Blast-induced traumatic brain injury(b-TBI)is a kind of significant injury to soldiers in the current military conflicts.However,the mechanism of b-TBI has not been well understood,and even there are some contradictor...Blast-induced traumatic brain injury(b-TBI)is a kind of significant injury to soldiers in the current military conflicts.However,the mechanism of b-TBI has not been well understood,and even there are some contradictory conclusions.It is crucial to reveal the dynamic mechanism of brain volume and shear deformations under blast loading for better understanding of b-TBI.In this paper,the numerical simulation method is adopted to carry out comprehensive and in-depth researches on this issue for the first time.Based on the coupled Eulerian-Lagrangian method,the fluid-structure coupling model of the blast wave and human head is developed to simulate two situations,namely the head subjected to the frontal and lateral impacts.The simulation results are analyzed to obtain the underlying dynamic mechanisms of brain deformation.The brain volume deformation is dominated by the local bending vibration of the skull,and the corresponding frequency for the forehead skull under the frontal impact and the lateral skull faced to the lateral impact is as high as 8 kHz and 5 kHz,respectively.This leads to the high-frequency fluctuation of brain pressure and the large pressure gradient along the skull,totally different from the dynamic response of brain under head collisions.While the brain shear deformation mainly depends on the relative tangential displacement between the skull and brain and the anatomical structure of inner skull,being not related to the brain pressure and its gradient.By further comparing the medical statistics,it is inferred that diffuse axonal injury and brain contusion,the two most common types of b-TBI,are mainly attributed to brain shear deformations.And the von Mises stress can be adopted as the indicator for these two brain injuries.This study can provide theoretical guidance for the diagnosis of b-TBI and the development of protective equipment.展开更多
Research examining the long-term effects of drugs such as AdderallTM, a mixed DL-amphetamine, as a first-line treatment strategy for those diagnosed with attention deficit hyperactivity disorder (ADHD), is very much l...Research examining the long-term effects of drugs such as AdderallTM, a mixed DL-amphetamine, as a first-line treatment strategy for those diagnosed with attention deficit hyperactivity disorder (ADHD), is very much lacking. In order to address this, the present study sought to examine possible behavioral and neuroanatomical effects of chronic oral exposure to DL-amphetamine administered at a relatively low dose to the developing male Sprague Dawley rat. Animals were administered a mixture of chocolate drink and DL-amphetamine at a dose of 1.6 mg/kg for 36 days, beginning at PD 24 and ending at PD 60. Anxiety, a potential side effect of stimulant treatment, was assessed using three paradigms: The open field test (OF), the social interaction test (SI), and the elevated plus maze (EPM). The OF and SI were conducted using repeated testing over the course of five weeks. Testing occurred immediately after drug administration on a given day. The EPM was used only once on the penultimate day of treatment, before the drug was administered. Following drug treatment on PD 60, brain-to-body weight ratios were obtained. Results indicated that there were no group differences in brain-to-body weight ratios nor were differences in locomotor and social behaviors observed. However, rats treated with DL-amphetamine did show an anxiogenic response in the EPM. This was represented as a significant reduction in open arm entries. Overall our findings suggest that while chronic drug treatment fails to alter multiple measures of behavior, or reliable changes in brain volume, such treatment may impact a behavioral index of anxiety. Future research should seek to examine the implications of this heightened anxiogenic response in animals treated chronically with oral, low-dose DL-amphetamine.展开更多
Background This study aimed to investigate the relationship between overall obesity,central obesity and brain volumes,as well as to determine the extent to which cardiometabolic and inflammatory measures act as mediat...Background This study aimed to investigate the relationship between overall obesity,central obesity and brain volumes,as well as to determine the extent to which cardiometabolic and inflammatory measures act as mediators in the association between body mass index(BMI),waist-hip ratio(WHR)and brain volumes.Methods In the context of counterfactual framework,mediation analysis was used to explore the potential mediation in which cardiometabolic and inflammatory measures may mediate the relationship between BMI,WHR,and brain volumes.Results Among 2413 community-dwelling participants,those with high BMI or WHR levels experienced an approximately brain ageing of 4 years.Especially,individuals with high WHR or BMI under the age of 65 exhibited white matter hyperintensity volume(WMHV)differences equivalent to around 5 years of ageing.Conversely,in the high-level WHR population over the age of 65,premature brain ageing in gray matter volume(GMV)exceeded 4.5 years.For GMV,more than 45%of the observed effect of WHR was mediated by glycaemic metabolism indicators.This proportion increases to 78.70%when blood pressure,triglyceride,leucocyte count,and neutrophil count are jointly considered with glycaemic metabolism indicators.Regarding WHR and BMI’s association with WMHV,cardiometabolic and inflammatory indicators,along with high-density lipoprotein cholesterol,mediated 35.50%and 20.20%of the respective effects.Conclusions Overall obesity and central obesity were associated with lower GMV and higher WMHV,a process that is partially mediated by the presence of cardiometabolic and inflammatory measures.展开更多
Traumatic brain injury, chronic traumatic encephalopathy, and Alzheimer's disease are three distinct neurological disorders that share common pathophysiological mechanisms involving neuroinflammation. One sequela ...Traumatic brain injury, chronic traumatic encephalopathy, and Alzheimer's disease are three distinct neurological disorders that share common pathophysiological mechanisms involving neuroinflammation. One sequela of neuroinflammation includes the pathologic hyperphosphorylation of tau protein, an endogenous microtubule-associated protein that protects the integrity of neuronal cytoskeletons. Tau hyperphosphorylation results in protein misfolding and subsequent accumulation of tau tangles forming neurotoxic aggregates. These misfolded proteins are characteristic of traumatic brain injury, chronic traumatic encephalopathy, and Alzheimer's disease and can lead to downstream neuroinflammatory processes, including assembly and activation of the inflammasome complex. Inflammasomes refer to a family of multimeric protein units that, upon activation, release a cascade of signaling molecules resulting in caspase-induced cell death and inflammation mediated by the release of interleukin-1β cytokine. One specific inflammasome, the NOD-like receptor protein 3, has been proposed to be a key regulator of tau phosphorylation where it has been shown that prolonged NOD-like receptor protein 3 activation acts as a causal factor in pathological tau accumulation and spreading. This review begins by describing the epidemiology and pathophysiology of traumatic brain injury, chronic traumatic encephalopathy, and Alzheimer's disease. Next, we highlight neuroinflammation as an overriding theme and discuss the role of the NOD-like receptor protein 3 inflammasome in the formation of tau deposits and how such tauopathic entities spread throughout the brain. We then propose a novel framework linking traumatic brain injury, chronic traumatic encephalopathy, and Alzheimer's disease as inflammasomedependent pathologies that exist along a temporal continuum. Finally, we discuss potential therapeutic targets that may intercept this pathway and ultimately minimize long-term neurological decline.展开更多
