期刊文献+
共找到268篇文章
< 1 2 14 >
每页显示 20 50 100
Interfacial Structure and Mechanical Properties of Diamond/Copper Joint Brazed by Ag-Cu-In-Ti Low-Temperature Brazing Filler 被引量:2
1
作者 Pan Yufan Liang Jiabin +10 位作者 Nie Jialong Liu Xin Sun Huawei Chang Yunfeng Li Huaxin Lu Chuanyang Xu Dong Wang Xingxing Yang Yang Yang Jianguo He Yanming 《稀有金属材料与工程》 北大核心 2025年第2期301-310,共10页
Ag-Cu-In-Ti low-temperature filler was used to braze the diamond and copper,and the effects of brazing temperature and soaking time on the microstructure and mechanical properties of the joints were investigated.In ad... Ag-Cu-In-Ti low-temperature filler was used to braze the diamond and copper,and the effects of brazing temperature and soaking time on the microstructure and mechanical properties of the joints were investigated.In addition,the joint formation mechanism was discussed,and the correlation between joint microstructure and mechanical performance was established.Results show that adding appropriate amount of In into the filler can significantly reduce the filler melting point and enhance the wettability of filler on diamond.When the brazing temperature is 750°C and the soaking time is 10 min,a uniformly dense braze seam with excellent metallurgical bonding can be obtained,and its average joint shear strength reaches 322 MPa.The lower brazing temperature can mitigate the risk of diamond graphitization and also reduce the residual stresses during joining. 展开更多
关键词 diamond microwave window vacuum brazing Ag-Cu-In-Ti microstructure mechanical properties
原文传递
Thermal-shock-induced failure in brazed joints between SiC_(f)/SiC composites and GH536 superalloy:Phase transition and oxygen intrusion 被引量:1
2
作者 Shuai ZHAO Peng WANG +5 位作者 Xin NAI Haiyan CHEN Yongsheng LIU Pengcheng WANG Xiaoguo SONG Wenya LI 《Chinese Journal of Aeronautics》 2025年第7期636-650,共15页
The investigation evaluated the thermal shock resistance and failure mechanisms of three brazed joints when exposed to 780°C.During exposure,oxidation of the SiC_(f)/SiC composite leads to the formation of SiO_(2... The investigation evaluated the thermal shock resistance and failure mechanisms of three brazed joints when exposed to 780°C.During exposure,oxidation of the SiC_(f)/SiC composite leads to the formation of SiO_(2).Residual oxygen will penetrate the high-entropy alloy while retaining its Face-Centered Cubic(FCC)structure.Additionally,the FCC Cr_(23)C_(6)phase adjacent to the composite reacted with SiC,producing hexagonal Cr_(2)C,compromising the ability of joint to withstand plastic deformation.Moreover,the presence of Nb(s,s)and significant MoNiSi phases induced a gradual alteration in the Coefficient of Thermal Expansion(CTE),facilitating the initiation of shear fractures from the composites towards the central region of the seam,significantly affecting the overall structural integrity and failure behavior of the joint under thermal shock conditions.With an increase in the number of thermal shocks,the shear strength of joint gradually decreases,reaching a maximum of 22.36 MPa after 30 thermal shocks,surpassing that of some joints using glass fillers. 展开更多
关键词 BRAZING Interfacial microstructure OXIDATION SICF/SIC Thermal cycling
原文传递
Grindability and Surface Integrity of Cast Nickel-based Superalloy in Creep Feed Grinding with Brazed CBN Abrasive Wheels 被引量:37
3
作者 丁文锋 徐九华 +2 位作者 陈珍珍 苏宏华 傅玉灿 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2010年第4期501-510,共10页
