期刊文献+
共找到267篇文章
< 1 2 14 >
每页显示 20 50 100
Design Guidelines for Composition of Brazing Filler Metals and Evolution Mechanisms of Typical Microstructures 被引量:4
1
作者 Long Weimin 《稀有金属材料与工程》 北大核心 2025年第4期837-853,共17页
Brazing filler metals are widely applied,which serve as an industrial adhesive in the joining of dissimilar structures.With the continuous emergence of new structures and materials,the demand for novel brazing filler ... Brazing filler metals are widely applied,which serve as an industrial adhesive in the joining of dissimilar structures.With the continuous emergence of new structures and materials,the demand for novel brazing filler metals is ever-increasing.It is of great significance to investigate the optimized composition design methods and to establish systematic design guidelines for brazing filler metals.This study elucidated the fundamental rules for the composition design of brazing filler metals from a three-dimensional perspective encompassing the basic properties of applied brazing filler metals,formability and processability,and overall cost.The basic properties of brazing filler metals refer to their mechanical properties,physicochemical properties,electromagnetic properties,corrosion resistance,and the wettability and fluidity during brazing.The formability and processability of brazing filler metals include the processes of smelting and casting,extrusion,rolling,drawing and ring-making,as well as the processes of granulation,powder production,and the molding of amorphous and microcrystalline structures.The cost of brazing filler metals corresponds to the sum of materials value and manufacturing cost.Improving the comprehensive properties of brazing filler metals requires a comprehensive and systematic consideration of design indicators.Highlighting the unique characteristics of brazing filler metals should focus on relevant technical indicators.Binary or ternary eutectic structures can effectively enhance the flow spreading ability of brazing filler metals,and solid solution structures contribute to the formability.By employing the proposed design guidelines,typical Ag based,Cu based,Zn based brazing filler metals,and Sn based solders were designed and successfully applied in major scientific and engineering projects. 展开更多
关键词 design of brazing filler metals design guidelines for composition Ag based brazing filler metals eutectic structures evolution
原文传递
Interfacial Structure and Mechanical Properties of Diamond/Copper Joint Brazed by Ag-Cu-In-Ti Low-Temperature Brazing Filler 被引量:2
2
作者 Pan Yufan Liang Jiabin +10 位作者 Nie Jialong Liu Xin Sun Huawei Chang Yunfeng Li Huaxin Lu Chuanyang Xu Dong Wang Xingxing Yang Yang Yang Jianguo He Yanming 《稀有金属材料与工程》 北大核心 2025年第2期301-310,共10页
Ag-Cu-In-Ti low-temperature filler was used to braze the diamond and copper,and the effects of brazing temperature and soaking time on the microstructure and mechanical properties of the joints were investigated.In ad... Ag-Cu-In-Ti low-temperature filler was used to braze the diamond and copper,and the effects of brazing temperature and soaking time on the microstructure and mechanical properties of the joints were investigated.In addition,the joint formation mechanism was discussed,and the correlation between joint microstructure and mechanical performance was established.Results show that adding appropriate amount of In into the filler can significantly reduce the filler melting point and enhance the wettability of filler on diamond.When the brazing temperature is 750°C and the soaking time is 10 min,a uniformly dense braze seam with excellent metallurgical bonding can be obtained,and its average joint shear strength reaches 322 MPa.The lower brazing temperature can mitigate the risk of diamond graphitization and also reduce the residual stresses during joining. 展开更多
关键词 diamond microwave window vacuum brazing Ag-Cu-In-Ti microstructure mechanical properties
原文传递
Effect of Sn content on microstructure and mechanical properties of BAg5CuZn-0.3 wt.%La brazing material 被引量:1
3
作者 Chenyu Shao Dan Shao +5 位作者 Cheng Xiong Junxian Xu Yuhai Zhang Shun Guo Jie Zhou Yinan Li 《China Welding》 2025年第2期149-158,共10页