The blood–brain barrier constitutes a dynamic and interactive boundary separating the central nervous system and the peripheral circulation.It tightly modulates the ion transport and nutrient influx,while restricting...The blood–brain barrier constitutes a dynamic and interactive boundary separating the central nervous system and the peripheral circulation.It tightly modulates the ion transport and nutrient influx,while restricting the entry of harmful factors,and selectively limiting the migration of immune cells,thereby maintaining brain homeostasis.Despite the well-established association between blood–brain barrier disruption and most neurodegenerative/neuroinflammatory diseases,much remains unknown about the factors influencing its physiology and the mechanisms underlying its breakdown.Moreover,the role of blood–brain barrier breakdown in the translational failure underlying therapies for brain disorders is just starting to be understood.This review aims to revisit this concept of“blood–brain barrier breakdown,”delving into the most controversial aspects,prevalent challenges,and knowledge gaps concerning the lack of blood–brain barrier integrity.By moving beyond the oversimplistic dichotomy of an“open”/“bad”or a“closed”/“good”barrier,our objective is to provide a more comprehensive insight into blood–brain barrier dynamics,to identify novel targets and/or therapeutic approaches aimed at mitigating blood–brain barrier dysfunction.Furthermore,in this review,we advocate for considering the diverse time-and location-dependent alterations in the blood–brain barrier,which go beyond tight-junction disruption or brain endothelial cell breakdown,illustrated through the dynamics of ischemic stroke as a case study.Through this exploration,we seek to underscore the complexity of blood–brain barrier dysfunction and its implications for the pathogenesis and therapy of brain diseases.展开更多
Traumatic brain injury is a prevalent disorder of the central nervous system.In addition to primary brain parenchymal damage,the enduring biological consequences of traumatic brain injury pose long-term risks for pati...Traumatic brain injury is a prevalent disorder of the central nervous system.In addition to primary brain parenchymal damage,the enduring biological consequences of traumatic brain injury pose long-term risks for patients with traumatic brain injury;however,the underlying pathogenesis remains unclear,and effective intervention methods are lacking.Intestinal dysfunction is a significant consequence of traumatic brain injury.Being the most densely innervated peripheral tissue in the body,the gut possesses multiple pathways for the establishment of a bidirectional“brain-gut axis”with the central nervous system.The gut harbors a vast microbial community,and alterations of the gut niche contribute to the progression of traumatic brain injury and its unfavorable prognosis through neuronal,hormonal,and immune pathways.A comprehensive understanding of microbiota-mediated peripheral neuroimmunomodulation mechanisms is needed to enhance treatment strategies for traumatic brain injury and its associated complications.We comprehensively reviewed alterations in the gut microecological environment following traumatic brain injury,with a specific focus on the complex biological processes of peripheral nerves,immunity,and microbes triggered by traumatic brain injury,encompassing autonomic dysfunction,neuroendocrine disturbances,peripheral immunosuppression,increased intestinal barrier permeability,compromised responses of sensory nerves to microorganisms,and potential effector nuclei in the central nervous system influenced by gut microbiota.Additionally,we reviewed the mechanisms underlying secondary biological injury and the dynamic pathological responses that occur following injury to enhance our current understanding of how peripheral pathways impact the outcome of patients with traumatic brain injury.This review aimed to propose a conceptual model for future risk assessment of central nervous system-related diseases while elucidating novel insights into the bidirectional effects of the“brain-gut-microbiota axis.”展开更多
Terahertz biotechnology has been increasingly applied in various biomedical fields and has especially shown great potential for application in brain sciences.In this article,we review the development of terahertz biot...Terahertz biotechnology has been increasingly applied in various biomedical fields and has especially shown great potential for application in brain sciences.In this article,we review the development of terahertz biotechnology and its applications in the field of neuropsychiatry.Available evidence indicates promising prospects for the use of terahertz spectroscopy and terahertz imaging techniques in the diagnosis of amyloid disease,cerebrovascular disease,glioma,psychiatric disease,traumatic brain injury,and myelin deficit.In vitro and animal experiments have also demonstrated the potential therapeutic value of terahertz technology in some neuropsychiatric diseases.Although the precise underlying mechanism of the interactions between terahertz electromagnetic waves and the biosystem is not yet fully understood,the research progress in this field shows great potential for biomedical noninvasive diagnostic and therapeutic applications.However,the biosafety of terahertz radiation requires further exploration regarding its two-sided efficacy in practical applications.This review demonstrates that terahertz biotechnology has the potential to be a promising method in the field of neuropsychiatry based on its unique advantages.展开更多
Traumatic brain injury involves complex pathophysiological mechanisms,among which oxidative stress significantly contributes to the occurrence of secondary injury.In this study,we evaluated hypidone hydrochloride(YL-0...Traumatic brain injury involves complex pathophysiological mechanisms,among which oxidative stress significantly contributes to the occurrence of secondary injury.In this study,we evaluated hypidone hydrochloride(YL-0919),a self-developed antidepressant with selective sigma-1 receptor agonist properties,and its associated mechanisms and targets in traumatic brain injury.Behavioral experiments to assess functional deficits were followed by assessment of neuronal damage through histological analyses and examination of blood-brain barrier permeability and brain edema.Next,we investigated the antioxidative effects of YL-0919 by assessing the levels of traditional markers of oxidative stress in vivo in mice and in vitro in HT22 cells.Finally,the targeted action of YL-0919 was verified by employing a sigma-1 receptor antagonist(BD-1047).Our findings demonstrated that YL-0919 markedly improved deficits in motor function and spatial cognition on day 3 post traumatic brain injury,while also decreasing neuronal mortality and reversing blood-brain barrier disruption and brain edema.Furthermore,YL-0919 effectively combated oxidative stress both in vivo and in vitro.The protective effects of YL-0919 were partially inhibited by BD-1047.These results indicated that YL-0919 relieved impairments in motor and spatial cognition by restraining oxidative stress,a neuroprotective effect that was partially reversed by the sigma-1 receptor antagonist BD-1047.YL-0919 may have potential as a new treatment for traumatic brain injury.展开更多
The oral cavity is a complex physiological community encompassing a wide range of microorganisms.Dysbiosis of oral microbiota can lead to various oral infectious diseases,such as periodontitis and tooth decay,and even...The oral cavity is a complex physiological community encompassing a wide range of microorganisms.Dysbiosis of oral microbiota can lead to various oral infectious diseases,such as periodontitis and tooth decay,and even affect systemic health,including brain aging and neurodegenerative diseases.Recent studies have highlighted how oral microbes might be involved in brain aging and neurodegeneration,indicating potential avenues for intervention strategies.In this review,we summarize clinical evidence demonstrating a link between oral microbes/oral infectious diseases and brain aging/neurodegenerative diseases,and dissect potential mechanisms by which oral microbes contribute to brain aging and neurodegeneration.We also highlight advances in therapeutic development grounded in the realm of oral microbes,with the goal of advancing brain health and promoting healthy aging.展开更多
Repetitive traumatic brain injury impacts adult neurogenesis in the hippocampal dentate gyrus,leading to long-term cognitive impairment.However,the mechanism underlying this neurogenesis impairment remains unknown.In ...Repetitive traumatic brain injury impacts adult neurogenesis in the hippocampal dentate gyrus,leading to long-term cognitive impairment.However,the mechanism underlying this neurogenesis impairment remains unknown.In this study,we established a male mouse model of repetitive traumatic brain injury and performed long-term evaluation of neurogenesis of the hippocampal dentate gyrus after repetitive traumatic brain injury.Our results showed that repetitive traumatic brain injury inhibited neural stem cell proliferation and development,delayed neuronal maturation,and reduced the complexity of neuronal dendrites and spines.Mice with repetitive traumatic brain injuryalso showed deficits in spatial memory retrieval.Moreover,following repetitive traumatic brain injury,neuroinflammation was enhanced in the neurogenesis microenvironment where C1q levels were increased,C1q binding protein levels were decreased,and canonical Wnt/β-catenin signaling was downregulated.An inhibitor of C1 reversed the long-term impairment of neurogenesis induced by repetitive traumatic brain injury and improved neurological function.These findings suggest that repetitive traumatic brain injury–induced C1-related inflammation impairs long-term neurogenesis in the dentate gyrus and contributes to spatial memory retrieval dysfunction.展开更多
