期刊文献+
共找到47篇文章
< 1 2 3 >
每页显示 20 50 100
New Solution Generation Strategy to Improve Brain Storm Optimization Algorithm for Classification
1
作者 Yu Xue Yan Zhao 《Journal on Internet of Things》 2021年第3期109-118,共10页
As a new intelligent optimization method,brain storm optimization(BSO)algorithm has been widely concerned for its advantages in solving classical optimization problems.Recently,an evolutionary classification optimizat... As a new intelligent optimization method,brain storm optimization(BSO)algorithm has been widely concerned for its advantages in solving classical optimization problems.Recently,an evolutionary classification optimization model based on BSO algorithm has been proposed,which proves its effectiveness in solving the classification problem.However,BSO algorithm also has defects.For example,large-scale datasets make the structure of the model complex,which affects its classification performance.In addition,in the process of optimization,the information of the dominant solution cannot be well preserved in BSO,which leads to its limitations in classification performance.Moreover,its generation strategy is inefficient in solving a variety of complex practical problems.Therefore,we briefly introduce the optimization model structure by feature selection.Besides,this paper retains the brainstorming process of BSO algorithm,and embeds the new generation strategy into BSO algorithm.Through the three generation methods of global optimal,local optimal and nearest neighbor,we can better retain the information of the dominant solution and improve the search efficiency.To verify the performance of the proposed generation strategy in solving the classification problem,twelve datasets are used in experiment.Experimental results show that the new generation strategy can improve the performance of BSO algorithm in solving classification problems. 展开更多
关键词 brain storm optimization(bso)algorithm CLASSIFICATION generation strategy evolutionary classification optimization
在线阅读 下载PDF
A Clustering Method Based on Brain Storm Optimization Algorithm
2
作者 Tianyu Wang Yu Xue +3 位作者 Yan Zhao Yuxiang Wang Yan Zhang Yuxiang He 《Journal of Information Hiding and Privacy Protection》 2020年第3期135-142,共8页
In the field of data mining and machine learning,clustering is a typical issue which has been widely studied by many researchers,and lots of effective algorithms have been proposed,including K-means,fuzzy c-means(FCM)... In the field of data mining and machine learning,clustering is a typical issue which has been widely studied by many researchers,and lots of effective algorithms have been proposed,including K-means,fuzzy c-means(FCM)and DBSCAN.However,the traditional clustering methods are easily trapped into