This article studies the effects of different Sn contents on the melting characteristics,microstructure,and mechanical properties of brazed joints of low-silver BAg5CuZn-0.3 wt.%La brazing material.A differential ther... This article studies the effects of different Sn contents on the melting characteristics,microstructure,and mechanical properties of brazed joints of low-silver BAg5CuZn-0.3 wt.%La brazing material.A differential thermal analyzer(HCR-1)was used to measure the solid-liquidus temperature of BAg5CuZn-0.3 wt.%La-xSn brazing material.The results show that the addition of Sn element effect-ively reduces the solid-liquidus temperature of BAg5CuZn-0.3 wt.%La brazing material.Microstructural characterization was con-ducted using scanning electron microscopy(SEM),energy dispersive spectroscopy(EDS),X-ray diffraction(XRD),etc.Analysis re-veals that progressive aggregation and precipitation of Cu-Sn intermetallic compounds occur with increasing Sn content,leading to microstructural coarsening.Notably,severe grain coarsening is observed when the Sn content reaches 4 wt.%.Shear testing of the BAg5CuZn-0.3 wt.%La-xSn brazing joints reveals a non-monotonic trend in joint strength:as Sn content increases,the shear strength initially improves but subsequently deteriorates after reaching an optimal value. 展开更多
关键词 Ag-based brazing material MICROSTRUCTURE Shear strength Melting characteristics Mechanical properties
在线阅读 下载PDF
Effect of brazing temperature on microstructure and tensile strength ofγ-TiAl joint vacuum brazed with micro-nano Ti−Cu−Ni−Nb−Al−Hf filler 被引量:2
4
作者 Li LI Yu-tong CHEN +3 位作者 Lei-xin YUAN Fen LUO Zhi-xue FENG Xiao-qiang LI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第8期2563-2574,共12页
A novel micro-nano Ti−10Cu−10Ni−8Al−8Nb−4Zr−1.5Hf filler was used to vacuum braze Ti−47Al−2Nb−2Cr−0.15B alloy at 1160−1220℃ for 30 min.The interfacial microstructure and formation mechanism of TiAl joints and the rel... A novel micro-nano Ti−10Cu−10Ni−8Al−8Nb−4Zr−1.5Hf filler was used to vacuum braze Ti−47Al−2Nb−2Cr−0.15B alloy at 1160−1220℃ for 30 min.The interfacial microstructure and formation mechanism of TiAl joints and the relationships among brazing temperature,interfacial microstructure and joint strength were emphatically investigated.Results show that the TiAl joints brazed at 1160 and 1180℃ possess three interfacial layers and mainly consist of α_(2)-Ti_(3)Al,τ_(3)-Al_(3)NiTi_(2) and Ti_(2)Ni,but the brazing seams are no longer layered and Ti_(2)Ni is completely replaced by the uniformly distributed τ_(3)-Al_(3)NiTi_(2) at 1200 and 1220℃ due to the destruction of α_(2)-Ti_(3)Al barrier layer.This transformation at 1200℃ obviously improves the tensile strength of the joint and obtains a maximum of 343 MPa.Notably,the outward diffusion of Al atoms from the dissolution of TiAl substrate dominates the microstructure evolution and tensile strength of the TiAl joint at different brazing temperatures. 展开更多
关键词 γ-TiAl alloy micro-nano filler vacuum brazing interfacial microstructure tensile strength
在线阅读 下载PDF
Microstructure evolution and mechanical properties of brazing joint for ultra-thin-walled Inconel 718 considering grain size effect and brazing temperature 被引量:1
5
作者 Rui ZHAO Yueshuai SONG +1 位作者 Hui KANG Min WAN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第2期541-556,共16页
The systematic investigation of the mechanical properties and microstructure evolution process of ultra-thin-walled Inconel 718 capillary brazing joints is of great significance because of the exceptionally high deman... The systematic investigation of the mechanical properties and microstructure evolution process of ultra-thin-walled Inconel 718 capillary brazing joints is of great significance because of the exceptionally high demands on its application.To achieve this objective,this study investigates the impact of three distinct brazing temperatures and five typical grain sizes on the brazed joints’mechanical properties and microstructure evolution process.Microstructural evolution analysis was conducted based on Electron Back Scatter Diffraction(EBSD),Scanning Electron Microscopy(SEM),X-Ray Diffraction(XRD),High-Resolution Transmission Electron Microscopy(HRTEM),and Focused Ion