Acute ischemic stroke is a clinical emergency and a condition with high morbidity,mortality,and disability.Accurate predictive,diagnostic,and prognostic biomarkers and effective therapeutic targets for acute ischemic ...Acute ischemic stroke is a clinical emergency and a condition with high morbidity,mortality,and disability.Accurate predictive,diagnostic,and prognostic biomarkers and effective therapeutic targets for acute ischemic stroke remain undetermined.With innovations in high-throughput gene sequencing analysis,many aberrantly expressed non-coding RNAs(ncRNAs)in the brain and peripheral blood after acute ischemic stroke have been found in clinical samples and experimental models.Differentially expressed ncRNAs in the post-stroke brain were demonstrated to play vital roles in pathological processes,leading to neuroprotection or deterioration,thus ncRNAs can serve as therapeutic targets in acute ischemic stroke.Moreover,distinctly expressed ncRNAs in the peripheral blood can be used as biomarkers for acute ischemic stroke prediction,diagnosis,and prognosis.In particular,ncRNAs in peripheral immune cells were recently shown to be involved in the peripheral and brain immune response after acute ischemic stroke.In this review,we consolidate the latest progress of research into the roles of ncRNAs(microRNAs,long ncRNAs,and circular RNAs)in the pathological processes of acute ischemic stroke–induced brain damage,as well as the potential of these ncRNAs to act as biomarkers for acute ischemic stroke prediction,diagnosis,and prognosis.Findings from this review will provide novel ideas for the clinical application of ncRNAs in acute ischemic stroke.展开更多
A reduction in adult neurogenesis is associated with behavioral abnormalities in patients with Alzheimer's disease.Consequently,enhancing adult neurogenesis represents a promising therapeutic approach for mitigati...A reduction in adult neurogenesis is associated with behavioral abnormalities in patients with Alzheimer's disease.Consequently,enhancing adult neurogenesis represents a promising therapeutic approach for mitigating disease symptoms and progression.Nonetheless,nonpharmacological interventions aimed at inducing adult neurogenesis are currently limited.Although individual non-pharmacological interventions,such as aerobic exercise,acousto-optic stimulation,and olfactory stimulation,have shown limited capacity to improve neurogenesis and cognitive function in patients with Alzheimer's disease,the therapeutic effect of a strategy that combines these interventions has not been fully explored.In this study,we observed an age-dependent decrease in adult neurogenesis and a concurrent increase in amyloid-beta accumulation in the hippocampus of amyloid precursor protein/presenilin 1 mice aged 2-8 months.Amyloid deposition became evident at 4 months,while neurogenesis declined by 6 months,further deteriorating as the disease progressed.However,following a 4-week multifactor stimulation protocol,which encompassed treadmill running(46 min/d,10 m/min,6 days per week),40 Hz acousto-optic stimulation(1 hour/day,6 days/week),and olfactory stimulation(1 hour/day,6 days/week),we found a significant increase in the number of newborn cells(5'-bromo-2'-deoxyuridine-positive cells),immature neurons(doublecortin-positive cells),newborn immature neurons(5'-bromo-2'-deoxyuridine-positive/doublecortin-positive cells),and newborn astrocytes(5'-bromo-2'-deoxyuridine-positive/glial fibrillary acidic protein-positive cells).Additionally,the amyloid-beta load in the hippocampus decreased.These findings suggest that multifactor stimulation can enhance adult hippocampal neurogenesis and mitigate amyloid-beta neuropathology in amyloid precursor protein/presenilin 1 mice.Furthermore,cognitive abilities were improved,and depressive symptoms were alleviated in amyloid precursor protein/presenilin 1 mice following multifactor stimulation,as evidenced by Morris water maze,novel object recognition,forced swimming test,and tail suspension test results.Notably,the efficacy of multifactor stimulation in consolidating immature neurons persisted for at least 2weeks after treatment cessation.At the molecular level,multifactor stimulation upregulated the expression of neuron-related proteins(NeuN,doublecortin,postsynaptic density protein-95,and synaptophysin),anti-apoptosis-related proteins(Bcl-2 and PARP),and an autophagyassociated protein(LC3B),while decreasing the expression of apoptosis-related proteins(BAX and caspase-9),in the hippocampus of amyloid precursor protein/presenilin 1 mice.These observations might be attributable to both the brain-derived neurotrophic factor-mediated signaling pathway and antioxidant pathways.Furthermore,serum metabolomics analysis indicated that multifactor stimulation regulated differentially expressed metabolites associated with cell apoptosis,oxidative damage,and cognition.Collectively,these findings suggest that multifactor stimulation is a novel non-invasive approach for the prevention and treatment of Alzheimer's disease.展开更多
Background: The treatment of brain metastases with radiotherapy has shifted to the use of Stereotactic Radio-surgery (SRS). The technical issue of expanding the treatment volume around the Gross Tumor Volume (GTV) is ...Background: The treatment of brain metastases with radiotherapy has shifted to the use of Stereotactic Radio-surgery (SRS). The technical issue of expanding the treatment volume around the Gross Tumor Volume (GTV) is a current debate. Radiotherapy centers use variable GTV-PTV margins, ranging from one to 2 mm. Material and Methods: We performed a dosimetric comparison in plans of twenty patients using three margins: PTV zero, PTV1, and PTV2. We also developed imaginary Peel volumes. These volumes are described as follows: Peel1 = PTV1 − GTV, Peel2 = PTV2 − GTV. Results: Our results showed that the mean PTV volume differed significantly across the different margins (p = 0.000). The V12 of the brain significantly varied as a function of PTV margin (p = 0.000). The target coverage and plan quality indices were not significantly different. The Peel volume dosimetric analysis showed that the mean dose was significantly higher in the nearby normal brain tissue: Peel1 (p = 0.022) and Peel 2 (p = 0.013). Conclusion: According to our dosimetric analysis, expanding the GTV into a PTV by 1 mm margin is more convenient than 2 mm.展开更多
Brain-computer interfaces(BCIs)represent an emerging technology that facilitates direct communication between the brain and external devices.In recent years,numerous review articles have explored various aspects of BC...Brain-computer interfaces(BCIs)represent an emerging technology that facilitates direct communication between the brain and external devices.In recent years,numerous review articles have explored various aspects of BCIs,including their fundamental principles,technical advancements,and applications in specific domains.However,these reviews often focus on signal processing,hardware development,or limited applications such as motor rehabilitation or communication.This paper aims to offer a comprehensive review of recent electroencephalogram(EEG)-based BCI applications in the medical field across 8 critical areas,encompassing rehabilitation,daily communication,epilepsy,cerebral resuscitation,sleep,neurodegenerative diseases,anesthesiology,and emotion recognition.Moreover,the current challenges and future trends of BCIs were also discussed,including personal privacy and ethical concerns,network security vulnerabilities,safety issues,and biocompatibility.展开更多
Following the discovery of bone as an endocrine organ with systemic influence,bone-brain interaction has emerged as a research hotspot,unveiling complex bidirectional communication between bone and brain.Studies indic...Following the discovery of bone as an endocrine organ with systemic influence,bone-brain interaction has emerged as a research hotspot,unveiling complex bidirectional communication between bone and brain.Studies indicate that bone and brain can influence each other’s homeostasis via multiple pathways,yet there is a dearth of systematic reviews in this area.This review comprehensively examines interactions across three key areas:the influence of bone-derived factors on brain function,the effects of brain-related diseases or injuries(BRDI)on bone health,and the concept of skeletal interoception.Additionally,the review discusses innovative approaches in biomaterial design inspired by bone-brain interaction mechanisms,aiming to facilitate bonebrain interactions through materiobiological effects to aid in the treatment of neurodegenerative and bone-related diseases.Notably,the integration of artificial intelligence(AI)in biomaterial design is highlighted,showcasing AI’s role in expediting the formulation of effective and targeted treatment strategies.In conclusion,this review offers vital insights into the mechanisms of bone-brain interaction and suggests advanced approaches to harness these interactions in clinical practice.These insights offer promising avenues for preventing and treating complex diseases impacting the skeleton and brain,underscoring the potential of interdisciplinary approaches in enhancing human health.展开更多
