期刊文献+
共找到2,305篇文章
< 1 2 116 >
每页显示 20 50 100
Crystal engineering regulation achieving inverse temperature symmetry breaking ferroelasticity in a cationic displacement type hybrid perovskite system 被引量:3
1
作者 Na Wang Wang Luo +6 位作者 Huaiyi Shen Huakai Li Zejiang Xu Zhiyuan Yue Chao Shi Hengyun Ye Leping Miao 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第5期477-481,共5页
Ferroelastic hybrid perovskite materials have been revealed the significance in the applications of switches,sensors,actuators,etc.However,it remains a challenge to design high-temperature ferroelastic to meet the req... Ferroelastic hybrid perovskite materials have been revealed the significance in the applications of switches,sensors,actuators,etc.However,it remains a challenge to design high-temperature ferroelastic to meet the requirements for the practical applications.Herein,we reported an one-dimensional organicinorganic hybrid perovskites(OIHP)(3-methylpyrazolium)CdCl_(3)(3-MBCC),which possesses a mmmF2/m ferroelastic phase transition at 263 K.Moreover,utilizing crystal engineering,we replace-CH_(3) with-NH_(2) and-H,which increases the intermolecular force between organic cations and inorganic frameworks.The phase transition temperature of(3-aminopyrazolium)CdCl_(3)(3-ABCC),and(pyrazolium)CdCl_(3)(BCC)increased by 73 K and 10 K,respectively.Particularly,BCC undergoes an unconventional inverse temperature symmetry breaking(ISTB)ferroelastic phase transition around 273 K.Differently,it transforms from a high symmetry low-temperature paraelastic phase(point group 2/m)to a low symmetry high-temperature ferroelastic phase(point group ī)originating from the rare mechanism of displacement of organic cations phase transition.It means that crystal BCC retains in ferroelastic phase above 273 K until melting point(446 K).Furthermore,characteristic ferroelastic domain patterns on crystal BCC are confirmed with polarized optical microscopy.Our study enriches the molecular mechanism of ferroelastics in the family of organic-inorganic hybrids and opens up a new avenue for exploring high-temperature ferroic materials. 展开更多
关键词 Organic-inorganic hybrid perovskite Crystal engineering Inverse temperature symmetry breaking Displacement type phase transition FERROELASTICITY
原文传递
Quasi-visualizable detection of deep sub-wavelength defects in patterned wafers by breaking the optical form birefringence 被引量:1
2
作者 Jiamin Liu Jinlong Zhu +8 位作者 Zhe Yu Xianrui Feng Zedi Li Lei Zhong Jinsong Zhang Honggang Gu Xiuguo Chen Hao Jiang Shiyuan Liu 《International Journal of Extreme Manufacturing》 2025年第1期623-639,共17页
In integrated circuit(IC)manufacturing,fast,nondestructive,and precise detection of defects in patterned wafers,realized by bright-field microscopy,is one of the critical factors for ensuring the final performance and... In integrated circuit(IC)manufacturing,fast,nondestructive,and precise detection of defects in patterned wafers,realized by bright-field microscopy,is one of the critical factors for ensuring the final performance and yields of chips.With the critical dimensions of IC nanostructures continuing to shrink,directly imaging or classifying deep-subwavelength defects by bright-field microscopy is challenging due to the well-known diffraction barrier,the weak scattering effect,and the faint correlation between the scattering cross-section and the defect morphology.Herein,we propose an optical far-field inspection method based on the form-birefringence scattering imaging of the defective nanostructure,which can identify and classify various defects without requiring optical super-resolution.The technique is built upon the principle of breaking the optical form birefringence of the original periodic nanostructures by the defect perturbation under the anisotropic illumination modes,such as the orthogonally polarized plane waves,then combined with the high-order difference of far-field images.We validated the feasibility and effectiveness of the proposed method in detecting deep subwavelength defects through rigid vector imaging modeling and optical detection experiments of various defective nanostructures based on polarization microscopy.On this basis,an intelligent classification algorithm for typical patterned defects based on a dual-channel AlexNet neural network has been proposed,stabilizing the classification accuracy ofλ/16-sized defects with highly similar features at more than 90%.The strong classification capability of the two-channel network on typical patterned defects can be attributed to the high-order difference image and its transverse gradient being used as the network’s input,which highlights the polarization modulation difference between different patterned defects more significantly than conventional bright-field microscopy results.This work will provide a new but easy-to-operate method for detecting and classifying deep-subwavelength defects in patterned wafers or photomasks,which thus endows current online inspection equipment with more missions in advanced IC manufacturing. 展开更多