Beam(FIB).Besides,the mechanical properties and fracture behavior were studied based on the uniaxial tension tests and in-situ tension tests.The findings reveal that the brazing joint’s strength is higher for the fine-grain capillary than the coarse-grain one,primarily due to the formation of a dense branch structure composed of G-phase in the brazing seam.The effects of grain size,such as pinning and splitting,are amplified at higher brazing temperatures.Additionally,micro-cracks initiate around brittle intermetallic compounds and propagate through the eutectic zone,leading to a cleavage fracture mode.The fracture stress of fine-grain specimens is higher than that of coarse-grain due to the complex micro-crack path.Therefore,this study contributes significantly to the literature by highlighting the crucial impact of grain size on the brazing properties of ultra-thin-walled Inconel 718 structures. 展开更多
关键词 EYWORDS Ultra-thin-walled structure brazing Inconel 718 Grain size effect brazing temperature
原文传递
Research status of crack problem in laser brazing diamond
6
作者 Hong-tao Zhu Jian Qin +2 位作者 Wei-min Long Xin-yi Song Pei-yao Jing 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2024年第10期2329-2343,共15页
Diamond tools have been widely used in national defense military,automobile manufacturing,resource exploitation and other fields.Laser brazing diamond technology is often applied to the preparation of diamond tools.Ho... Diamond tools have been widely used in national defense military,automobile manufacturing,resource exploitation and other fields.Laser brazing diamond technology is often applied to the preparation of diamond tools.However,the formation and expansion of cracks in the process of laser brazing diamond seriously affect the mechanical properties of diamond tools.In order to solve the crack problem of laser brazing diamond,many scholars are committed to the research on improving the solder,optimizing the laser process parameters,improving the laser brazing equipment,optimizing the design of joint form,and developing ultrasonic-assisted laser brazing technology,etc.These studies have achieved certain results.Aiming at the research status of laser brazing diamond crack problem,the crack characteristics of brazing diamond are firstly introduced,and the formation reasons of laser brazing diamond crack are elaborated.Then,the elemental characteristics of brazing filler metals used in brazing diamond are introduced.The influences of Ni-Cr and Ag-Cu-Ti alloy solder and laser process parameters on the crack problem are viewed.Finally,the solutions to the crack problem by scholars at home and abroad in recent years are summarized,and the future research directions to solve crack problem are prospected. 展开更多
关键词 Diamond tool Laser brazing Crack problem Process parameter Solder alloy Crack characteristics
原文传递
Application of energy,electronic and interface bonding properties in highly reliable brazing joints between dissimilar materials
7
作者 Xing-xing Wang Yuan-long Jiang +6 位作者 Jia-shuo Chang Zhi-peng Yuan Jian-jun Shi Zi-cheng Ling Jun-yi Jiang Hong-gang Dong Fei Gao 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2024年第10期2344-2364,共21页
Brazing,an important welding and joining technology,can achieve precision joining of materials in advanced manufacturing.And the first principle calculation is a new material simulation method in high-throughput compu... Brazing,an important welding and joining technology,can achieve precision joining of materials in advanced manufacturing.And the first principle calculation is a new material simulation method in high-throughput computing.It can calculate the interfacial structure,band structure,electronic structure,and other properties between dissimilar materials,predicting various properties.It plays an important role in assisting practical research and guiding experimental designs by predicting material properties.It can largely improve the quality of welded components and joining efficiency.The relevant theoretical foundation is reviewed,including the first principle and density functional theory.Exchange-correlation functional and pseudopotential plane wave approach was also introduced.Then,the latest