The technique of creep feed grinding is most suitable for geometrical shaping, and therefore has been expected to improve effectively material removal rate and surface quality of components with complex profile. This ... The technique of creep feed grinding is most suitable for geometrical shaping, and therefore has been expected to improve effectively material removal rate and surface quality of components with complex profile. This article studies experimentally the effects of process parameters (i.e. wheel speed, workpiece speed and depth of cut) on the grindability and surface integrity of cast nickel-based superalloys, i.e. K424, during creep feed grinding with brazed cubic boron nitride (CBN) abrasive wheels. Some important factors, such as grinding force and temperature, specific grinding energy, size stability, surface topography, microhardhess and microstructure alteration of the sub-surface, residual stresses, are investigated in detail. The results show that during creep feed grinding with brazed CBN wheels, low grinding temperature at about 100 ℃ is obtained though the specific grinding energy of nickel-based superalloys is high up to 200-300 J/mm^3. A combination of wheel speed 22.5 m/s, workpiece speed 0.1 m/min, depth of cut 0.2 mm accomplishes the straight grooves with the expected dimensional accuracy. Moreover, the compressive residual stresses are formed in the bum-free and crack-free ground surface. 展开更多
关键词 GRINDING SUPERALLOYS brazed abrasive wheels cubic boron nitride surface integrity
原文传递
Dimension Accuracy and Surface Integrity of Creep Feed Ground Titanium Alloy with Monolayer Brazed CBN Shaped Wheels 被引量:9
4
作者 杨长勇 徐九华 +2 位作者 丁文锋 傅玉灿 陈珍珍 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2010年第5期585-590,共6页
Titanium alloy tenon is creep feed ground with monolayer brazed cubic boron nitride (CBN) shaped wheels. The dimension accuracy of the tenon is assessed and the results indicate that it completely meets the requirem... Titanium alloy tenon is creep feed ground with monolayer brazed cubic boron nitride (CBN) shaped wheels. The dimension accuracy of the tenon is assessed and the results indicate that it completely meets the requirement of blade tenon of aero-engine. Residual stresses, surface roughness, microstructure and microhardness are measured on ground surfaces of the specimen, which are all compared with that ground with vitrified CBN wheels. Under all the circumstances, compressive residual stress is obtained and the depth of the machining affected zone is found to be less than 40 μm. No phase transformation is observed at depths of up to 100 lain below the surface, though plastic deformation is visible in the process of grain refinement. The residual stress and microhardness of specimens ground with brazed CBN wheels are observed to be lower than those ground with vitrified ones. The arithmetic mean roughness (Ra) values obtained are all below 0.8μm. 展开更多
关键词 creep feed dimension accuracy surface integrity monolayer brazed CBN grinding wheel titanium alloys
原文传递
Microstructure and Mechanical Properties of PDC Cutters Vacuum Brazed by AgCuInTi Filler Metal
5
作者 Wen Guodong Wang Shiqing +4 位作者 Zhang Suhui Qi Junlei Chen Haiyan Wang Xingxing Xu Dong 《稀有金属材料与工程》 北大核心 2025年第5期1177-1184,共8页
Polycrystalline diamond compact(PDC)cutters and carbon steel were brazed by AgCuInTi filler metal under vacuum condition.The effects of brazing temperature on the wettability of base metal and shear strength of joints... Polycrystalline diamond compact(PDC)cutters and carbon steel were brazed by AgCuInTi filler metal under vacuum condition.The effects of brazing temperature on the wettability of base metal and shear strength of joints were investigated.Besides,the joint's interface microstructure,composition,and phases were analyzed.Results show that the AgCuInTi filler metal exerts a good wetting effect to the surface of cemented carbide and steel.With the increase in brazing temperature,the wetting angle decreases and the spreading area increases.The suitable temperature for vacuum brazing of PDC cutters is 770℃,and the maximum shear strength is 228 MPa at this temperature. 展开更多
关键词 PDC cutter vacuum brazing brazing temperature shear strength MICROSTRUCTURE
原文传递