关键词 defect inspection form birefringence breaking high order difference anisotropic illumination modes deep-subwavelength sensitivity defect classification
在线阅读 下载PDF
Breaking barriers: MS-BDF tools in the quality control of insect-derived traditional Chinese medicine 被引量:1
3
作者 Caixia Yuan Dandan Zhang +2 位作者 Hairong Zhang Jiyang Dong Caisheng Wu 《Journal of Pharmaceutical Analysis》 2025年第6期1403-1405,共3页
Insect-derived traditional Chinese medicine(TCM)constitutes an essential component of TCM,with the earliest records found in“52 Bingfang”(Prescriptions of fifty-two diseases,which is one of the earliest Chinese medi... Insect-derived traditional Chinese medicine(TCM)constitutes an essential component of TCM,with the earliest records found in“52 Bingfang”(Prescriptions of fifty-two diseases,which is one of the earliest Chinese medical prescriptions). 展开更多
关键词 traditional chinese medicine tcm constitutes chinese medical prescriptions prescriptions fifty two diseases ms bdf tools insect derived traditional chinese medicine quality control breaking barriers TCM
暂未订购
Interpretable machine learning for chiral induced symmetry breaking of spin density boosting hydrogen evolution
4
作者 Xin Song Zhonghua Li +1 位作者 Li Sheng Yang Liu 《Journal of Energy Chemistry》 2025年第4期68-78,共11页
The integration of machine learning and electrocatalysis presents nota ble advancements in designing and predicting the performance of chiral materials for hydrogen evolution reactions(HER).This study utilizes theoret... The integration of machine learning and electrocatalysis presents nota ble advancements in designing and predicting the performance of chiral materials for hydrogen evolution reactions(HER).This study utilizes theoretical calculations and machine learning techniques to assess the HER performance of both chiral and achiral M-N-SWCNTs(M=In,Bi,and Sb)single-atom catalysts(SACs).The stability preferences of metal atoms are dependent on chirality when interacting with chiral SWCNTs.The HER activity of the right-handed In-N-SWCNT is 5.71 times greater than its achiral counterpart,whereas the left-handed In-N-SWCNT exhibits a 5.12-fold enhancement.The calculated hydrogen adsorption free energy for the right-handed In-N-SWCNT reaches as low as-0.02 eV.This enhancement is attributed to the symmetry breaking in spin density distribution,transitioning from C_(2V)in achiral SACs to C_(2)in chiral SACs,which facilitates active site transfer and enhances local spin density.Right-handed M-N-SWCNTs exhibit superiorα-electron separation and transport efficiency relative to left-handed variants,owing to the chiral induced spin selectivity(CISS)effect,with spin-upα-electron density reaching 3.43×10^(-3)e/Bohr^(3)at active sites.Machine learning provides deeper insights,revealing that the interplay of weak spatial electronic effects and appropriate curvature-chirality effects significantly enhances HER performance.A weaker spatial electronic effect correlates with higher HER activity,larger exchange current density,and higher turnover frequency.The curvature-chirality effect undersco res the influence of intrinsic structures on HER performance.These findings offer critical insights into the role of chirality in electrocatalysis and propose innovative approaches for optimizing HER through chirality. 展开更多
关键词 Symmetry breaking Machine learning Spin density CISS DFT Hydrogen evolution reaction
在线阅读 下载PDF
Study on the Breaking Force and Efficacy Evaluation of Lipsticks Containing Carnauba Wax and Shea Butter
5
作者 Zi Yusha Liu Jianwei +4 位作者 Jiang Xiuyu Hu Weiren Sheng Wenli Gui Yuhao Peng Xianwu 《China Detergent & Cosmetics》 2025年第2期56-61,共6页