research progress of the first principle in brazing was also summarized.The application of first principle calculation mainly includes formation energy,adsorption energy,surface energy,adhesion work,interfacial energy,interfacial contact angle,charge density differences,density of states,and mulliken population.The energy,mechanical,and electronic properties were discussed.Finally,the limitations and shortcomings of the research in the first principle calculation of brazed interface were pointed out.Future developmental directions were presented to provide reference and theoretical basis for realizing high-throughput calculations of brazed joint interfaces. 展开更多
关键词 brazing First principle Joining interface Density functional theory Bonding property Dissimilar material
原文传递
Contact-reactive brazing mechanism of Al_(0.3)CoCrFeNi high-entropy alloys using a niobium interlayer
8
作者 Yu Lei Yi-nan Li +4 位作者 Xiao-guo Song Sheng-peng Hu Wei-min Long Hai-chuan Shi Zu-bin Chen 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2024年第10期2546-2554,共9页
The contact-reactive brazing of Al_(0.3)CoCrFeNi high-entropy alloys with a Nb interlayer was researched.The effects of Nb thickness and brazing temperature on the interfacial microstructure and mechanical properties ... The contact-reactive brazing of Al_(0.3)CoCrFeNi high-entropy alloys with a Nb interlayer was researched.The effects of Nb thickness and brazing temperature on the interfacial microstructure and mechanical properties of Al_(0.3)CoCrFeNi joints were investigated.The results show that with Nb thickness increasing from 10 to 100μm,the average width of Al_(0.3)CoCrFeNi joints is increased from 127 to 492μm and the erosion volume of Al_(0.3)CoCrFeNi base metals(BMs)by face-centered cubic-Nb eutectic liquid is enlarged accordingly.With increasing brazing temperature from 1280 to 1360℃,the intergranular penetration of eutectic liquid into Al_(0.3)CoCrFeNi BMs becomes more severe and lamellar Laves phase is broken-up and spherized.The shear strength of joint is increased gradually from 374 to 486 MPa and then decreased to 475 MPa.The maximum shear strength value of 486 MPa is obtained when brazing at 1340℃ for 10 min,reaching about 78% of the shear strength of Al_(0.3)CoCrFeNi BMs.Besides,the brazing mechanism was analyzed in details. 展开更多
关键词 Contact-reactive brazing High-entropy alloy Intergranular penetration Shear strength MECHANISM
原文传递
Microstructure and shear strength of reactive brazing joints of TiAl/Ni-based alloy 被引量:10
9
作者 李海新 何鹏 +3 位作者 林铁松 潘峰 冯吉才 黄玉东 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第2期324-329,共6页
Reactive brazing of TiAl-based intermetallics and Ni-based alloy with Ti foil as interlayer was investigated. The interfacial microstructure and shear strength of the joints were studied. According to the experimental... Reactive brazing of TiAl-based intermetallics and Ni-based alloy with Ti foil as interlayer was investigated. The interfacial microstructure and shear strength of the joints were studied. According to the experimental observations, the molten interlayer reacts vigorously with base metals, forming several continuous reaction layers. The typical interfacial microstructure of the joint can be expressed as GH99/(Ni,Cr)ss(γ)/TiNi(β2)+TiNi2Al(τ4)+Ti2Ni(δ)/δ+Ti3Al(α2)+Al3NiTi2(τ3)/α2+τ3/TiAl. The maximum shear strength is 258 MPa for the specimen brazed at 1000°C for 10 min. Higher brazing temperature or longer brazing time causes coarsening of the phases in the brazing seam and formation of brittle intermetallic layer, which greatly depresses the shear strength of the joints. 展开更多
关键词 TiA1 Ni-based alloy reactive brazing interfacial microstructure shear strength
在线阅读 下载PDF
Microstructural characteristics of joint region during diffusion-brazing of magnesium alloy and stainless steel using pure copper interlayer 被引量:8
10
作者 袁新建 盛光敏 +1 位作者 罗军 李佳 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第3期599-604,共6页