Brain tumors present significant challenges in medical diagnosis and treatment,where early detection is crucial for reducing morbidity and mortality rates.This research introduces a novel deep learning model,the Progr...Brain tumors present significant challenges in medical diagnosis and treatment,where early detection is crucial for reducing morbidity and mortality rates.This research introduces a novel deep learning model,the Progressive Layered U-Net(PLU-Net),designed to improve brain tumor segmentation accuracy from Magnetic Resonance Imaging(MRI)scans.The PLU-Net extends the standard U-Net architecture by incorporating progressive layering,attention mechanisms,and multi-scale data augmentation.The progressive layering involves a cascaded structure that refines segmentation masks across multiple stages,allowing the model to capture features at different scales and resolutions.Attention gates within the convolutional layers selectively focus on relevant features while suppressing irrelevant ones,enhancing the model's ability to delineate tumor boundaries.Additionally,multi-scale data augmentation techniques increase the diversity of training data and boost the model's generalization capabilities.Evaluated on the BraTS 2021 dataset,the PLU-Net achieved state-of-the-art performance with a dice coefficient of 0.91,specificity of 0.92,sensitivity of 0.89,Hausdorff95 of 2.5,outperforming other modified U-Net architectures in segmentation accuracy.These results underscore the effectiveness of the PLU-Net in improving brain tumor segmentation from MRI scans,supporting clinicians in early diagnosis,treatment planning,and the development of new therapies.展开更多
Background:Magnetic resonance spectroscopy(MRS)represents a significant advancement in the noninvasive assessment of brain metabolism.MRS can provide valuable metabolic information and facilitate more accurate diagnos...Background:Magnetic resonance spectroscopy(MRS)represents a significant advancement in the noninvasive assessment of brain metabolism.MRS can provide valuable metabolic information and facilitate more accurate diagnoses of intrauterine fetal brain development than was previously possible.To obtain information regarding normal intrauterine fetal brain metabolism and to establish gestational age-specific reference values for normal fetal brain metabolites for subsequent use in MRS,we conducted MRS scans of normal fetal brains during mid-to late-term pregnancies,along with related processing.Methods:In this prospective study,MRS scans were conducted on 109 fetuses,with a total of 54 normal fetal brains enrolled on the basis of specific inclusion and exclusion criteria.We analyzed metabolic ratios,including the sum of N-acetylaspartate(NAA)and total N-acetylaspartate(tNAA),total choline(tCho),inositol(Ins),and total creatine(tCr),in relation to gestational age.Results:Gestational age was significantly correlated with specific metabolic ratios(Ins/tCr:r=-0.75,p<0.0001;tCho/tCr:r=-0.50,p<0.0001),especially tNAA/tCho(tNAA/tCho:r=0.54,p<0.0001)and tNAA/Ins(r=0.56,p<0.0001),providing a baseline for fetal brain metabolic assessment.Linear regression analysis was used to calculate regression lines for fetal brain metabolite ratios.Slopes were tested at p of 0.05.Conclusions:The current findings confirmed a significant correlation between fetal brain metabolites and gestational age,supporting the feasibility of establishing standard values for these metabolites in fetal brain assessment.展开更多
Type 2 diabetes mellitus and Parkinson's disease are chronic diseases linked to a growing pandemic that affects older adults and causes significant socio-economic burden.Epidemiological data supporting a close rel...Type 2 diabetes mellitus and Parkinson's disease are chronic diseases linked to a growing pandemic that affects older adults and causes significant socio-economic burden.Epidemiological data supporting a close relationship between these two aging-related diseases have resulted in the investigation of shared pathophysiological molecular mechanisms.Impaired insulin signaling in the brain has gained increasing attention during the last decade and has been suggested to contribute to the development of Parkinson's disease through the dysregulation of several pathological processes.The contribution of type 2 diabetes mellitus and insulin resistance in neurodegeneration in Parkinson's disease,with emphasis on brain insulin resistance,is extensively discussed in this article and new therapeutic strategies targeting this pathological link are presented and reviewed.展开更多
Brain organoids encompass a large collection of in vitro stem cell–derived 3D culture systems that aim to recapitulate multiple aspects of in vivo brain development and function.First,this review provides a brief int...Brain organoids encompass a large collection of in vitro stem cell–derived 3D culture systems that aim to recapitulate multiple aspects of in vivo brain development and function.First,this review provides a brief introduction to the current state-of-the-art for neuroectoderm brain organoid development,emphasizing their biggest advantages in comparison with classical two-dimensional cell cultures and animal models.However,despite their usefulness for developmental studies,a major limitation for most brain organoid models is the absence of contributing cell types from endodermal and mesodermal origin.As such,current research is highly investing towards the incorporation of a functional vasculature and the microglial immune component.In this review,we will specifically focus on the development of immune-competent brain organoids.By summarizing the different approaches applied to incorporate microglia,it is highlighted that immune-competent brain organoids are not only important for studying neuronal network formation,but also offer a clear future as a new tool to study inflammatory responses in vitro in 3D in a brainlike environment.Therefore,our main focus here is to provide a comprehensive overview of assays to measure microglial phenotype and function within brain organoids,with an outlook on how these findings could better understand neuronal network development or restoration,as well as the influence of physical stress on microglia-containing brain organoids.Finally,we would like to stress that even though the development of immune-competent brain organoids has largely evolved over the past decade,their full potential as a pre-clinical tool to study novel therapeutic approaches to halt or reduce inflammation-mediated neurodegeneration still needs to be explored and validated.展开更多
文摘Blast-induced traumatic brain injury(b-TBI)is a kind of significant injury to soldiers in the current military conflicts.However,the mechanism of b-TBI has not been well understood,and even there are some contradictory conclusions.It is crucial to reveal the dynamic mechanism of brain volume and shear deformations under blast loading for better understanding of b-TBI.In this paper,the numerical simulation method is adopted to carry out comprehensive and in-depth researches on this issue for the first time.Based on the coupled Eulerian-Lagrangian method,the fluid-structure coupling model of the blast wave and human head is developed to simulate two situations,namely the head subjected to the frontal and lateral impacts.The simulation results are analyzed to obtain the underlying dynamic mechanisms of brain deformation.The brain volume deformation is dominated by the local bending vibration of the skull,and the corresponding frequency for the forehead skull under the frontal impact and the lateral skull faced to the lateral impact is as high as 8 kHz and 5 kHz,respectively.This leads to the high-frequency fluctuation of brain pressure and the large pressure gradient along the skull,totally different from the dynamic response of brain under head collisions.While the brain shear deformation mainly depends on the relative tangential displacement between the skull and brain and the anatomical structure of inner skull,being not related to the brain pressure and its gradient.By further comparing the medical statistics,it is inferred that diffuse axonal injury and brain contusion,the two most common types of b-TBI,are mainly attributed to brain shear deformations.And the von Mises stress can be adopted as the indicator for these two brain injuries.This study can provide theoretical guidance for the diagnosis of b-TBI and the development of protective equipment.
