Chimpanzees(Pan troglodytes)are one of humans'closest living relatives,making them the most directly relevant comparison point for understanding human brain evolution.Zeroing in on the differences in brain connect...Chimpanzees(Pan troglodytes)are one of humans'closest living relatives,making them the most directly relevant comparison point for understanding human brain evolution.Zeroing in on the differences in brain connectivity between humans and chimpanzees can provide key insights into the specific evolutionary changes that might have occurred along the human lineage.However,such comparisons are hindered by the absence of cross-species brain atlases established within the same framework.To address this gap,we developed the Chimpanzee Brainnetome Atlas(ChimpBNA)using a connectivity-based parcellation framework.Leveraging this new resource,we found substantial divergence in connectivity patterns between the two species across most association cortices,notably in the lateral temporal and dorsolateral prefrontal cortex.These differences deviate sharply from the pattern of cortical expansion observed when comparing humans to chimpanzees,highlighting more complex and nuanced connectivity changes in brain evolution than previously recognized.Additionally,we identified regions displaying connectional asymmetries that differed between species,likely resulting from evolutionary divergence.Genes highly expressed in regions of divergent connectivities were enriched in cell types crucial for cortical projection circuits and synapse formation,whose pronounced differences in expression patterns hint at genetic influences on neural circuit development,function,and evolution.Our study provides a fine-scale chimpanzee brain atlas and highlights the chimpanzee-human connectivity divergence in a rigorous and comparative manner.In addition,these results suggest potential gene expression correlates for species-specific differences by linking neuroimaging and genetic data,offering insights into the evolution of human-unique cognitive capabilities.展开更多
Attention deficit and hyperactivity disorder(ADHD) is a disorder characterized by behavioral symptoms including hyperactivity/impulsivity among children,adolescents,and adults.These ADHD related symptoms are influen...Attention deficit and hyperactivity disorder(ADHD) is a disorder characterized by behavioral symptoms including hyperactivity/impulsivity among children,adolescents,and adults.These ADHD related symptoms are influenced by the complex interaction of brain networks which were under explored.We explored age-related brain network differences between ADHD patients and typically developing(TD) subjects using resting state f MRI(rs-f MRI) for three age groups of children,adolescents,and adults.We collected rs-f MRI data from 184 individuals(27 ADHD children and 31 TD children;32 ADHD adolescents and 32 TD adolescents;and 31 ADHD adults and 31 TD adults).The Brainnetome Atlas was used to define nodes in the network analysis.We compared three age groups of ADHD and TD subjects to identify the distinct regions that could explain age-related brain network differences based on degree centrality,a well-known measure of nodal centrality.The left middle temporal gyrus showed significant interaction effects between disease status(i.e.,ADHD or TD) and age(i.e.,child,adolescent,or adult)(P 0.001).Additional regions were identified at a relaxed threshold(P 0.05).Many of the identified regions(the left inferior frontal gyrus,the left middle temporal gyrus,and the left insular gyrus) were related to cognitive function.The results of our study suggest that aberrant development in cognitive brain regions might be associated with age-related brain network changes in ADHD patients.These findings contribute to better understand how brain function influences the symptoms of ADHD.展开更多
基金supported by ST12030-Major Projects(grant na 2021ZD0200203)the Natural Science Foundation of China(grant nos.82072099,82202253,and 62250058)the China Postdoctoral Science Foundation(2022M722915)+1 种基金the Guangxi Science and Technology Base and Talent Special Project(grant no AD22035125)Chongqing Science and Health Joint Medical Research Key Project(2025GGXM005).
文摘Chimpanzees(Pan troglodytes)are one of humans'closest living relatives,making them the most directly relevant comparison point for understanding human brain evolution.Zeroing in on the differences in brain connectivity between humans and chimpanzees can provide key insights into the specific evolutionary changes that might have occurred along the human lineage.However,such comparisons are hindered by the absence of cross-species brain atlases established within the same framework.To address this gap,we developed the Chimpanzee Brainnetome Atlas(ChimpBNA)using a connectivity-based parcellation framework.Leveraging this new resource,we found substantial divergence in connectivity patterns between the two species across most association cortices,notably in the lateral temporal and dorsolateral prefrontal cortex.These differences deviate sharply from the pattern of cortical expansion observed when comparing humans to chimpanzees,highlighting more complex and nuanced connectivity changes in brain evolution than previously recognized.Additionally,we identified regions displaying connectional asymmetries that differed between species,likely resulting from evolutionary divergence.Genes highly expressed in regions of divergent connectivities were enriched in cell types crucial for cortical projection circuits and synapse formation,whose pronounced differences in expression patterns hint at genetic influences on neural circuit development,function,and evolution.Our study provides a fine-scale chimpanzee brain atlas and highlights the chimpanzee-human connectivity divergence in a rigorous and comparative manner.In addition,these results suggest potential gene expression correlates for species-specific differences by linking neuroimaging and genetic data,offering insights into the evolution of human-unique cognitive capabilities.
基金supported by the Institute for Basic Science[grant No.IBS-R015-D1]the National Research Foundation of Korea(grant No.NRF-2016R1A2B4008545)
文摘Attention deficit and hyperactivity disorder(ADHD) is a disorder characterized by behavioral symptoms including hyperactivity/impulsivity among children,adolescents,and adults.These ADHD related symptoms are influenced by the complex interaction of brain networks which were under explored.We explored age-related brain network differences between ADHD patients and typically developing(TD) subjects using resting state f MRI(rs-f MRI) for three age groups of children,adolescents,and adults.We collected rs-f MRI data from 184 individuals(27 ADHD children and 31 TD children;32 ADHD adolescents and 32 TD adolescents;and 31 ADHD adults and 31 TD adults).The Brainnetome Atlas was used to define nodes in the network analysis.We compared three age groups of ADHD and TD subjects to identify the distinct regions that could explain age-related brain network differences based on degree centrality,a well-known measure of nodal centrality.The left middle temporal gyrus showed significant interaction effects between disease status(i.e.,ADHD or TD) and age(i.e.,child,adolescent,or adult)(P 0.001).Additional regions were identified at a relaxed threshold(P 0.05).Many of the identified regions(the left inferior frontal gyrus,the left middle temporal gyrus,and the left insular gyrus) were related to cognitive function.The results of our study suggest that aberrant development in cognitive brain regions might be associated with age-related brain network changes in ADHD patients.These findings contribute to better understand how brain function influences the symptoms of ADHD.