Microstructure formation mechanism of vacuum-brazed 6061/304 joint using Al-Si-Ge/Cu composite filler
6
作者 Sen Huang Wei-min Long +3 位作者 Ji-guo Shan Guan-xing Zhang Chao Jiang Pei-yao Jing 《Journal of Iron and Steel Research International》 2025年第7期2089-2103,共15页
6061 aluminum alloy was successfully vacuum brazed to 304 stainless steel using Al-Si-Ge/Cu composite filler metal.The thermodynamic model was established to analyze the formation mechanism of microstructure in brazed... 6061 aluminum alloy was successfully vacuum brazed to 304 stainless steel using Al-Si-Ge/Cu composite filler metal.The thermodynamic model was established to analyze the formation mechanism of microstructure in brazed joint and element diffusion behavior between filler metal and substrate.The findings indicated that the microstructure of 6061 aluminum alloy/304 stainless steel joint was a multilayer structure composed of three zones(ZoneⅠ,ZoneⅡand ZoneⅢ).The free energy(△G)calculation results indicated that Al-Si-M(M was Fe,Cr,Ni and Cu)ternary intermetallic compounds(IMCs)formed,when on M-Al side and M-Si/Ge side was similar.And only Al-M binary IMCs would be generated when there was large difference between on M-Al side and that on M-Si/Ge side.The calculation results of chemical potential of Si△_(μSi)and Ge△_(μGe)indicated that there was continuous Si and Ge diffusion toward Zone I,forming(Ge,Si)layer.The segregation of Si and Ge hindered the diffusion of Cr toward Zone II and promoted its diffusion toward(Ge,Si)layer,leading to an upward trend of Cr distribution in Al7(Fe,Cr)2Si layer.Negative△_(μNi)and△_(μFe)were responsible for continuous diffusion of Fe and Ni toward Zone II.The small difference between△_(μcu)in Zone I and Zone II contributed to distribution of CuAl2 in Zone II.The formation mechanism of joint could be mainly divided into four steps. 展开更多
关键词 6061 aluminum alloy/304 stainless steel joint Al-Si-Ge/Cu composite filler metal Vacuum brazing MICROSTRUCTURE Thermodynamic
原文传递
PERFORMANCE OF BRAZED DIAMOND CUP-TYPE WHEELS WITH DEFINED GRAIN PATTERN IN GRINDING CEMENTED CARBIDE 被引量:9
7
作者 李曙生 徐九华 +3 位作者 肖冰 严明华 傅玉灿 徐鸿钧 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2007年第1期54-58,共5页
A new cup-type grinding wheel of the brazed monolayer diamond is developed with a defined grain pattern on the wheel surface. Grinding performance of the brazed wheel in the surface grinding of cemented carbide is stu... A new cup-type grinding wheel of the brazed monolayer diamond is developed with a defined grain pattern on the wheel surface. Grinding performance of the brazed wheel in the surface grinding of cemented carbide is studied. Experimental results show that when continuous dry grinding is employed, grits of the brazed diamond grinding wheel fail mainly in attritious wear and fracture modes and no pull-out ones are found in conventional electroplated and sintered diamond wheels. It indicates the strong retention of brazing alloy to diamond grits and the longer service life of the wheel. In addition, the ground surface has good roughness. The theoretical surface roughness agrees well with experimental results. 展开更多
关键词 BRAZING diamond wheel GRINDING cemented carbide WEAR
在线阅读 下载PDF
BONDING INTERFACE AND WEAR BEHAVIOR OF CBN GRAINS BRAZED USING NANO-TiC POWDER MODIFIED FILLER 被引量:4
8
作者 陈珍珍 徐九华 +2 位作者 丁文锋 傅玉灿 颜士肖 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2010年第3期232-238,共7页