Starting from the perspective of formula and efficacy,orthogonal experiments were first performed to explore the optimal ratio of three raw materials that potentially affect breaking force of lipsticks,verification ex... Starting from the perspective of formula and efficacy,orthogonal experiments were first performed to explore the optimal ratio of three raw materials that potentially affect breaking force of lipsticks,verification experiment on humans was then conducted to test the efficacy of the lipstick formula.Results showed that when the ratio of carnauba wax,shea butter and myristyl isopropyl ester was 3∶7∶3,the breaking force was optimal.After the subjects used the lipstick formula for 14 days,the moisture content of the lip stratum corneum significantly increased by 23.51% (P﹤0.05),the transepidermal water loss (TEWL) rate significantly decreased by 20.61%,the skin glossiness increased significantly by 9.88%,and the skin scale index decreased significantly by 55.76%. 展开更多
关键词 carnauba wax shea butter breaking strength lipsticks
在线阅读 下载PDF
A groundbreaking work bridging theory and practice:A review of Urbanization and Production of Space:A Multi-scalar Empirical Study Based on China's Cases
6
作者 Uchendu Eugene Chigbu 《Journal of Geographical Sciences》 2025年第2期455-456,共2页
At its core,Urbanization and Production of Space provides a comprehensive analysis of the intricate relationship between urbanization and the production of space,particularly within the rapidly evolving context of Chi... At its core,Urbanization and Production of Space provides a comprehensive analysis of the intricate relationship between urbanization and the production of space,particularly within the rapidly evolving context of China's urban transformation.As one of the most populous and dynamically urbanizing nations,China serves as a compelling case for understanding the broader global implications of spatial restructuring. 展开更多
关键词 URBANIZATION transformation breakING
原文传递
Record-breaking bifunctional oxygen electrocatalyst accomplished by a data-driven approach for zinc-air batteries
7
作者 Deviprasath Chinnadurai Zhi Wei Seh 《Journal of Energy Chemistry》 2025年第1期144-145,共2页
Rechargeable zinc-air batteries(ZABs) have recently drawn great attention in energy research due to their high theoretical capacity,low costs, and inherently safe nature [1–3]. However, the sluggish cathode reactions... Rechargeable zinc-air batteries(ZABs) have recently drawn great attention in energy research due to their high theoretical capacity,low costs, and inherently safe nature [1–3]. However, the sluggish cathode reactions necessitate the development of bifunctional oxygen electrocatalysts with lower ΔE indicator values. The ΔE indicator is commonly employed to quantitatively evaluate the electrocatalytic activity of a bifunctional oxygen electrocatalyst,representing the overall overpotential from oxygen reduction reaction(ORR) to oxygen evolution reaction(OER). 展开更多
关键词 breakING representing accomplished
在线阅读 下载PDF
Automatic clustering of single-molecule break junction data through task-oriented representation learning
8
作者 Yi-Heng Zhao Shen-Wen Pang +4 位作者 Heng-Zhi Huang Shao-Wen Wu Shao-Hua Sun Zhen-Bing Liu Zhi-Chao Pan 《Rare Metals》 2025年第5期3244-3257,共14页
Clustering is a pivotal data analysis method for deciphering the charge transport properties of single molecules in break junction experiments.However,given the high dimensionality and variability of the data,feature ... Clustering is a pivotal data analysis method for deciphering the charge transport properties of single molecules in break junction experiments.However,given the high dimensionality and variability of the data,feature extraction remains a bottleneck in the development of efficient clustering methods.In this regard,extensive research over the past two decades has focused on feature engineering and dimensionality reduction in break junction conductance.However,extracting highly relevant features without expert knowledge remains an unresolved challenge.To address this issue,we propose a deep clustering method driven by task-oriented representation learning(CTRL)in which the clustering module serves as a guide for the representation learning(RepL)module.First,we determine an optimal autoencoder(AE)structure through a neural architecture search(NAS)to ensure efficient RepL;second,the RepL process is guided by a joint training strategy that combines AE reconstruction loss with the clustering objective.The results demonstrate that CTRL achieves excellent performance on both the generated and experimental data.Further inspection of the RepL step reveals that joint training robustly learns more compact features than the unconstrained AE or traditional dimensionality reduction methods,significantly reducing misclustering possibilities.Our method provides a general end-to-end automatic clustering solution for analyzing single-molecule break junction data. 展开更多