local optimum.Thus,many evolutionary-based clustering methods have been investigated.Considering the effectiveness of brain storm optimization(BSO)in increasing the diversity while the diversity optimization is performed,in this paper,we propose a new clustering model based on BSO to use the global ability of BSO.In our experiment,we apply the novel binary model to solve the problem.During the period of processing data,BSO was mainly utilized for iteration.Also,in the process of K-means,we set the more appropriate parameters selected to match it greatly.Four datasets were used in our experiment.In our model,BSO was first introduced in solving the clustering problem.With the algorithm running on each dataset repeatedly,our experimental results have obtained good convergence and diversity.In addition,by comparing the results with other clustering models,the BSO clustering model also guarantees high accuracy.Therefore,from many aspects,the simulation results show that the model of this paper has good performance. 展开更多
关键词 Clustering method brain storm optimization algorithm(bso) evolutionary clustering algorithm data mining
在线阅读 下载PDF
Fuzzy least brain storm optimization and entropy-based Euclidean distance for multimodal vein-based recognition system 被引量:1
3
作者 Dipti Verma Sipi Dubey 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第10期2360-2371,共12页
Nowadays, the vein based recognition system becomes an emerging and facilitating biometric technology in the recognition system. Vein recognition exploits the different modalities such as finger, palm and hand image f... Nowadays, the vein based recognition system becomes an emerging and facilitating biometric technology in the recognition system. Vein recognition exploits the different modalities such as finger, palm and hand image for the person identification. In this work, the fuzzy least brain storm optimization and Euclidean distance(EED) are proposed for the vein based recognition system. Initially, the input image is fed into the region of interest(ROI) extraction which obtains the appropriate image for the subsequent step. Then, features or vein pattern is extracted by the image enlightening, circular averaging filter and holoentropy based thresholding. After the features are obtained, the entropy based Euclidean distance is proposed to fuse the features by the score level fusion with the weight score value. Finally, the optimal matching score is computed iteratively by the newly developed fuzzy least brain storm optimization(FLBSO) algorithm. The novel algorithm is developed by the least mean square(LMS) algorithm and fuzzy brain storm optimization(FBSO). Thus, the experimental results are evaluated and the performance is compared with the existing systems using false acceptance rate(FAR), false rejection rate(FRR) and accuracy. The performance outcome of the proposed algorithm attains the higher accuracy of 89.9% which ensures the better recognition rate. 展开更多