A new kind of composite fillers,composed of Ag-Cu-Ti alloy and nano-TiC powders,is utilized to braze cubic boron nitride (CBN) grains and tool substrate. The bonding system,including the interfacial microstructure a... A new kind of composite fillers,composed of Ag-Cu-Ti alloy and nano-TiC powders,is utilized to braze cubic boron nitride (CBN) grains and tool substrate. The bonding system,including the interfacial microstructure and reactive products between CBN grains and filler layer,is observed by optical microscope and scanning electron microscope (SEM). Resistant-to-wear experiments of the brazed grains are performed. Results show that the nano-TiC powders evenly distribute in the filler layer so that the resultants grow compactly and uniformly on the surface of CBN grain. This indicates that the chemical bond is established between CBN grains and nano-TiC modified filler. Accordingly,the bonding strength of the grains is ensured. The CBN grains are worn smoothly without grain pull-out. 展开更多
关键词 BRAZING microstructure WEAR cubic boron nitride nano-TiC powders
在线阅读 下载PDF
Microstructure and properties of Cu/Al joints brazed with Zn-Al filler metals 被引量:23
9
作者 姬峰 薛松柏 +2 位作者 娄继源 娄银斌 王水庆 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第2期281-287,共7页
The mechanical properties and microstructural distribution of the Cu/A1 brazing joints formed by torch-brazing with different Zn-A1 filler metals were investigated. The microstructure of the Zn-A1 alloys was studied b... The mechanical properties and microstructural distribution of the Cu/A1 brazing joints formed by torch-brazing with different Zn-A1 filler metals were investigated. The microstructure of the Zn-A1 alloys was studied by optical microscopy and scanning electron microscopy, and the phase constitution of the Cu/A1 joints was analyzed by energy dispersion spectrometry. The results show that the spreading area of the Zn-A1 filler metals on the Cu and A1 substrates increases as the A1 content increases. The mechanical results indicate that the shear strength reaches a peak value of 88 MPa when A1 and Cu are brazed with Zn-15AI filler metal. Microhardness levels from HV122 to HV515 were produced in the three brazing seam regions corresponding to various microstructure features. The Zn- and Al-rich phases exist in the middle brazing seam regions. However, two interface layers, CuZn3 and A12Cu are formed on the Cu side when the A1 content in the filler metals is 2% and more than 15%, respectively. The relationship between intermetallic compounds on Cu side and Zn-xA1 filler metals was investigated. 展开更多
关键词 Cu/A1 brazing joint Zn-A1 filler metals mechanical property interface layer
在线阅读 下载PDF
Comparative investigation on high-speed grinding of TiCp/Ti–6Al–4V particulate reinforced titanium matrix composites with single-layer electroplated and brazed CBN wheels 被引量:16
10
作者 Li Zheng Ding Wenfeng +2 位作者 Shen Long Xi Xinxin Fu Yucan 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2016年第5期1414-1424,共11页
In order to develop the high-efficiency and precision machining technique of TiCp/Ti - 6Al-4V particulate reinforced titanium matrix composites (PTMCs), high-speed grinding experiments were conducted using the singl... In order to develop the high-efficiency and precision machining technique of TiCp/Ti - 6Al-4V particulate reinforced titanium matrix composites (PTMCs), high-speed grinding experiments were conducted using the single-layer electroplated cubic boron nitride (CBN) wheel and brazed CBN wheel, respectively. The comparative grinding performance was studied in terms of grinding force, grinding temperature, grinding-induced surface features and defects. The results display that the grinding forces and grinding temperature obtained with the brazed CBN wheel are always lower than those with the electroplated CBN wheel. Though the voids and microcracks are the dominant grinding-induced surface defects, the brazed CBN wheel produces less surface defects compared to the electroplated wheel according to the statistical analysis results. The max mum materials removal rate with the brazed CBN wheel is much higher than that with the electroplated one. All above indicate that the single-layer brazed CBN super-abrasive wheel is more suitable for high-speed grinding of PTMCs than the electroplated counterpart. 展开更多