关键词 Single-molecule conductance break junction Deep clustering Representation learning Neural architecture search
原文传递
Short-and Long-lived Break Events during the South China Sea Summer Monsoon and Their Associations with Intraseasonal Oscillations
9
作者 Minghao BI Ke XU +1 位作者 Xiaoxuan ZHAO Riyu LU 《Advances in Atmospheric Sciences》 2025年第5期855-869,共15页
This study conducts a comparative investigation between short-lived(3-8 days)and long-lived(9-24 days)break events of the South China Sea summer monsoon during 1979-2020,focusing on their statistical characteristics a... This study conducts a comparative investigation between short-lived(3-8 days)and long-lived(9-24 days)break events of the South China Sea summer monsoon during 1979-2020,focusing on their statistical characteristics and potential mechanisms for their different persistence.Results suggest that both types of events are characterized by anomalously suppressed convection accompanied by an anomalous anticyclone during the break period.However,these convection and circulation anomalies exhibit more localized patterns for short-lived events,but possess larger spatial scales and stronger intensities for long-lived events.The influence of tropical intraseasonal oscillations(ISOs)on short-and long-lived events is explored to interpret their different durations.It is found that for short-lived events,the 10-25-day oscillation is dominant in initiating and terminating the break,while the impact of the 30-60-day oscillation is secondary,thus resulting in a brief break period.In contrast,for long-lived events,the 10-25-day oscillation contributes to break development rather than its initiation,and concurrently,the 30-60-day oscillation shows a remarkable enhancement and plays a decisive role in prolonging the break duration.Furthermore,we find that long-lived events are preceded by significant ISO activities approximately two weeks before their occurrence,which can be regarded as efficient predictors.Associated with these precursory ISOs,the occurrence probability of break days for long-lived events can rise up to triple their original probability(35.43%vs.11.21%). 展开更多
关键词 South China Sea summer monsoon monsoon break intraseasonal oscillations atmospheric circulation convection
在线阅读 下载PDF
Scanning tunneling microscopy study on symmetry breaking of charge density wave in FeGe
10
作者 Jiakang Zhang Ziyuan Chen +8 位作者 Xueliang Wu Mingzhe Li Yuanji Li Ruotong Yin Jiashuo Gong Shiyuan Wang Aifeng Wang Dong-Lai Feng Ya-Jun Yan 《Chinese Physics B》 2025年第4期55-61,共7页
The complex symmetry breaking states in AV3Sb5 family have attracted extreme research attention,but controversy still exists,especially in the question of time reversal symmetry breaking of the charge density wave(CDW... The complex symmetry breaking states in AV3Sb5 family have attracted extreme research attention,but controversy still exists,especially in the question of time reversal symmetry breaking of the charge density wave(CDW).Most recently,a chiral CDW has been suggested in kagome magnet FeGe,but the related study is very rare.Here,we use a scanning tunneling microscope to study the symmetry breaking behavior of both the short-and long-range CDWs in FeGe.Different from previous studies,our study reveals an isotropic long-range CDW without obvious symmetry breaking,while local rotational symmetry breaking appears in the short-range CDW,which may be related to the existence of strong structural disorders.Moreover,the charge distribution of the short-range CDW is inert to the applied external magnetic fields and the detailed spin arrangements of FeGe,inconsistent with the expectation of a chiral CDW associated with chiral flux.Our results rule out the existence of spontaneous chiral and rotational symmetry breaking in the CDW state of FeGe,putting strong constraints on the further understanding of CDW mechanism. 展开更多
关键词 symmetry breaking kagome magnet charge density wave
原文传递
The flow field characteristics and rock breaking ability of cone-straight abrasive jet,rotary abrasive jet,and straight-rotating mixed abrasive jet
11
作者 Jing-Bin Li Ergun Kuru +3 位作者 Wen-Bin Li Chen-Rui Guo Gen-Sheng Li Zhong-Wei Huang 《Petroleum Science》 2025年第6期2457-2464,共8页