A novel joining method,double-stage diffusion-brazing of an AZ31 magnesium alloy and a 304L austenitic stainless steel,was carried out using a pure copper interlayer.The solid-state diffusion bonding of 304L to copper... A novel joining method,double-stage diffusion-brazing of an AZ31 magnesium alloy and a 304L austenitic stainless steel,was carried out using a pure copper interlayer.The solid-state diffusion bonding of 304L to copper was conducted at 850 ℃ for 20 min followed by brazing to AZ31 at 520 ℃ and 495 ℃ for various time.Microstructural characteristics of the diffusion-brazed joints were investigated in detail.A defect free interface of Fe-Cu diffusion area appeared between the Cu alloy and the 304L steel.Cu-Mg reaction products were formed between AZ31 and Cu alloys.A layered structure including AZ31/Cu-Mg compounds/Cu/Fe-Cu diffusion layer/304L was present in the joint.With time prolonging,the reduction in the width of Cu layer was balanced by the increase in the width of Cu-Mg compounds zone.Microhardness peaks in the zone between AZ31 and Cu layer were attributed to the formation of Mg-Cu compounds in this zone. 展开更多
关键词 magnesium alloy stainless steel diffusion bonding brazing microstructural characteristics dissimilar metals welding
在线阅读 下载PDF
Contact reactive brazing of Al alloy/Cu/stainless steel joints and dissolution behaviors of interlayer 被引量:10
11
作者 吴铭方 司乃潮 陈健 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第5期1035-1039,共5页
Contact reactive brazing of 6063 Al alloy and 1Cr18Ni9Ti stainless steel was researched by using Cu as interlayer. Effect of brazing time on microstructure of the joints, as well as the dissolution behaviors of Cu int... Contact reactive brazing of 6063 Al alloy and 1Cr18Ni9Ti stainless steel was researched by using Cu as interlayer. Effect of brazing time on microstructure of the joints, as well as the dissolution behaviors of Cu interlayer was analyzed. The results show that the product of reaction zone near 1Cr18Ni9Ti is composed of Fe2Al5, FeAl3 intermetallic compound (IMC), and Cu-Al IMC; the near by area is composed of Al-Cu eutectic structure with Al (Cu) solid solution. With increasing the brazing time, the thickness of IMC layer at the interface increases, while the width of Al-Cu eutectic structure with Al(Cu) solution decreases. Calculation shows the dissolution rate of Cu interlayer is very fast. The complete dissolution time is about 0.47 s for Cu interlayer with 10 μm in thickness used in this study. 展开更多
关键词 Al alloy stainless steel contact reactive brazing MICROSTRUCTURE dissolution of interlayer
在线阅读 下载PDF
EFFECTS OF BRAZING ATMOSPHERES ON INTERFACIAL MICROSTRUCTURE BETWEEN DIAMOND GRITS AND BRAZING ALLOY 被引量:3
12
作者 陈燕 徐鸿钧 +1 位作者 傅玉灿 苏宏华 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2008年第4期248-253,共6页
The samples of brazed diamond grits with NiCr brazing alloy are prepared in vacuum and argon gas. The microstructures are analyzed with scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDS... The samples of brazed diamond grits with NiCr brazing alloy are prepared in vacuum and argon gas. The microstructures are analyzed with scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction(XRD). The effects of brazing atmospheres on the as-brazed NiCr brazing alloy composite structures and interracial microstructure are studied between diamond grits and brazing alloy. Results show that: (1) There are different composite structures of as-brazed NiCr brazing alloy under different oxygen partial pressures in vacuum and argon gas. B203 exists on the surface of the brazed samples under argon gas furnace brazing. It indicates that oxygen plays an important role in the resultants of as-brazed NiCr brazing alloy during the brazing process. (2) There are different interfacial microstructures in different brazing atmospheres, but the main reaction product is chromium carbides. The chromium carbides in argon gas furnace brazing grow in a disordered form, but those in vacuum furnace brazing grow radiated. And the scale of grains in argon gas is smaller than those in vacuum. 展开更多
关键词 DIAMOND composite structures INTERFACES MICROSTRUCTURE brazing atmospheres
在线阅读 下载PDF
Effects of germanium additions on microstructures and properties of Al-Si filler metals for brazing aluminum 被引量:2
13
作者 牛志伟 黄继华 +1 位作者 陈树海 赵兴科 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第3期775-782,共8页