关键词 High-speed grinding PTMCs Single-layer brazed CBNwheel Single-layer electroplated CBN wheel Surface defects
原文传递
Theoretical study and numerical simulation of the stress fields of the Al_2O_3 joints brazed with composite filler materials 被引量:5
11
作者 杨建国 姬书得 方洪渊 《China Welding》 EI CAS 2006年第3期74-78,共5页
Non-linear finite element code MSC. Marc was utilized to analysis the field of stress of the Al2O3 joints brazed with composite filler materials. The properties of the filler materials were defined by using the mixing... Non-linear finite element code MSC. Marc was utilized to analysis the field of stress of the Al2O3 joints brazed with composite filler materials. The properties of the filler materials were defined by using the mixing law, method of Mori-Tanaka and theory of Eshelby to ensure the accuracy and reliability of results of finite element method (FEM). The results show stress in brazed beam is higher than that in base material. The maximal stress can be found in the interface of joint. And the experimental results show that the shear strength of joints increases from 93.75 MPa ( Al2O3p Ovol. % ) to 135.32 MPa ( Al2O3p 15vol. % ) when composition of titanium is 3wt% in the filler metal. 展开更多
关键词 composite filler materials brazed joints finite element method residual stress
在线阅读 下载PDF
Thermal cycling behavior of alumina-graphite brazed joints in electron tube applications 被引量:1
12
作者 Nadadulal DANDAPAT Sumana GHOSH +2 位作者 Kalyan Sundar PAL Someswar DATTA Bichitra Kumar GUHA 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第6期1666-1673,共8页
Alumina was joined with graphite by active metal brazing technique at 895,900,905,and 910 ℃ for 10 min in vacuum of0.67 mPa using Ti-Cu-Ag(68.8Ag-26.7Cu-4.5Ti;mass fraction,%) as filler material.The brazed samples ... Alumina was joined with graphite by active metal brazing technique at 895,900,905,and 910 ℃ for 10 min in vacuum of0.67 mPa using Ti-Cu-Ag(68.8Ag-26.7Cu-4.5Ti;mass fraction,%) as filler material.The brazed samples were thermal cycled between 30 and 600 ℃ and characterized.X-ray diffraction results show strong reaction between titanium and carbon as well as titanium and alumina.Scanning electron microscopy and helium leak tests show that the initial and thermal cycled brazed samples are devoid of cracks or anv other defects and hermeticity in nature.Brazing strength of the joints is found to be satisfactory. 展开更多
关键词 brazed joints thermal cycling brazing strength hermeticity
在线阅读 下载PDF
Defect detection in brazed weldment with lattice structure using ultrasonic Lamb wave technique 被引量:1
13
作者 迟大钊 刚铁 +1 位作者 刘磊 袁媛 《China Welding》 EI CAS 2010年第1期6-10,共5页
In this paper, defects detection in brazed weldment with lattice structure is studied using ultrasonic Lamb wave. Based on the ultrasonic guided wave theory, the frequency dispersion curves for phase and group velocit... In this paper, defects detection in brazed weldment with lattice structure is studied using ultrasonic Lamb wave. Based on the ultrasonic guided wave theory, the frequency dispersion curves for phase and group velocity of I Cr18Ni9Ti are obtained by solving the Rayleigh-Lamb equation. The incident angles of different modes are determined through theoretical calculation and experimental analyses. Artificial defects of through-wall slots with different dimensions are made and tested. Experimental scattering effects of the fundamental symmetric mode S2 and asymmetric modes A1 and A0 are analysed and compared. The results show that mode Ao is suitable for detecting artificial defect, and the amplitude of the received signals are in good agreement with the defect size. Brazed weldment specimen containing lack of brazing with certain dimensions is made. Using the same methodology, scattering effects produced by weld defects are measured. The results show that the clutter wave brought about by the filler metal will certainly disturbs the identification of defect signal. But, when the defect is 3.0 mm in width, the presented mode Ao could be used potentially. 展开更多
