle Hydrodynamics 被引量:1
20
作者 Xing Zheng Zhizong Tian +1 位作者 Zhigang Xie Ningbo Zhang 《Journal of Marine Science and Application》 CSCD 2022年第1期1-14,共14页
A ship-ice-water interaction model is established using smoothed-particle hydrodynamics(SPH)to predict the ice breaking resistance of the icebreaker in the Yellow River effectively.This method includes the numerical p... A ship-ice-water interaction model is established using smoothed-particle hydrodynamics(SPH)to predict the ice breaking resistance of the icebreaker in the Yellow River effectively.This method includes the numerical process of the constitutive equation,yield criterion,and the coupling model in SPH.The ice breaking resistance is determined under different conditions.The numerical results of the ice breaking resistance agree with the empirical formula results.Results show that the prediction accuracy of ice resistance is less than 17.6%compared with the empirical formula in the level ice.The method can also be extended to predict the floe motion and ice breaking resistance in actual river channels.The validation against the empirical formula indicates that the proposed ship-ice-water SPH method can predict the ice breaking resistance of icebreakers in actual rivers effectively.The predicted ice breaking resistance is analyzed under different conditions.The ice breaking resistance increases with increasing bending strength and ice thickness,and the latter is the most important factor influencing ice resistance. 展开更多
关键词 ICEbreakER Smoothed-particle hydrodynamics Ice breaking resistance the Yellow River Ice thickness
在线阅读 下载PDF
上一页 1 2 101 下一页 到第
使用帮助 返回顶部