关键词 MULTIMODALITY brain storm optimization (bso) least mean square (LMS) score level fusion recognition
在线阅读 下载PDF
Training Multi-Layer Perceptron with Enhanced Brain Storm Optimization Metaheuristics 被引量:2
4
作者 Nebojsa Bacanin Khaled Alhazmi +3 位作者 Miodrag Zivkovic K.Venkatachalam Timea Bezdan Jamel Nebhen 《Computers, Materials & Continua》 SCIE EI 2022年第2期4199-4215,共17页
In the domain of artificial neural networks,the learning process represents one of the most challenging tasks.Since the classification accuracy highly depends on theweights and biases,it is crucial to find its optimal... In the domain of artificial neural networks,the learning process represents one of the most challenging tasks.Since the classification accuracy highly depends on theweights and biases,it is crucial to find its optimal or suboptimal values for the problem at hand.However,to a very large search space,it is very difficult to find the proper values of connection weights and biases.Employing traditional optimization algorithms for this issue leads to slow convergence and it is prone to get stuck in the local optima.Most commonly,back-propagation is used formulti-layer-perceptron training and it can lead to vanishing gradient issue.As an alternative approach,stochastic optimization algorithms,such as nature-inspired metaheuristics are more reliable for complex optimization tax,such as finding the proper values of weights and biases for neural network training.In thiswork,we propose an enhanced brain storm optimization-based algorithm for training neural networks.In the simulations,ten binary classification benchmark datasets with different difficulty levels are used to evaluate the efficiency of the proposed enhanced brain storm optimization algorithm.The results show that the proposed approach is very promising in this domain and it achieved better results than other state-of-theart approaches on the majority of datasets in terms of classification accuracy and convergence speed,due to the capability of balancing the intensification and diversification and avoiding the local minima.The proposed approach obtained the best accuracy on eight out of ten observed dataset,outperforming all other algorithms by 1-2%on average.When mean accuracy is observed,the proposed algorithm dominated on nine out of ten datasets. 展开更多
关键词 Artificial neural network optimization metaheuristics algorithm hybridization brain storm optimization
在线阅读 下载PDF
基于HSBSO算法的城市物流无人机指派 被引量:1
5
作者 张书琴 夏洪山 +2 位作者 江炜 杨文凯 王莫凡 《计算机工程与应用》 北大核心 2025年第17期355-364,共10页