关键词 ultrasonic Lamb wave defect detection brazed weldment
在线阅读 下载PDF
Ultrasonic C-scan inspection of brazed joint in thin panel honeycomb structure
14
作者 刘斌 刚铁 《China Welding》 EI CAS 2014年第4期32-36,共5页
The non-destructive testing of brazed joint in honeycomb structure with thin panel ( thickness : 0. 2 mm) was studied by ultrasonic C-scan method. Samples with different types of artificial defect were designed; th... The non-destructive testing of brazed joint in honeycomb structure with thin panel ( thickness : 0. 2 mm) was studied by ultrasonic C-scan method. Samples with different types of artificial defect were designed; the characteristic signal and the main parameters of the test were determined by the pre-experiment, and then parameters were optimized by orthogonal design, finally the optimum process was verified by a single panel sample. The multiple reflection echoes were chosen as the characteristic signal. The optimal C-scan results were achieved when the 20 MHz focus probe was used, and the pass band range for received signal were selected as 8 - 17. 5 MHz. The defects such as incomplete penetration and core damage can be detected with ultrasonic C-scan, and the detection accuracy can reach to 1 ram. 展开更多
关键词 non-destructive testing ultrasonic C-scan honeycomb structure brazed joint orthogonal design
在线阅读 下载PDF
Microstructure and Strength of Brazed Joints of Ti_(3)Al Base Alloy with Cu-P Filler Metal
15
作者 Peng HE Jicai FENG Heng ZHOU 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2005年第4期493-498,共6页
Brazing of Ti3Al alloys with the filler metal Cu-P was carried out at 1173-1273 K for 60-1800 s. When products are brazed, the optimum brazing parameters are as follows: brazing temperature is 1215-1225 K; brazing ti... Brazing of Ti3Al alloys with the filler metal Cu-P was carried out at 1173-1273 K for 60-1800 s. When products are brazed, the optimum brazing parameters are as follows: brazing temperature is 1215-1225 K; brazing time is 250-300 s. Four kinds of reaction products were observed during the brazing of Ti3Al alloys with the filler metal Cu-P, i.e., Ti3Al phase with a small quantity of Cu (Ti3Al(Cu)) formed close to the Ti3Al alloy; the TiCu intermetallic compounds layer and the Cu3P intermetallic compounds layer formed between Ti3Al(Cu) and the filler metal, and a Cu-base solid solution formed with the dispersed Cu3P in the middle of the joint. The interracial structure of brazed Ti3Al alloys joints with the filler metal Cu-P is Ti3Al/Ti3Al(Cu)/TiCu/Cu3P/Cu solid solution (Cu3P)/Cu3P/TiCu/Ti3Al(Cu)/Ti3Al, and this structure will not change with brazing time once it forms. The thickness of TiCu+Cu3P intermetallic compounds increases with brazing time according to a parabolic law. The activation energy Q and the growth velocity/to of reaction layer TiCu+Cu3P in the brazed joints of Ti3Al alloys with the filler metal Cu-P are 286 kJ/mol and 0.0821 m2/s, respectively, and growth formula was y2=O.O821exp(-34421.59/T)t.Careful control of the growth for the reaction layer TiCu+Cu3P can influence the final joint strength. The formation of the intermetallic compounds TiCu+Cu3P results in embrittlement of the joint and poor joint properties. The Cu-P filler metal is not fit for obtaining a high-quality joint of Ti3Al brazed. 展开更多
关键词 brazed joints MICROSTRUCTURE Ti3Al base alloy
在线阅读 下载PDF
Simulation and Optimization of the Fluid Solidification Process in Brazed Plate Heat Exchangers
16
作者 Weiting Jiang Lei Zhao +2 位作者 Chongyang Wang Tingni He Weiguo Pan 《Fluid Dynamics & Materials Processing》 EI 2023年第10期2597-2611,共15页