文摘Research examining the long-term effects of drugs such as AdderallTM, a mixed DL-amphetamine, as a first-line treatment strategy for those diagnosed with attention deficit hyperactivity disorder (ADHD), is very much lacking. In order to address this, the present study sought to examine possible behavioral and neuroanatomical effects of chronic oral exposure to DL-amphetamine administered at a relatively low dose to the developing male Sprague Dawley rat. Animals were administered a mixture of chocolate drink and DL-amphetamine at a dose of 1.6 mg/kg for 36 days, beginning at PD 24 and ending at PD 60. Anxiety, a potential side effect of stimulant treatment, was assessed using three paradigms: The open field test (OF), the social interaction test (SI), and the elevated plus maze (EPM). The OF and SI were conducted using repeated testing over the course of five weeks. Testing occurred immediately after drug administration on a given day. The EPM was used only once on the penultimate day of treatment, before the drug was administered. Following drug treatment on PD 60, brain-to-body weight ratios were obtained. Results indicated that there were no group differences in brain-to-body weight ratios nor were differences in locomotor and social behaviors observed. However, rats treated with DL-amphetamine did show an anxiogenic response in the EPM. This was represented as a significant reduction in open arm entries. Overall our findings suggest that while chronic drug treatment fails to alter multiple measures of behavior, or reliable changes in brain volume, such treatment may impact a behavioral index of anxiety. Future research should seek to examine the implications of this heightened anxiogenic response in animals treated chronically with oral, low-dose DL-amphetamine.
基金supported by National Key R&D Programme of China(No.2022YFC3602500,2022YFC3602505)National Natural Science Foundation of China(81971091)+3 种基金Outstanding Young Talents Project of Capital Medical University(A2105)Capital’s Funds for Health Improvement and Research(2020-1-2041)Key Science&Technologies R&D Programme of Lishui City(2019ZDYF18)Zhejiang Provincial Programme for the Cultivation of High-level Innovative Health talents and AstraZeneca Investment(China)Co.,Ltd.
文摘Background This study aimed to investigate the relationship between overall obesity,central obesity and brain volumes,as well as to determine the extent to which cardiometabolic and inflammatory measures act as mediators in the association between body mass index(BMI),waist-hip ratio(WHR)and brain volumes.Methods In the context of counterfactual framework,mediation analysis was used to explore the potential mediation in which cardiometabolic and inflammatory measures may mediate the relationship between BMI,WHR,and brain volumes.Results Among 2413 community-dwelling participants,those with high BMI or WHR levels experienced an approximately brain ageing of 4 years.Especially,individuals with high WHR or BMI under the age of 65 exhibited white matter hyperintensity volume(WMHV)differences equivalent to around 5 years of ageing.Conversely,in the high-level WHR population over the age of 65,premature brain ageing in gray matter volume(GMV)exceeded 4.5 years.For GMV,more than 45%of the observed effect of WHR was mediated by glycaemic metabolism indicators.This proportion increases to 78.70%when blood pressure,triglyceride,leucocyte count,and neutrophil count are jointly considered with glycaemic metabolism indicators.Regarding WHR and BMI’s association with WMHV,cardiometabolic and inflammatory indicators,along with high-density lipoprotein cholesterol,mediated 35.50%and 20.20%of the respective effects.Conclusions Overall obesity and central obesity were associated with lower GMV and higher WMHV,a process that is partially mediated by the presence of cardiometabolic and inflammatory measures.
文摘Traumatic brain injury, chronic traumatic encephalopathy, and Alzheimer's disease are three distinct neurological disorders that share common pathophysiological mechanisms involving neuroinflammation. One sequela of neuroinflammation includes the pathologic hyperphosphorylation of tau protein, an endogenous microtubule-associated protein that protects the integrity of neuronal cytoskeletons. Tau hyperphosphorylation results in protein misfolding and subsequent accumulation of tau tangles forming neurotoxic aggregates. These misfolded proteins are characteristic of traumatic brain injury, chronic traumatic encephalopathy, and Alzheimer's disease and can lead to downstream neuroinflammatory processes, including assembly and activation of the inflammasome complex. Inflammasomes refer to a family of multimeric protein units that, upon activation, release a cascade of signaling molecules resulting in caspase-induced cell death and inflammation mediated by the release of interleukin-1β cytokine. One specific inflammasome, the NOD-like receptor protein 3, has been proposed to be a key regulator of tau phosphorylation where it has been shown that prolonged NOD-like receptor protein 3 activation acts as a causal factor in pathological tau accumulation and spreading. This review begins by describing the epidemiology and pathophysiology of traumatic brain injury, chronic traumatic encephalopathy, and Alzheimer's disease. Next, we highlight neuroinflammation as an overriding theme and discuss the role of the NOD-like receptor protein 3 inflammasome in the formation of tau deposits and how such tauopathic entities spread throughout the brain. We then propose a novel framework linking traumatic brain injury, chronic traumatic encephalopathy, and Alzheimer's disease as inflammasomedependent pathologies that exist along a temporal continuum. Finally, we discuss potential therapeutic targets that may intercept this pathway and ultimately minimize long-term neurological decline.
基金supported by the grants from the Spanish Ministry of Economy and Competitiveness(SAF2017-85602-R)the Spanish Ministry of Science and Innovation(PID2020-119638RB-I00 to EGR)FPU-program(FPU17/02616 to JCG)。
文摘The blood–brain barrier constitutes a dynamic and interactive boundary separating the central nervous system and the peripheral circulation.It tightly modulates the ion transport and nutrient influx,while restricting the entry of harmful factors,and selectively limiting the migration of immune cells,thereby maintaining brain homeostasis.Despite the well-established association between blood–brain barrier disruption and most neurodegenerative/neuroinflammatory diseases,much remains unknown about the factors influencing its physiology and the mechanisms underlying its breakdown.Moreover,the role of blood–brain barrier breakdown in the translational failure underlying therapies for brain disorders is just starting to be understood.This review aims to revisit this concept of“blood–brain barrier breakdown,”delving into the most controversial aspects,prevalent challenges,and knowledge gaps concerning the lack of blood–brain barrier integrity.By moving beyond the oversimplistic dichotomy of an“open”/“bad”or a“closed”/“good”barrier,our objective is to provide a more comprehensive insight into blood–brain barrier dynamics,to identify novel targets and/or therapeutic approaches aimed at mitigating blood–brain barrier dysfunction.Furthermore,in this review,we advocate for considering the diverse time-and location-dependent alterations in the blood–brain barrier,which go beyond tight-junction disruption or brain endothelial cell breakdown,illustrated through the dynamics of ischemic stroke as a case study.Through this exploration,we seek to underscore the complexity of blood–brain barrier dysfunction and its implications for the pathogenesis and therapy of brain diseases.