Radial jet drilling(RJD)technology is expected to be a technology for the efficient exploitation of geothermal resources.However,the low rock-breaking efficiency is the major obstacle hindering the development of RJD ... Radial jet drilling(RJD)technology is expected to be a technology for the efficient exploitation of geothermal resources.However,the low rock-breaking efficiency is the major obstacle hindering the development of RJD technology.The flow field characteristics and rock breaking ability of cone-straight abrasive jet,rotary abrasive jet,and straight-rotating mixed abrasive jet are analyzed by numerical simulations and experiments.Results show that the axial velocity of the cone-straight abrasive jet is high,the tangential velocity is basically zero,the radial velocity is also small,and the jet impact area is concentrated in the center.A deep hole with a diameter of only 25 mm is formed when the cone-straight abrasive jet breaks the granite.Due to the presence of the guiding impeller,the rotary abrasive jet basically has no axial velocity and has the highest tangential and radial velocity,so it can break the granite to form a hole with a diameter of about 55 mm and a central bulge.The straight-rotating mixed abrasive jet has a large axial/tangential/radial velocity at the same time,so it can break the granite to form a hole with a diameter of about 52 mm with a low bulge.The results show that the straight-rotating mixed abrasive jet combines the advantages of the cone-straight jet and the rotary jet,and is more suitable for the RJD technology.The research results can provide reference for the development of efficient rock-breaking and hole-forming technology,and promote the development of RJD technology in the field of geothermal development. 展开更多
关键词 Geothermal resources Radial jet drilling Abrasive water jet Flow field simulation Rock breaking ability
原文传递
Impact rock-breaking mechanisms and energy transfer laws of conical tooth bits in hot dry rocks
12
作者 LIU Qingyou HUANG Tao 《Petroleum Exploration and Development》 2025年第4期1053-1063,共11页
Based on the finite-discrete element method,a three-dimensional numerical model for axial impact rock breaking was established and validated.A computational method for energy conversion during impact rock breaking was... Based on the finite-discrete element method,a three-dimensional numerical model for axial impact rock breaking was established and validated.A computational method for energy conversion during impact rock breaking was proposed,and the effects of conical tooth forward rake angle,rock temperature,and impact velocity on rock breaking characteristics and energy transfer laws were analyzed.The results show that during single impact rock breaking with conical tooth bits,merely 7.52%to 12.51%of the energy is utilized for rock breaking,while a significant 57.26%to 78.10%is dissipated as frictional loss.An insufficient forward rake angle increases tooth penetration depth and frictional loss,whereas an excessive forward rake angle reduces penetration capability,causing bit rebound and greater energy absorption by the drill rod.Thus,an optimal forward rake angle exists.Regarding environmental factors,high temperatures significantly enhance impact-induced rock breaking.Thermal damage from high temperatures reduces rock strength and inhibits its energy absorption.Finally,higher impact velocities intensify rock damage,yet excessively high velocities increase frictional loss and reduce the proportion of energy absorbed by the rock,thereby failing to substantially improve rock breaking efficiency.An optimal impact velocity exists. 展开更多
关键词 hot dry rock finite-discrete element method conical tooth bit forward rake angle impact velocity rock temperature energy transfer rock breaking mechanism
在线阅读 下载PDF
On-Chip Degeneracy Breaking of Wood’s Anomaly for Vibrational Strong Coupling
13
作者 Xing Liu Shu Chen +3 位作者 Hao Wang Chengxiao Song Tinghui Xiao Chongxin Shan 《Chinese Physics Letters》 2025年第9期34-49,共16页
Vibrational strong coupling(VSC)provides a promising way towards not only enhanced control of infrared light but also reshaping of molecular properties,which opens up unprecedented opportunities in ultrasensitive infr... Vibrational strong coupling(VSC)provides a promising way towards not only enhanced control of infrared light but also reshaping of molecular properties,which opens up unprecedented opportunities in ultrasensitive infrared spectroscopy,modification of chemical reactions,and exploration of nonlinear quantum effects.Surface plasmon resonance,excited on simple plasmonic resonators in the infrared,has been demonstrated as a means to realize VSC,but suffers from either limited quality factor for realizing large Rabi splitting or poor reconfigurability for precise detuning control.Here we propose and experimentally demonstrate,for the first time,an on-chip plasmonic resonator based on degeneracy breaking of Wood’s anomaly for