A series of Al?Si?Ge filler metals were studied for brazing aluminum. The microstructures and properties of the filler metals were investigated systematically. The results show that the liquidus temperature of Al?Si?G... A series of Al?Si?Ge filler metals were studied for brazing aluminum. The microstructures and properties of the filler metals were investigated systematically. The results show that the liquidus temperature of Al?Si?Ge filler metals drops from 592 to 519 °C as the content of Ge increases from 0 to 30% (mass fraction). As the content of Ge increases, bright eutectic Ge forms. However, as the Ge content exceeds 20%, the aggregation growth of the eutectic structure tends to happen and coarsened primary Si?Ge particle forms, which is detrimental to the properties of alloys. The Al?10.8Si?10Ge filler metal has good processability and wettability with the base metal Al. When this filler metal is used to braze 1060 aluminum, the complete joint can be achieved. Furthermore, the shear strength test results show that the fracture of brazed joint with Al?10.8Si?10Ge filler metal occurs in the base metal. 展开更多
关键词 Al-Si-Ge filler microstructure brazed joint shear strength 1060 aluminum
在线阅读 下载PDF
Higher entropy-induced strengthening in mechanical property of Cantor alloys/Zr-3 joints by laser in-situ eutectic high-entropy transformation 被引量:1
14
作者 Nan Jiang Hong Bian +7 位作者 Xiaoguo Song Hyeonseok Kwon Xin Xi Danyang Lin Bo Chen Weimin Long Hyoung Seop Kim Lianhui Jia 《Journal of Materials Science & Technology》 2025年第8期110-122,共13页
To effectively regulate the grain boundary infiltration in CoCrFeMnNi high-entropy alloy(Cantor alloys,HEA)caused by the violent atomic interdiffusion,the higher configuration entropy on Cantor alloys surface was desi... To effectively regulate the grain boundary infiltration in CoCrFeMnNi high-entropy alloy(Cantor alloys,HEA)caused by the violent atomic interdiffusion,the higher configuration entropy on Cantor alloys surface was designed and realized via eutectic high-entropy(EHEA)transformation.Meanwhile,to effectively alleviate the residual stress caused by the notable difference in the thermal expansion coefficient(CTE)between Cantor alloys and Zr-3 alloys,a cladding layer was applied to the HEA surface using laser cladding technology of Nb,followed by brazing to Zr-3 alloys with Zr63.2Cu filler.The cladding layer’s microstructure comprised Nbss and FCC+(Co,Ni)_(2) Nb eutectic structure,resulting from an in-situ reaction between Cantor alloys and Nb.The Nbss and FCC demonstrated good plasticity,and the(Co,Ni)_(2) Nb Laves phase provided increased strength,endowing both good plastic deformation ability and strength of the cladding layer.Notably,the existence of EHEA in the laser cladding layer made the Cantor alloy entropy from 1.61 R to 1.77 R,greatly enhancing its thermal stability and suppressing the grave grain boundary infiltration.Joints produced via laser cladding with Nb-assisted brazing exhibited a complex microstructure(HEA/Nbss+FCC+(Co,Ni)_(2)Nb/(Zr,Nb)(Cr,Mn)_(2)+(Zr,Nb)ss/(Zr,Nb)_(2)(Cu,Ni,Co,Fe)+(Zr,Nb)(Cr,Mn)_(2)+(Zr,Nb)ss/Zr-3) and a significantly improved shear strength of 242.8 MPa at 1010℃ for 10 min,42.4%higher than that of directly brazed joints.This improvement was attributed to reduced grain boundary infiltration,alleviated residual stress due to CTE disparity,and eliminated micro-cracks in the brazing seam.This study presents an effective solution for reducing residual stresses and achieving reliable bonding between Cantor alloys and Zr-3 alloys,with potential applications in brazing CoCrFeNi-based HEA and Zr-3 due to the beneficial eutectic reaction between CoCrFeNi and Nb. 展开更多
关键词 Laser in-situ preparation High-Entropy Grain boundary infiltration brazing Residual stress Strengthening mechanism
原文传递
Microstructure and Mechanical Properties of PDC Cutters Vacuum Brazed by AgCuInTi Filler Metal
15
作者 Wen Guodong Wang Shiqing +4 位作者 Zhang Suhui Qi Junlei Chen Haiyan Wang Xingxing Xu Dong 《稀有金属材料与工程》 北大核心 2025年第5期1177-1184,共8页