基金supported by the National Natural Science Foundation of China,No.82174112(to PZ)Science and Technology Project of Haihe Laboratory of Modern Chinese Medicine,No.22HHZYSS00015(to PZ)State-Sponsored Postdoctoral Researcher Program,No.GZC20231925(to LN)。
文摘Traumatic brain injury is a prevalent disorder of the central nervous system.In addition to primary brain parenchymal damage,the enduring biological consequences of traumatic brain injury pose long-term risks for patients with traumatic brain injury;however,the underlying pathogenesis remains unclear,and effective intervention methods are lacking.Intestinal dysfunction is a significant consequence of traumatic brain injury.Being the most densely innervated peripheral tissue in the body,the gut possesses multiple pathways for the establishment of a bidirectional“brain-gut axis”with the central nervous system.The gut harbors a vast microbial community,and alterations of the gut niche contribute to the progression of traumatic brain injury and its unfavorable prognosis through neuronal,hormonal,and immune pathways.A comprehensive understanding of microbiota-mediated peripheral neuroimmunomodulation mechanisms is needed to enhance treatment strategies for traumatic brain injury and its associated complications.We comprehensively reviewed alterations in the gut microecological environment following traumatic brain injury,with a specific focus on the complex biological processes of peripheral nerves,immunity,and microbes triggered by traumatic brain injury,encompassing autonomic dysfunction,neuroendocrine disturbances,peripheral immunosuppression,increased intestinal barrier permeability,compromised responses of sensory nerves to microorganisms,and potential effector nuclei in the central nervous system influenced by gut microbiota.Additionally,we reviewed the mechanisms underlying secondary biological injury and the dynamic pathological responses that occur following injury to enhance our current understanding of how peripheral pathways impact the outcome of patients with traumatic brain injury.This review aimed to propose a conceptual model for future risk assessment of central nervous system-related diseases while elucidating novel insights into the bidirectional effects of the“brain-gut-microbiota axis.”
基金supported by grants from the National Key R&D Program of China,No.2017YFC0909200(to DC)the National Natural Science Foundation of China,No.62075225(to HZ)+1 种基金Zhejiang Provincial Medical Health Science and Technology Project,No.2023XY053(to ZP)Zhejiang Provincial Traditional Chinese Medical Science and Technology Project,No.2023ZL703(to ZP).
文摘Terahertz biotechnology has been increasingly applied in various biomedical fields and has especially shown great potential for application in brain sciences.In this article,we review the development of terahertz biotechnology and its applications in the field of neuropsychiatry.Available evidence indicates promising prospects for the use of terahertz spectroscopy and terahertz imaging techniques in the diagnosis of amyloid disease,cerebrovascular disease,glioma,psychiatric disease,traumatic brain injury,and myelin deficit.In vitro and animal experiments have also demonstrated the potential therapeutic value of terahertz technology in some neuropsychiatric diseases.Although the precise underlying mechanism of the interactions between terahertz electromagnetic waves and the biosystem is not yet fully understood,the research progress in this field shows great potential for biomedical noninvasive diagnostic and therapeutic applications.However,the biosafety of terahertz radiation requires further exploration regarding its two-sided efficacy in practical applications.This review demonstrates that terahertz biotechnology has the potential to be a promising method in the field of neuropsychiatry based on its unique advantages.
基金supported by the National Natural Science Foundation of China,Nos.82204360(to HM)and 82270411(to GW)National Science and Technology Innovation 2030 Major Program,No.2021ZD0200900(to YL)。
文摘Traumatic brain injury involves complex pathophysiological mechanisms,among which oxidative stress significantly contributes to the occurrence of secondary injury.In this study,we evaluated hypidone hydrochloride(YL-0919),a self-developed antidepressant with selective sigma-1 receptor agonist properties,and its associated mechanisms and targets in traumatic brain injury.Behavioral experiments to assess functional deficits were followed by assessment of neuronal damage through histological analyses and examination of blood-brain barrier permeability and brain edema.Next,we investigated the antioxidative effects of YL-0919 by assessing the levels of traditional markers of oxidative stress in vivo in mice and in vitro in HT22 cells.Finally,the targeted action of YL-0919 was verified by employing a sigma-1 receptor antagonist(BD-1047).Our findings demonstrated that YL-0919 markedly improved deficits in motor function and spatial cognition on day 3 post traumatic brain injury,while also decreasing neuronal mortality and reversing blood-brain barrier disruption and brain edema.Furthermore,YL-0919 effectively combated oxidative stress both in vivo and in vitro.The protective effects of YL-0919 were partially inhibited by BD-1047.These results indicated that YL-0919 relieved impairments in motor and spatial cognition by restraining oxidative stress,a neuroprotective effect that was partially reversed by the sigma-1 receptor antagonist BD-1047.YL-0919 may have potential as a new treatment for traumatic brain injury.
基金supported by the National Natural Science Foundation of China,No.81921006(to GHL)。
文摘The oral cavity is a complex physiological community encompassing a wide range of microorganisms.Dysbiosis of oral microbiota can lead to various oral infectious diseases,such as periodontitis and tooth decay,and even affect systemic health,including brain aging and neurodegenerative diseases.Recent studies have highlighted how oral microbes might be involved in brain aging and neurodegeneration,indicating potential avenues for intervention strategies.In this review,we summarize clinical evidence demonstrating a link between oral microbes/oral infectious diseases and brain aging/neurodegenerative diseases,and dissect potential mechanisms by which oral microbes contribute to brain aging and neurodegeneration.We also highlight advances in therapeutic development grounded in the realm of oral microbes,with the goal of advancing brain health and promoting healthy aging.
基金supported by the Fundamental Research Program of Shanxi Province of China,No.20210302124277the Science Foundation of Shanxi Bethune Hospital,No.2021YJ13(both to JW)。
文摘Repetitive traumatic brain injury impacts adult neurogenesis in the hippocampal dentate gyrus,leading to long-term cognitive impairment.However,the mechanism underlying this neurogenesis impairment remains unknown.In this study,we established a male mouse model of repetitive traumatic brain injury and performed long-term evaluation of neurogenesis of the hippocampal dentate gyrus after repetitive traumatic brain injury.Our results showed that repetitive traumatic brain injury inhibited neural stem cell proliferation and development,delayed neuronal maturation,and reduced the complexity of neuronal dendrites and spines.Mice with repetitive traumatic brain injuryalso showed deficits in spatial memory retrieval.Moreover,following repetitive traumatic brain injury,neuroinflammation was enhanced in the neurogenesis microenvironment where C1q levels were increased,C1q binding protein levels were decreased,and canonical Wnt/β-catenin signaling was downregulated.An inhibitor of C1 reversed the long-term impairment of neurogenesis induced by repetitive traumatic brain injury and improved neurological function.These findings suggest that repetitive traumatic brain injury–induced C1-related inflammation impairs long-term neurogenesis in the dentate gyrus and contributes to spatial memory retrieval dysfunction.