VSC.Leveraging the low damping rate of the surface state induced by this degeneracy breaking,we achieve a plasmonic resonance with a high-Q factor exceeding~110,resulting in a Rabi splitting up to~112 cm^(-1) with a subwavelength molecular layer.Additionally,the dispersion of the surface state allows for precise control over VSC detuning by simply adjusting the incident angle of excitation light,even in the absence of photons,enabling a broad detuning range up to 300 cm^(-1).These experimental results align well with our analytical model and numerical simulation.This work provides a promising integrated platform for VSC,with various potential applications in on-chip spectroscopy,polariton chemistry,and polariton devices. 展开更多
关键词 plasmonic resonators exploration nonlinear quantum effectssurface plasmon resonanceexcited vibrational strong coupling vsc provides vibrational strong coupling ultrasensitive infrared spectroscopymodification chemical reactionsand chip degeneracy breaking reshaping molecular propertieswhich enhanced control infrared light
原文传递
Tunneling conductance in ferromagnet/superconductor junctions with time-reversal symmetry breaking
14
作者 Li Hong Xin Jian Yang 《Communications in Theoretical Physics》 2025年第4期151-158,共8页
The tunneling conductance of two kinds of tunnel junctions with time-reversal symmetry breaking,normal metal/insulator/ferromagnetic metal/dx_(2-y2)+is-wave superconductor(NM/I/FM/dx_(2-y2)+is-wave SC)and NM/I/FM/dx_(... The tunneling conductance of two kinds of tunnel junctions with time-reversal symmetry breaking,normal metal/insulator/ferromagnetic metal/dx_(2-y2)+is-wave superconductor(NM/I/FM/dx_(2-y2)+is-wave SC)and NM/I/FM/dx_(2-y2)+idxy-wave SC,is calculated using the extended Blonder-Tinkham-Klapwijk theoretical method.The ratio of the subdominant s-wave and dxy-wave components to the dominant dx_(2-y2)-wave component is expressed byΔ_(s)/Δ_(D)andΔ_(d)/Δ_(D),respectively.Results show that for NM/I/FM/dx_(2-y2)+is-wave SC tunnel junctions,the splitting of the zero-bias conductance peak(ZBCP)is obtained and the splitting peaks appear at eV/Δ_(0)=±Δ_(s)/Δ_(D)with eV the applied bias voltage andΔ_(0)the zero temperature energy gap of SC.For NM/I/FM/dx_(2-y2)+idxy-wave SC tunnel junctions,there are also conductance peaks at eV/Δ_(0)=±Δ_(d)/Δ_(D)but the ZBCP does not split.For the two types of tunnel junctions,the completely reversed tunnel conductance spectrum indicates that when the exchange energy in FM is increased to a certain value,the proximity effect transforms the tunnel junctions from the'0 state'to the'πstate'.The shortening of the transport quasiparticle lifetime can weaken the proximity effect to smooth out the dips and peaks in the tunnel spectrum.This is considered a possible reason that the ZBCP splitting was not observed in some previous experiments.It is expected that these analysis results can serve as a guide for future experiments and the relevant conclusions can be confirmed. 展开更多
关键词 dx^(2)+y^(2)+is-wave dx^(2)+y^(2)+id_(ay)-wave time-reversal symmetry breaking quasiparticle lifetime effect proximity effect
原文传递
Characteristics of the Paleozoic slope break system and its control on stratigraphic-lithologic traps:An example from the Tarim Basin,western China 被引量:4
15
作者 Hao Liu Chang-Song Lin +2 位作者 Rui-Bo Guo Min Zhu Yong-Qian Cui 《Journal of Palaeogeography》 SCIE CSCD 2015年第3期284-304,共21页
Based on comprehensive analyses of seismic and tog data, this study indicates that mainty four widespread angutar to minor angutar unconformities (Tg8, Tg51, Tg5 and Tg3) were formed during the Pateozoic. Through th... Based on comprehensive analyses of seismic and tog data, this study indicates that mainty four widespread angutar to minor angutar unconformities (Tg8, Tg51, Tg5 and Tg3) were formed during the Pateozoic. Through the interpretation of structural unconformities, calcutation of eroded thickness, correction of pataeo-water depth and compaction and compiration of the Earty Paleozoic structural maps, the Earty Paleozoic stope break bert (geomorphologic unit) of the Tarim Basin is subdivided into uptift area, subaqueous uptift area, rift slope break belt, flexure stope break bert (stope bert), depression area and deep basin area. Pataeogeomorphotogy of the Cambrian-Early Ordovician was approximately in EW trend within which three tectonic units inctuding the Tabei Pataeo-uptift, the northern Depressional Belt and the southern Pataeo-uptift developed respectivety and are grouped into two stope break systems namety as the Tabei Pataeo-uptift and the