针对头脑风暴优化算法求解带有时间窗同时寄取快递的城市物流无人机任务指派效果差、收敛速度慢等问题,提出了一种混合策略改进的头脑风暴优化算法(hybrid strategy-improved brain storm optimization,HSBSO)。通过Sobol序列初始化种群... 针对头脑风暴优化算法求解带有时间窗同时寄取快递的城市物流无人机任务指派效果差、收敛速度慢等问题,提出了一种混合策略改进的头脑风暴优化算法(hybrid strategy-improved brain storm optimization,HSBSO)。通过Sobol序列初始化种群,增加种群多样性;引入改进的Sine混沌映射修正中间粒子,再用量子行为产生新粒子,提高算法全局搜索能力的同时加快收敛速度;二次函数动态调整局部搜索概率,控制全局搜索及局部搜索的精度;运用基于观测的变异学习策略跳出局部最优。实验结果表明,HSBSO算法与基本BSO算法、GA及SA相比,平均适应度值分别降低1.5%、21.4%及5.7%,程序运行时间分别下降4.5%、98.2%及70.2%,HSBSO算法运行时间增长率为每客户2.2 s,且HSBSO获得的90%解的适应度值优于BSO适应度值的平均值。同时,基于观测的变异学习策略在跳出局部最优的能力及稳定性方面也显著优于莱维飞行、动态透镜成像及透镜成像反向学习策略。 展开更多
关键词 城市物流无人机 量子行为 Sine混沌映射 基于观测的变异学习策略 头脑风暴优化算法
在线阅读 下载PDF
基于时延Petri网与BSO的铝挤压线排产调度优化 被引量:2
6
作者 吴亚丽 何淑婷 +3 位作者 杨延西 冯连强 王富强 陈煜路 《系统仿真学报》 CAS CSCD 北大核心 2023年第1期178-189,共12页
针对工业生产中铝挤压生产线存在的工序繁杂、排产量大等导致的生产工期较长、效率低等问题,建立了铝挤压生产线的时延Petri网(timed Petri net,TdPN)模型并进行合理性分析;将头脑风暴优化算法(brain storm optimization,BSO)引入TdPN模... 针对工业生产中铝挤压生产线存在的工序繁杂、排产量大等导致的生产工期较长、效率低等问题,建立了铝挤压生产线的时延Petri网(timed Petri net,TdPN)模型并进行合理性分析;将头脑风暴优化算法(brain storm optimization,BSO)引入TdPN模型,提出了基于变迁序列个体编码解码方式的铝挤压排产调度问题优化调度算法。算法中采用模拟退火局部搜索机制改善BSO算法在后期的寻优性能,实现最小化批次完工时间的排产调度目标;仿真结果表明该方法能够缩短生产线排产工期提高生产效率,为工业生产排产调度问题提供了新的解决方法。 展开更多
关键词 Petri网 头脑风暴优化算法 排产调度 铝挤压生产线 工业生产
原文传递
基于BSO算法的TA7电火花成形加工多目标优化 被引量:1
7
作者 张立新 杨康 李玉玺 《机械强度》 CAS CSCD 北大核心 2018年第3期639-646,共8页
针对现有电火花机床上没有钛合金加工电规准的问题,设计中心组合实验,综合考量空载电压、峰值电流、脉冲宽度以及脉冲间隔对TA7电火花加工材料去除率、表面粗糙度和电极损耗率的影响。建立材料去除率、表面粗糙度和电极损耗率的预测模... 针对现有电火花机床上没有钛合金加工电规准的问题,设计中心组合实验,综合考量空载电压、峰值电流、脉冲宽度以及脉冲间隔对TA7电火花加工材料去除率、表面粗糙度和电极损耗率的影响。建立材料去除率、表面粗糙度和电极损耗率的预测模型。为了同时兼顾材料去除率、表面粗糙度和电极损耗率这三个相互矛盾的工艺目标,建立工艺目标优化模型,设计头脑风暴算法对优化模型进行求解。对优化结果进行验证:材料去除率、表面粗糙度和电极损耗率的实测值与优化结果的平均相对误差分别为5%、4.7%、5.5%。验证结果表明头脑风暴算法可以有效的获得TA7钛合金电火花加工的最佳工艺参数。 展开更多
关键词 电火花成形加工 TA7 材料去除率 头脑风暴算法
在线阅读 下载PDF
基于BSO-SVR的香蕉遥感时序估产模型研究 被引量:9
8
作者 张海洋 张瑶 +3 位作者 李民赞 李修华 王俊 田泽众 《农业机械学报》 EI CAS CSCD 北大核心 2021年第S01期98-107,共10页
为了提高有限样本下遥感时序估产效果,本文提出一种基于BSO-SVR的香蕉遥感时序估产模型。该模型以广西壮族自治区扶绥县的71块香蕉田块为研究区,利用时间序列Sentinel-2遥感影像数据,结合实测产量数据,对2019—2020年香蕉产量进行预测... 为了提高有限样本下遥感时序估产效果,本文提出一种基于BSO-SVR的香蕉遥感时序估产模型。该模型以广西壮族自治区扶绥县的71块香蕉田块为研究区,利用时间序列Sentinel-2遥感影像数据,结合实测产量数据,对2019—2020年香蕉产量进行预测与分析。融合阈值分割和形态学开操作方法,滤除香蕉关键生育期内遥感影像的厚云和云阴影区域;引入头脑风暴优化算法(Brain storming optimization algorithm,BSO)自动搜寻支持向量回归算法(Support vector regression,SVR)的最优惩罚因子和核函数参数,解决SVR模型的参数优化不足导致模型预测精度低的问题;搭建基于BSO-SVR的时间序列遥感估产模型,深入挖掘多时相遥感信息,以提升香蕉估产准确度。结果表明,相较于网格搜索算法(Grid search,GS)和灰狼优化算法(Grey wolf optimizer,GWO)搜寻SVR模型的最优参数,本文提出的头脑风暴优化算法具有更高的预测精度和更快的预测速度,在2019年和2020年BSO-SVR模型测试集的决定系数(Coefficient of determination,R;)分别为0.777和0.793,验证集R;分别为0.765和0.636,运行时间分别为0.320、0.331 s;与传统的岭回归模型(Ridge regression,RR)和偏最小二乘回归模型(Partial least squares regression,PLSR)相比,BSO-SVR模型的预测性能最佳,其次是RR模型,PLSR模型表现最差。本文提出的时序估产模型实现了香蕉田块产量的精准预估。 展开更多