When a brazed plate heat exchanger is used as an evaporator,the working mass in the channel may undergo soli-dification,thereby hindering the refrigeration cycle.In this study the liquid solidification process and its o... When a brazed plate heat exchanger is used as an evaporator,the working mass in the channel may undergo soli-dification,thereby hindering the refrigeration cycle.In this study the liquid solidification process and its optimi-zation in a brazed plate heat exchanger are investigated numerically for different inlet velocities;moreover,different levels of corrugation are considered.The results indicate that solidificationfirst occurs around the con-tacts,followed by the area behind the contacts.It is also shown that deadflow zones exist in the sharp areas and such areas are prone to liquid solidification.After optimization,the solidification area attains its smallest value when a corrugation spacingλ=4.2 mm is considered. 展开更多
关键词 brazed plate heat exchanger numerical simulation SOLIDIFICATION CONTACTS
在线阅读 下载PDF
Microstructure and shear strength ofγ-TiAl/GH536 joints brazed with Ti-Zr-Cu-Ni-Fe-Co-Mo filler alloy 被引量:13
17
作者 Li LI Wei ZHAO +2 位作者 Zhi-xue FENG Jia SUN Xiao-qiang LI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第8期2143-2155,共13页
The influence of brazing temperature and brazing time on the microstructure and shear strength ofγ-TiAl/GH536 joints brazed with Ti-Zr-Cu-Ni-Fe-Co-Mo filler was investigated using SEM,EDS,XRD and universal testing ma... The influence of brazing temperature and brazing time on the microstructure and shear strength ofγ-TiAl/GH536 joints brazed with Ti-Zr-Cu-Ni-Fe-Co-Mo filler was investigated using SEM,EDS,XRD and universal testing machine.Results show that all the brazed joints mainly consist of four reaction layers regardless of the brazing temperature and brazing time.The thickness of the brazed seam and the average shear strength of the joint increase firstly and then decrease with brazing temperature in the range of 1090-1170℃and brazing time varying from 0 to 20 min.The maximum shear strength of 262 MPa is obtained at 1150℃for 10 min.The brittle Al3NiTi2 and TiNi3 intermetallics are the main controlling factors for the crack generation and deterioration of joint strength.The fracture surface is characterized as typical cleavage fracture and it mainly consists of massive brittle Al3NiTi2 intermetallics. 展开更多
关键词 γ-TiAl alloy Ni-based superalloy vacuum brazing amorphous filler MICROSTRUCTURE shear strength
在线阅读 下载PDF
Joints of continuous carbon fiber reinforced lithium aluminosilicate glass ceramics matrix composites to Ti60 alloy brazed using Ti-Zr-Ni-Cu active alloy 被引量:7
18
作者 Shengpeng HU Dongdong FENG +5 位作者 Long XIA Ke WANG Renwei LIU Zhentao XIA Hongwei NIU Xiaoguo SONG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2019年第3期715-722,共8页
Continuous carbon fiber reinforced lithium aluminosilicate glass ceramics matrix composites(C_f/LAS composites) are joined to Ti60 alloy vacuum brazed using Ti-Zr-Ni-Cu brazing alloy. The effects of the brazing temper... Continuous carbon fiber reinforced lithium aluminosilicate glass ceramics matrix composites(C_f/LAS composites) are joined to Ti60 alloy vacuum brazed using Ti-Zr-Ni-Cu brazing alloy. The effects of the brazing temperature on the interfacial microstructure and mechanical properties of brazed joints are investigated in details. The interfacial microstructure varies apparently with an increase of the brazing temperature. The thicknesses of the banded Ti solid solution(Ti(s, s)) and the reactive layer between Cf/LAS composites and the interlayer grow gradually. The mechanical properties of brazed joints increase firstly and then decrease with an increasing temperature. In addition, a joint that is brazed at 980 °C for 10 min shows the highest shear strength of$38.13 MPa. At the same time, the fracture paths of brazed joints also change as the temperature increases. When the brazing temperature is 950 °C, the fracture position is in the TiC + ZrC +Ti_2O + ZrSi_2+ Ti_5Si_3 layer on the composite side. When the brazing temperature is 980 °C, the fracture position is on the side of the braze seam(Ti, Zr)2(Ni, Cu), Ti_2O + ZrSi_2+ Ti_5Si_3 layer,and carbon fiber in the composite material. When the brazing temperature is 990 °C, the fracture position is in the Ti_2O + ZrSi_2+ Ti_5Si_3 layer on the composite side and the carbon fiber in the composite material. 展开更多