基金supported by the National Natural Science Foundation of China,Nos.82301486(to SL)and 82071325(to FY)Medjaden Academy&Research Foundation for Young Scientists,No.MJR202310040(to SL)+2 种基金Nanjing Medical University Science and Technique Development,No.NMUB20220060(to SL)Medical Scientific Research Project of Jiangsu Commission of Health,No.ZDA2020019(to JZ)Health China Buchang Zhiyuan Public Welfare Project for Heart and Brain Health,No.HIGHER202102(to QD).
文摘Acute ischemic stroke is a clinical emergency and a condition with high morbidity,mortality,and disability.Accurate predictive,diagnostic,and prognostic biomarkers and effective therapeutic targets for acute ischemic stroke remain undetermined.With innovations in high-throughput gene sequencing analysis,many aberrantly expressed non-coding RNAs(ncRNAs)in the brain and peripheral blood after acute ischemic stroke have been found in clinical samples and experimental models.Differentially expressed ncRNAs in the post-stroke brain were demonstrated to play vital roles in pathological processes,leading to neuroprotection or deterioration,thus ncRNAs can serve as therapeutic targets in acute ischemic stroke.Moreover,distinctly expressed ncRNAs in the peripheral blood can be used as biomarkers for acute ischemic stroke prediction,diagnosis,and prognosis.In particular,ncRNAs in peripheral immune cells were recently shown to be involved in the peripheral and brain immune response after acute ischemic stroke.In this review,we consolidate the latest progress of research into the roles of ncRNAs(microRNAs,long ncRNAs,and circular RNAs)in the pathological processes of acute ischemic stroke–induced brain damage,as well as the potential of these ncRNAs to act as biomarkers for acute ischemic stroke prediction,diagnosis,and prognosis.Findings from this review will provide novel ideas for the clinical application of ncRNAs in acute ischemic stroke.
基金supported by the National Natural Science Foundation of China,No.82001155(to LL)the Natural Science Foundation of Zhejiang Province,No.LY23H090004(to LL)+5 种基金the Natural Science Foundation of Ningbo,No.2023J068(to LL)the Fundamental Research Funds for the Provincial Universities of Zhejiang Province,No.SJLY2023008(to LL)the College Students'Scientific and Technological Innovation Project(Xin Miao Talent Plan)of Zhejiang Province,No.2022R405A045(to CC)the Student ResearchInnovation Program(SRIP)of Ningbo University,Nos.20235RIP1919(to CZ),2023SRIP1938(to YZ)the K.C.Wong Magna Fund in Ningbo University。
文摘A reduction in adult neurogenesis is associated with behavioral abnormalities in patients with Alzheimer's disease.Consequently,enhancing adult neurogenesis represents a promising therapeutic approach for mitigating disease symptoms and progression.Nonetheless,nonpharmacological interventions aimed at inducing adult neurogenesis are currently limited.Although individual non-pharmacological interventions,such as aerobic exercise,acousto-optic stimulation,and olfactory stimulation,have shown limited capacity to improve neurogenesis and cognitive function in patients with Alzheimer's disease,the therapeutic effect of a strategy that combines these interventions has not been fully explored.In this study,we observed an age-dependent decrease in adult neurogenesis and a concurrent increase in amyloid-beta accumulation in the hippocampus of amyloid precursor protein/presenilin 1 mice aged 2-8 months.Amyloid deposition became evident at 4 months,while neurogenesis declined by 6 months,further deteriorating as the disease progressed.However,following a 4-week multifactor stimulation protocol,which encompassed treadmill running(46 min/d,10 m/min,6 days per week),40 Hz acousto-optic stimulation(1 hour/day,6 days/week),and olfactory stimulation(1 hour/day,6 days/week),we found a significant increase in the number of newborn cells(5'-bromo-2'-deoxyuridine-positive cells),immature neurons(doublecortin-positive cells),newborn immature neurons(5'-bromo-2'-deoxyuridine-positive/doublecortin-positive cells),and newborn astrocytes(5'-bromo-2'-deoxyuridine-positive/glial fibrillary acidic protein-positive cells).Additionally,the amyloid-beta load in the hippocampus decreased.These findings suggest that multifactor stimulation can enhance adult hippocampal neurogenesis and mitigate amyloid-beta neuropathology in amyloid precursor protein/presenilin 1 mice.Furthermore,cognitive abilities were improved,and depressive symptoms were alleviated in amyloid precursor protein/presenilin 1 mice following multifactor stimulation,as evidenced by Morris water maze,novel object recognition,forced swimming test,and tail suspension test results.Notably,the efficacy of multifactor stimulation in consolidating immature neurons persisted for at least 2weeks after treatment cessation.At the molecular level,multifactor stimulation upregulated the expression of neuron-related proteins(NeuN,doublecortin,postsynaptic density protein-95,and synaptophysin),anti-apoptosis-related proteins(Bcl-2 and PARP),and an autophagyassociated protein(LC3B),while decreasing the expression of apoptosis-related proteins(BAX and caspase-9),in the hippocampus of amyloid precursor protein/presenilin 1 mice.These observations might be attributable to both the brain-derived neurotrophic factor-mediated signaling pathway and antioxidant pathways.Furthermore,serum metabolomics analysis indicated that multifactor stimulation regulated differentially expressed metabolites associated with cell apoptosis,oxidative damage,and cognition.Collectively,these findings suggest that multifactor stimulation is a novel non-invasive approach for the prevention and treatment of Alzheimer's disease.
文摘Background: The treatment of brain metastases with radiotherapy has shifted to the use of Stereotactic Radio-surgery (SRS). The technical issue of expanding the treatment volume around the Gross Tumor Volume (GTV) is a current debate. Radiotherapy centers use variable GTV-PTV margins, ranging from one to 2 mm. Material and Methods: We performed a dosimetric comparison in plans of twenty patients using three margins: PTV zero, PTV1, and PTV2. We also developed imaginary Peel volumes. These volumes are described as follows: Peel1 = PTV1 − GTV, Peel2 = PTV2 − GTV. Results: Our results showed that the mean PTV volume differed significantly across the different margins (p = 0.000). The V12 of the brain significantly varied as a function of PTV margin (p = 0.000). The target coverage and plan quality indices were not significantly different. The Peel volume dosimetric analysis showed that the mean dose was significantly higher in the nearby normal brain tissue: Peel1 (p = 0.022) and Peel 2 (p = 0.013). Conclusion: According to our dosimetric analysis, expanding the GTV into a PTV by 1 mm margin is more convenient than 2 mm.
基金supported by the National Key R&D Program of China(2021YFF1200602)the National Science Fund for Excellent Overseas Scholars(0401260011)+3 种基金the National Defense Science and Technology Innovation Fund of Chinese Academy of Sciences(c02022088)the Tianjin Science and Technology Program(20JCZDJC00810)the National Natural Science Foundation of China(82202798)the Shanghai Sailing Program(22YF1404200).
文摘Brain-computer interfaces(BCIs)represent an emerging technology that facilitates direct communication between the brain and external devices.In recent years,numerous review articles have explored various aspects of BCIs,including their fundamental principles,technical advancements,and applications in specific domains.However,these reviews often focus on signal processing,hardware development,or limited applications such as motor rehabilitation or communication.This paper aims to offer a comprehensive review of recent electroencephalogram(EEG)-based BCI applications in the medical field across 8 critical areas,encompassing rehabilitation,daily communication,epilepsy,cerebral resuscitation,sleep,neurodegenerative diseases,anesthesiology,and emotion recognition.Moreover,the current challenges and future trends of BCIs were also discussed,including personal privacy and ethical concerns,network security vulnerabilities,safety issues,and biocompatibility.