southern Pataeo-uptift. These tectonic units obviousty controt the deposition of isolated platform, open platform, restricted ptatform and deep basin. Influenced by extrusion in the Mid-Late Ordovician, the southern and northern subaqueous uptifts graduat[y etevated and then were eroded. Resuttant[y two slope break systems devetoped, namely as the northern and central Pataeo-uptifts which obviousty controtled the deposition of provenance area, isolated ptatform, mixed continental shelf, slope and basin facies. The intensive extrusion of the Mid-Late Ordovician reads to significant tectonic deformation of the Tarim Basin: large area of uplifting and erosion and development of EW trending anticline and syncline. Deposition of shore, tidal fiat, delta, shallow marine clastics and deep marine facies is obviously controlled by the Tabei, the southern and the Tadong Palaeo-uplifts. Slope break systems control development of stratigraphic unconformity and thus truncation and onlap unconformity zones become favorable areas in a palaeo-uplift and at a palaeo-slope belt for forming important unconformity traps; Whereas slope (slope break) belt along a palaeo-uplift margin is a geomorphologic unit where high-energy sedimentary facies widely develops, such as reef, oolitic sandy clastics or bioclastic limestone beach bar facies, thus litho-structural composite hydrocarbon accumulations usually develop when tectonic condition is suitable. In addition, large-scale palaeo-uplifts are the most favourable areas for hydrocarbon accumulation development. 展开更多
关键词 Earty Pateozoic structural unconform-ity stope break system stratigraphic-lithologictrap Tarim Basin
原文传递
Annihilation Solitons and Chaotic Solitons for the (2+1)-Dimensional Breaking Soliton System 被引量:10
16
作者 MA Song-Hua QIANG Ji-Ye FANG Jian-Ping 《Communications in Theoretical Physics》 SCIE CAS CSCD 2007年第4X期662-666,共5页
By means of an improved mapping method and a variable separation method, a series of variable separation solutions including solitary wave solutions, periodic wave solutions and rational function solutions) to the (... By means of an improved mapping method and a variable separation method, a series of variable separation solutions including solitary wave solutions, periodic wave solutions and rational function solutions) to the (2+1)-dimensional breaking soliton system is derived. Based on the derived solitary wave excitation, we obtain some special annihilation solitons and chaotic solitons in this short note. 展开更多
关键词 improved mapping approach variable separation approach breaking soliton system annihilation solitons chaotic solitons
在线阅读 下载PDF
Investigation of hydroxyl-terminated polybutadiene propellant breaking characteristics and mechanism impacted by submerged cavitation water jet 被引量:4
17
作者 Wenjun Zhou Meng Zhao +3 位作者 Bo Liu Youzhi Ma Youzhi Zhang Xuanjun Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期559-572,共14页
A submerged cavitation water jet(SCWJ)is an effective method to recycle solid propellant from obsolete solid engines by the breaking method.Solid propellant's breaking modes and mechanical process under SCWJ impac... A submerged cavitation water jet(SCWJ)is an effective method to recycle solid propellant from obsolete solid engines by the breaking method.Solid propellant's breaking modes and mechanical process under SCWJ impact are unclear.This study aims to understand those impact breaking mechanisms.The hydroxyl-terminated polybutadiene(HTPB)propellant was chosen as the research material,and a self-designed test system was used to conduct impact tests at four different working pressures.The high-speed camera characterized crack propagation,and the DIC method calculated strain change during the impact process.Besides,micro and macro fracture morphologies were characterized by scanning electron microscope(SEM)and computed tomography(CT)scanning.The results reveal that the compressive strain concentration region locates right below the nozzle,and the shear strain region distributes symmetrically with the jet axis,which increases to 4% at first 16th ms,the compressive strain rises to 2% and 6% in the axial and transverse direction,respectively.The two tensile cracks formed first at the compression strain concentrate region,and there generate many shear cracks around the tensile cracks,and those shear cracks that develop and aggregate cause the cracks to become wider and cut through the tensile cracks,forming the tensile-shear cracks and the impact parts eventually fail.The HTPB propellant forms a breaking hole shaped conical after impact 10 s.The mass loss increases by 17 times at maximum,with the working pressure increasing by three times.Meanwhile,the damage value of the breaking hole remaining on the surface increases by 7.8 times while 2.9 times in the depth of the breaking hole.The breaking efficiency is closely affected by working pressures.The failure modes of HTPB impacted by SCWJ are classified as tensile crack-dominated and tensile-shear crack-dominated damage mechanisms. 展开更多