关键词 BRAZING Composites Mechanical properties Microstructure TITANIUM alloys
原文传递
Microstructures and mechanical properties of Ti_(3)Al/Ni-based superalloy joints brazed with AuNi filler metal 被引量:11
19
作者 H.S.Ren H.P.Xiong +3 位作者 W.M.Long B.Chen Y.X.Shen J.Pang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2019年第9期2070-2078,共9页
For the purpose of high-temperature service and the weight reduction in aviation engineering applications,the dissimilar joining of Ti3Al-based alloy to Ni-based superalloy(GH536)was conducted using Au-17.5Ni(wt%)braz... For the purpose of high-temperature service and the weight reduction in aviation engineering applications,the dissimilar joining of Ti3Al-based alloy to Ni-based superalloy(GH536)was conducted using Au-17.5Ni(wt%)brazing filler metal.The microstructure and chemical composition at the interfaces were investigated by scanning electron microscope,X-ray diffraction and transmission electron microscope.The diffusion behaviors of elements were analyzed as well.The results indicated that the Ti_(3)Al/GH536 joint microstructure was characterized by multiple layer structures.Element Ni from Au-Ni filler metal reacted with Ti3Al base metal,leading to the formation of AlNi2Ti and NiTi compounds.Element Ni from Ti3Al base metal reacted with Ni and thus Ni3Nb phase was detected in the joint central area.Due to the dissolution of Ni-based superalloy,(Ni,Au)solid solution((Ni,Au)ss)and Ni-rich phase were visible adjacent to the superalloy side.The average tensile strength of all the joints brazed at 1253 K for 5-20 min was above 356 MPa at room-temperature.In particular,the joints brazed at 1253 K/15 min presented the maximum tensile strength of434 MPa at room-temperature,and the strength of 314 MPa was maintained at 923 K.AlNi2Ti compound resulted in the highest hardness area and the fracture of the samples subjected to the tensile test mainly occurred in this zone. 展开更多
关键词 Ti_(3)Al-based alloy Ni-based superalloy BRAZING MICROSTRUCTURE Tensile strength
原文传递
Interfacial microstructure and mechanical properties of tungsten carbide brazed joints using Ag-Cu-Zn + Ni/Mn filler alloy 被引量:9
20
作者 Mahyar HASANABADI Ali SHAMSIPUR +2 位作者 Hasan NAJAFI SANI Hamid OMIDVAR Sima SAKHAEI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第12期2638-2646,共9页
WC-Co hard metal was furnace brazed by Ag-Cu-Zn+Ni/Mn filler alloy using a tube furnace under high-purity argon at730°C.The influence of brazing time and gap size of joints was studied.The results revealed the ma... WC-Co hard metal was furnace brazed by Ag-Cu-Zn+Ni/Mn filler alloy using a tube furnace under high-purity argon at730°C.The influence of brazing time and gap size of joints was studied.The results revealed the maximum shear strength of(156±7)MPa for samples with150μm gap size at a holding time15min.The characterization and microstructure of the brazed joints were characterized by SEM,EDS and XRD.The results showed that increasing the time from5to15min could provide a better chance for the liquid interlayer to flow towards the base metal.However,the formation of some metallic phases such as Mn3W3C at brazing time longer than15min resulted in decreased shear strength of the joint. 展开更多
关键词 BRAZING tungsten carbide Ag alloy filler alloy microstructure wetting properties shear strength
在线阅读 下载PDF
上一页 1 2 14 下一页 到第
使用帮助 返回顶部