Polycrystalline diamond compact(PDC)cutters and carbon steel were brazed by AgCuInTi filler metal under vacuum condition.The effects of brazing temperature on the wettability of base metal and shear strength of joints... Polycrystalline diamond compact(PDC)cutters and carbon steel were brazed by AgCuInTi filler metal under vacuum condition.The effects of brazing temperature on the wettability of base metal and shear strength of joints were investigated.Besides,the joint's interface microstructure,composition,and phases were analyzed.Results show that the AgCuInTi filler metal exerts a good wetting effect to the surface of cemented carbide and steel.With the increase in brazing temperature,the wetting angle decreases and the spreading area increases.The suitable temperature for vacuum brazing of PDC cutters is 770℃,and the maximum shear strength is 228 MPa at this temperature. 展开更多
关键词 PDC cutter vacuum brazing brazing temperature shear strength MICROSTRUCTURE
原文传递
Advances in Residual Stress Relief Strategies at Ceramic/Metal Joint Interfaces
16
作者 Wang Xingxing Chen Benle +4 位作者 Jiang Yuanlong Pan Kunming Ren Xuanru Yuan Zhipeng Zhang Yulei 《稀有金属材料与工程》 北大核心 2025年第3期618-627,共10页
As service conditions become more challenging and production complexity increases,there is an increasing demand for enhanced comprehensive performance of ceramic/metal heterostructures.At present,brazing technique has... As service conditions become more challenging and production complexity increases,there is an increasing demand for enhanced comprehensive performance of ceramic/metal heterostructures.At present,brazing technique has been widely utilized for ceramic-metal heterogeneous joints.However,the residual stress relief in these welding joints is complicated and necessary.Because metals and ceramics have different properties,especially their coefficients of thermal expansion.Welding joints exhibit large residual stresses during the cooling process.The relatively high residual stresses may significantly degrade the joint properties.For this issue,four alleviation routes were reviewed:optimization of process parameters,setting an intermediate layer,surface structure modulation and particle-reinforced composite solder.The states and distribution patterns of residual stress in ceramic-metal brazed joints were summarized,and the generation and detection of residual stress were introduced.Eventually,upcoming prospects and challenges of residual stress research on ceramic/metal heterostructures were pointed out. 展开更多
关键词 ceramics METALS brazing interfacial residual stress stress relief
原文传递
2D Finite Element Computer Analysis of Strength for Brazed Joint of Cemented Carbide and Silver Brazing Filler Metal 被引量:1
17
作者 Meribe Richard Chukwuma Kazuya MORI +3 位作者 Kento Takenouchi Yuki Fijishita Takeshi Eguchi Kazufumi Sakata 《Journal of Mechanics Engineering and Automation》 2016年第4期186-189,共4页
Brazing has a wide acceptance in industries and its simplicity in variety of application attracts more and more patronage. The strength of brazing joint determines the reliability of brazed engineering components. So ... Brazing has a wide acceptance in industries and its simplicity in variety of application attracts more and more patronage. The strength of brazing joint determines the reliability of brazed engineering components. So the need to ascertain the reliability or to predict its failure (without some destructive testing) becomes high even with a computer aided analysis using the Finite Element Analysis. Here, we have employed the services of FEA software, Abaqus CAE, as a tool for the computer calculation to investigate a joint case of cemented carbide brazed with silver-based filler metal. In this paper, 2D analysis has been adopted because the thickness of the material (in 2D) does not influence the final calculation results. We have applied constant loading and constant boundary condition to explore data from the elastic and plastic strain analysis through which we were able to predict the maximum joint strength with respect to the joint thickness. The pattern of the meshing was also significant. And the result could be transferable to a real-life field situation. The final results showed that there is an optimum thickness of the filler metal with the maximum strength which matches that obtained from experiment. 展开更多
关键词 Finite element analysis brazing cemented carbide alloy silver brazing.