关键词 Submerged cavitation water jet Hydroxyl-terminated polybutadiene propellant breaking characteristics Failure modes
在线阅读 下载PDF
Determination of the flooding zone during a dam break in a channel with a bend in the presence of several obstacles by the VOF method 被引量:1
18
作者 Alibek ISSAKHOV Zhansaya RAKHYMZHANOVA Aizhan ABYLKASSYMOVA 《Journal of Mountain Science》 SCIE CSCD 2024年第11期3754-3766,共13页
This paper aims to investigate a dam break in a channel with a bend in the presence of several obstacles.To accurately determine the flood zones,it is necessary to take into account many factors such as terrain,reserv... This paper aims to investigate a dam break in a channel with a bend in the presence of several obstacles.To accurately determine the flood zones,it is necessary to take into account many factors such as terrain,reservoir volume.Numerical modeling was used to determine the flood zone.Numerical modeling based on the Navier-Stokes equations with a turbulent k-epsilon RNG model,the Volume of Fluid(VOF)method and the PISO algorithm were used to analyze the flow in a bend channel at an angle of 10 with the obstacles.To verify the numerical model,a test on dam break in the 450 channel was conducted.The simulation results were compared with experimental data and with the numerical data of existing data.Having been convinced of the correctness of the mathematical model,the authors carried out a numerical simulation of the main problem in three versions:without barriers,with one obstacle,with two obstacles.According to the obtained numerical results,it can be noted that irregular landforms held the flow,a decrease in water level and a slower time for water emergence could be seen.Thus,the water flow without an obstacle,with one obstacle and with two obstacles showed 4.2 s,4.4 s and 4.6 s of the time of water appearance,respectively.This time shift can give a certain advantage when conducting various events to evacuate people. 展开更多
关键词 VOF method PISO algorithm Dam break Navier-Stokes equation
原文传递
The breaking point between fast-and slow-light in a degenerate two-level atomic system
19
作者 李路明 胡振燕 +1 位作者 罗斌 郭弘 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第6期325-329,共5页
This paper investigates the breaking point between fast- and slow-light in a degenerate two-level atomic system, where fast-light can be converted to slow-light arbitrarily on a single transition line by adjusting the... This paper investigates the breaking point between fast- and slow-light in a degenerate two-level atomic system, where fast-light can be converted to slow-light arbitrarily on a single transition line by adjusting the strength of the pumping field. An equivalent incoherent pumping rate is introduced in this simplified theoretical model which exploits the dependence of this feature. The experimental observation is presented as evidence of the breaking point where the injected power is about 0.08 mW. 展开更多
关键词 degenerate two-level atomic system breaking point group velocity
原文传递
Effects of Break-through State and System Rigidity on Vibration and Noise in Blanking
20
作者 郭斌 李春锋 +1 位作者 刘钢 郭涛 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 1997年第2期112-117,共6页
This paper studies the effects of break through state and system rigidity on vibration and noise in blanking, suggests the describtion of the generation state of breakthrough by the unloading gradient obtained from t... This paper studies the effects of break through state and system rigidity on vibration and noise in blanking, suggests the describtion of the generation state of breakthrough by the unloading gradient obtained from the force stroke curve, discusses the effect of the relation between the unloading gradient and the vibration system rigidity on vibration, and gives the optimal relationship between these two factors to efficiently reduce the vibration, and this conclusion is verified by noise experiments done by using two presses of unequal rigidity to carry out the same blanking. 展开更多
关键词 BLANKING VIBRATION noise break THROUGH RIGIDITY
在线阅读 下载PDF
上一页 1 2 116 下一页 到第
使用帮助 返回顶部