基金financially supported by the Basic Science Center Program(T2288102)the Key Program of the National Natural Science Foundation of China(32230059)+3 种基金the Foundation of Frontiers Science Center for Materiobiology and Dynamic Chemistry(JKVD1211002)the Project supported by the Young Scientists Fund of the National Natural Science Foundation of China(32401128)Postdoctoral Fellowship Program of CPSF(GZC20230793)Shanghai Post-doctoral Excellence Program(2023251).
文摘Following the discovery of bone as an endocrine organ with systemic influence,bone-brain interaction has emerged as a research hotspot,unveiling complex bidirectional communication between bone and brain.Studies indicate that bone and brain can influence each other’s homeostasis via multiple pathways,yet there is a dearth of systematic reviews in this area.This review comprehensively examines interactions across three key areas:the influence of bone-derived factors on brain function,the effects of brain-related diseases or injuries(BRDI)on bone health,and the concept of skeletal interoception.Additionally,the review discusses innovative approaches in biomaterial design inspired by bone-brain interaction mechanisms,aiming to facilitate bonebrain interactions through materiobiological effects to aid in the treatment of neurodegenerative and bone-related diseases.Notably,the integration of artificial intelligence(AI)in biomaterial design is highlighted,showcasing AI’s role in expediting the formulation of effective and targeted treatment strategies.In conclusion,this review offers vital insights into the mechanisms of bone-brain interaction and suggests advanced approaches to harness these interactions in clinical practice.These insights offer promising avenues for preventing and treating complex diseases impacting the skeleton and brain,underscoring the potential of interdisciplinary approaches in enhancing human health.
文摘Brain tumors present significant challenges in medical diagnosis and treatment,where early detection is crucial for reducing morbidity and mortality rates.This research introduces a novel deep learning model,the Progressive Layered U-Net(PLU-Net),designed to improve brain tumor segmentation accuracy from Magnetic Resonance Imaging(MRI)scans.The PLU-Net extends the standard U-Net architecture by incorporating progressive layering,attention mechanisms,and multi-scale data augmentation.The progressive layering involves a cascaded structure that refines segmentation masks across multiple stages,allowing the model to capture features at different scales and resolutions.Attention gates within the convolutional layers selectively focus on relevant features while suppressing irrelevant ones,enhancing the model's ability to delineate tumor boundaries.Additionally,multi-scale data augmentation techniques increase the diversity of training data and boost the model's generalization capabilities.Evaluated on the BraTS 2021 dataset,the PLU-Net achieved state-of-the-art performance with a dice coefficient of 0.91,specificity of 0.92,sensitivity of 0.89,Hausdorff95 of 2.5,outperforming other modified U-Net architectures in segmentation accuracy.These results underscore the effectiveness of the PLU-Net in improving brain tumor segmentation from MRI scans,supporting clinicians in early diagnosis,treatment planning,and the development of new therapies.
基金supported by China Society for Maternal and Child Health Research(Gant/Award Number:2023CAMCHS003A17).
文摘Background:Magnetic resonance spectroscopy(MRS)represents a significant advancement in the noninvasive assessment of brain metabolism.MRS can provide valuable metabolic information and facilitate more accurate diagnoses of intrauterine fetal brain development than was previously possible.To obtain information regarding normal intrauterine fetal brain metabolism and to establish gestational age-specific reference values for normal fetal brain metabolites for subsequent use in MRS,we conducted MRS scans of normal fetal brains during mid-to late-term pregnancies,along with related processing.Methods:In this prospective study,MRS scans were conducted on 109 fetuses,with a total of 54 normal fetal brains enrolled on the basis of specific inclusion and exclusion criteria.We analyzed metabolic ratios,including the sum of N-acetylaspartate(NAA)and total N-acetylaspartate(tNAA),total choline(tCho),inositol(Ins),and total creatine(tCr),in relation to gestational age.Results:Gestational age was significantly correlated with specific metabolic ratios(Ins/tCr:r=-0.75,p<0.0001;tCho/tCr:r=-0.50,p<0.0001),especially tNAA/tCho(tNAA/tCho:r=0.54,p<0.0001)and tNAA/Ins(r=0.56,p<0.0001),providing a baseline for fetal brain metabolic assessment.Linear regression analysis was used to calculate regression lines for fetal brain metabolite ratios.Slopes were tested at p of 0.05.Conclusions:The current findings confirmed a significant correlation between fetal brain metabolites and gestational age,supporting the feasibility of establishing standard values for these metabolites in fetal brain assessment.
基金support from Region Stockholm,ALF-project(FoUI-960041)Open Access funding is provided by Karolinska Institute(both to IM)。
文摘Type 2 diabetes mellitus and Parkinson's disease are chronic diseases linked to a growing pandemic that affects older adults and causes significant socio-economic burden.Epidemiological data supporting a close relationship between these two aging-related diseases have resulted in the investigation of shared pathophysiological molecular mechanisms.Impaired insulin signaling in the brain has gained increasing attention during the last decade and has been suggested to contribute to the development of Parkinson's disease through the dysregulation of several pathological processes.The contribution of type 2 diabetes mellitus and insulin resistance in neurodegeneration in Parkinson's disease,with emphasis on brain insulin resistance,is extensively discussed in this article and new therapeutic strategies targeting this pathological link are presented and reviewed.
基金funded by the European Union’s Horizon 2020 research and innovation programme under the Marie Skodowska-Curie grant agreement No.813263(PMSMat Train,granted to UF,PP,MV,and DP)provided by the Fund for Scientific Research Flanders(FWO-Vlaanderen)of the Flemish Government(FWO sabbatical bench fee K800224N granted to PP)and ERA-NET Re Park(granted to PP)。
文摘Brain organoids encompass a large collection of in vitro stem cell–derived 3D culture systems that aim to recapitulate multiple aspects of in vivo brain development and function.First,this review provides a brief introduction to the current state-of-the-art for neuroectoderm brain organoid development,emphasizing their biggest advantages in comparison with classical two-dimensional cell cultures and animal models.However,despite their usefulness for developmental studies,a major limitation for most brain organoid models is the absence of contributing cell types from endodermal and mesodermal origin.As such,current research is highly investing towards the incorporation of a functional vasculature and the microglial immune component.In this review,we will specifically focus on the development of immune-competent brain organoids.By summarizing the different approaches applied to incorporate microglia,it is highlighted that immune-competent brain organoids are not only important for studying neuronal network formation,but also offer a clear future as a new tool to study inflammatory responses in vitro in 3D in a brainlike environment.Therefore,our main focus here is to provide a comprehensive overview of assays to measure microglial phenotype and function within brain organoids,with an outlook on how these findings could better understand neuronal network development or restoration,as well as the influence of physical stress on microglia-containing brain organoids.Finally,we would like to stress that even though the development of immune-competent brain organoids has largely evolved over the past decade,their full potential as a pre-clinical tool to study novel therapeutic approaches to halt or reduce inflammation-mediated neurodegeneration still needs to be explored and validated.