在线阅读 下载PDF
Thermal-shock-induced failure in brazed joints between SiC_(f)/SiC composites and GH536 superalloy:Phase transition and oxygen intrusion
18
作者 Shuai ZHAO Peng WANG +5 位作者 Xin NAI Haiyan CHEN Yongsheng LIU Pengcheng WANG Xiaoguo SONG Wenya LI 《Chinese Journal of Aeronautics》 2025年第7期636-650,共15页
The investigation evaluated the thermal shock resistance and failure mechanisms of three brazed joints when exposed to 780°C.During exposure,oxidation of the SiC_(f)/SiC composite leads to the formation of SiO_(2... The investigation evaluated the thermal shock resistance and failure mechanisms of three brazed joints when exposed to 780°C.During exposure,oxidation of the SiC_(f)/SiC composite leads to the formation of SiO_(2).Residual oxygen will penetrate the high-entropy alloy while retaining its Face-Centered Cubic(FCC)structure.Additionally,the FCC Cr_(23)C_(6)phase adjacent to the composite reacted with SiC,producing hexagonal Cr_(2)C,compromising the ability of joint to withstand plastic deformation.Moreover,the presence of Nb(s,s)and significant MoNiSi phases induced a gradual alteration in the Coefficient of Thermal Expansion(CTE),facilitating the initiation of shear fractures from the composites towards the central region of the seam,significantly affecting the overall structural integrity and failure behavior of the joint under thermal shock conditions.With an increase in the number of thermal shocks,the shear strength of joint gradually decreases,reaching a maximum of 22.36 MPa after 30 thermal shocks,surpassing that of some joints using glass fillers. 展开更多
关键词 brazing Interfacial microstructure OXIDATION SICF/SIC Thermal cycling
原文传递
Microstructure formation mechanism of vacuum-brazed 6061/304 joint using Al-Si-Ge/Cu composite filler
19
作者 Sen Huang Wei-min Long +3 位作者 Ji-guo Shan Guan-xing Zhang Chao Jiang Pei-yao Jing 《Journal of Iron and Steel Research International》 2025年第7期2089-2103,共15页
6061 aluminum alloy was successfully vacuum brazed to 304 stainless steel using Al-Si-Ge/Cu composite filler metal.The thermodynamic model was established to analyze the formation mechanism of microstructure in brazed... 6061 aluminum alloy was successfully vacuum brazed to 304 stainless steel using Al-Si-Ge/Cu composite filler metal.The thermodynamic model was established to analyze the formation mechanism of microstructure in brazed joint and element diffusion behavior between filler metal and substrate.The findings indicated that the microstructure of 6061 aluminum alloy/304 stainless steel joint was a multilayer structure composed of three zones(ZoneⅠ,ZoneⅡand ZoneⅢ).The free energy(△G)calculation results indicated that Al-Si-M(M was Fe,Cr,Ni and Cu)ternary intermetallic compounds(IMCs)formed,when on M-Al side and M-Si/Ge side was similar.And only Al-M binary IMCs would be generated when there was large difference between on M-Al side and that on M-Si/Ge side.The calculation results of chemical potential of Si△_(μSi)and Ge△_(μGe)indicated that there was continuous Si and Ge diffusion toward Zone I,forming(Ge,Si)layer.The segregation of Si and Ge hindered the diffusion of Cr toward Zone II and promoted its diffusion toward(Ge,Si)layer,leading to an upward trend of Cr distribution in Al7(Fe,Cr)2Si layer.Negative△_(μNi)and△_(μFe)were responsible for continuous diffusion of Fe and Ni toward Zone II.The small difference between△_(μcu)in Zone I and Zone II contributed to distribution of CuAl2 in Zone II.The formation mechanism of joint could be mainly divided into four steps. 展开更多
关键词 6061 aluminum alloy/304 stainless steel joint Al-Si-Ge/Cu composite filler metal Vacuum brazing MICROSTRUCTURE Thermodynamic
原文传递
Effect of Silver Content on Microstructure and Properties of Brass/steel Induction Brazing Joint Using Ag-Cu-Zn-Sn Filler Metal 被引量:29
20
作者 J. Cao L.X. Zhang +2 位作者 H.Q. Wang L.Z. Wu J.C. Feng 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2011年第4期377-381,共5页
The induction brazing of brass to steel using Ag-Cu-Zn-Sn filler metal was investigated in this study. The influence of A8 content on the microstructure and properties were analyzed by means of optical microscopy, sca... The induction brazing of brass to steel using Ag-Cu-Zn-Sn filler metal was investigated in this study. The influence of A8 content on the microstructure and properties were analyzed by means of optical microscopy, scanning electron microscopy and electron probe microanalysis. Defect free joint was achieved using Ag- Cu-Zn-Sn filler metal. The microstructure of the joint was mainly composed of Ag-based solid solution and Cu-based solid solution. The increase of A8 content and the cooling rate both led to the increase of the needle like eutectic structure. The tensile strength decreased with the increase of Ag content. The tensile strength at room temperature using Ag25CuZnSn filler metal reached 445 MPa. All fractures using Ag-Cu-Zn-Sn filler metal presented ductile characteristic. 展开更多
关键词 Induction brazing BRASS STEEL Microstructure Tensile strength
原文传递
上一页 1 2 14 下一页 到第
使用帮助 返回顶部