关键词 香蕉 遥感 估产 时间序列 头脑风暴优化算法 支持向量回归算法
在线阅读 下载PDF
基于BSO-BP的船舶油耗预测模型 被引量:2
9
作者 乔磊 尹奇志 +2 位作者 姚昌宏 钱巍文 赵福芹 《上海海事大学学报》 北大核心 2024年第2期29-34,共6页
为解决基于传统反向传播(back propagation,BP)神经网络的船舶油耗预测模型易陷入极小值和误差较大的问题,提出一种利用头脑风暴优化(brain storm optimization,BSO)算法优化BP神经网络的船舶油耗预测模型(简称BSO-BP模型)。以“维多利... 为解决基于传统反向传播(back propagation,BP)神经网络的船舶油耗预测模型易陷入极小值和误差较大的问题,提出一种利用头脑风暴优化(brain storm optimization,BSO)算法优化BP神经网络的船舶油耗预测模型(简称BSO-BP模型)。以“维多利亚凯娅”号内河游船为研究对象,将BSO-BP模型的预测结果与采用传统BP神经网络以及模拟退火(simulated annealing,SA)算法、遗传算法(genetic algorithm,GA)、粒子群优化(particle swarm optimization,PSO)算法优化的BP神经网络的船舶油耗预测模型的预测结果进行对比分析。结果表明:与传统BP神经网络模型的预测结果相比,BSO-BP模型预测结果的可决系数R^(2)提高了0.003 9,均方误差、均方根误差、平均相对误差、平均绝对误差分别降低了0.034 4、0.154 1、0.010 2、0.017 8,说明在船舶油耗预测中BSO算法对BP神经网络的预测精度有显著的提升作用;BSO-BP模型预测结果的各项评价指标在所对比的5种模型中均表现最好,说明与SA算法、GA和PSO算法相比,BSO算法对BP神经网络的提升效果更好。 展开更多
关键词 船舶油耗预测模型 头脑风暴优化(bso) 反向传播(BP)神经网络
在线阅读 下载PDF
低碳视角下改进DMBSO算法的垃圾收运路径优化 被引量:15
10
作者 周双牛 李稚 王喆 《科学技术与工程》 北大核心 2021年第23期9932-9939,共8页
为解决“垃圾围城”难题,设计改进基于讨论机制的头脑风暴优化(discussion mechanism based brain storm optimization,DMBSO)算法对垃圾收运路径进行优化。首先,在低碳环保背景下,考虑车辆载重对碳排放量的影响,建立了以最短路径和极... 为解决“垃圾围城”难题,设计改进基于讨论机制的头脑风暴优化(discussion mechanism based brain storm optimization,DMBSO)算法对垃圾收运路径进行优化。首先,在低碳环保背景下,考虑车辆载重对碳排放量的影响,建立了以最短路径和极小化碳排放量为目标的绿色垃圾收运路径优化模型;然后设计改进DMBSO算法,其包含组间讨论和组内讨论,使算法在全局搜索和局部搜索达到平衡,并且引入逆转算子、启发式交叉算子和精英保留策略,使改进DMBSO算法适用于解决离散组合优化问题;最后对9个标准算例和1个实例进行仿真,结果表明改进DMBSO算法优于头脑风暴优化(brain storm optimization,BSO)算法和蚁群算法(ant colony optimization,ACO)算法,能够同时降低运输距离和碳排放量,具有很好的收敛效果和鲁棒性。 展开更多
关键词 车辆路径问题 垃圾收运路径 碳排放 改进头脑风暴优化算法
在线阅读 下载PDF
基于GABSO算法的动态柔性作业车间调度问题 被引量:7
11
作者 李稚 周双牛 《系统工程》 北大核心 2022年第1期143-151,共9页
针对企业生产加工中的动态调度难以求解的问题,首次将头脑风暴优化算法应用于求解动态柔性作业车间调度问题。首先,建立以极小化最大完工时间为目标函数的基于机器故障的重调度模型;然后,依据动态车间调度问题的特点,将遗传算法的思想... 针对企业生产加工中的动态调度难以求解的问题,首次将头脑风暴优化算法应用于求解动态柔性作业车间调度问题。首先,建立以极小化最大完工时间为目标函数的基于机器故障的重调度模型;然后,依据动态车间调度问题的特点,将遗传算法的思想融入头脑风暴优化算法中,提出自适应的GABSO算法,在迭代过程中,动态调整组间讨论与组内讨论次数,使算法在全局搜索和局部搜索中达到平衡,并且引入POX交叉算子、逆序变异算子和精英保留策略等优秀因子,使该算法高效地解决离散型问题;最后,对作业车间调度基准算例和动态调度实例进行仿真,并与其他算法进行对比,结果表明,GABSO算法有更好的稳定性和鲁棒性。 展开更多
关键词 动态柔性作业车间调度 完全重调度策略 头脑风暴优化算法 混合算法
原文传递
DBBSO算法在低空航线规划中的应用 被引量:3
12
作者 李怡敏 王宝珠 +1 位作者 刘翠响 高妍 《现代电子技术》 北大核心 2019年第22期108-112,共5页
为了实现低空范围内的航线规划,首先通过转换坐标系,将多元问题转换为求各个航迹点纵坐标的单元问题,然后在综合考虑航迹段长度和威胁环境的约束条件下,通过建立两个约束条件的数学模型,最终确立头脑风暴算法(BSO)的目标函数,进而求取... 为了实现低空范围内的航线规划,首先通过转换坐标系,将多元问题转换为求各个航迹点纵坐标的单元问题,然后在综合考虑航迹段长度和威胁环境的约束条件下,通过建立两个约束条件的数学模型,最终确立头脑风暴算法(BSO)的目标函数,进而求取最优解,实现低空范围内的航线规划。在此基础上对传统头脑风暴算法进行改进,用密度聚类(DB scan)算法替代了k均值聚类(k means)算法。仿真实验证明,改进后的算法较传统算法寻优能力更强,最终得到的航迹段更短,更适用于航线规划。 展开更多
关键词 航线规划 低空范围 头脑风暴算法 数学建模 威胁环境 仿真实验
在线阅读 下载PDF
城市物流配送中时间-位置依赖型多目标绿色车辆路径问题研究 被引量:2
13
作者 周鲜成 郑梓亮 +1 位作者 杨堃 吕阳 《控制与决策》 北大核心 2025年第2期413-422,共10页
为了推进城市物流配送领域的节能减排,提出时间-位置依赖型多目标绿色车辆路径问题.首先,提出考虑不同情形交通拥堵状况下的车辆行驶时间计算方法,综合考虑车辆行驶速度动态变化、实时载重等因素对油耗和碳排放的影响,建立车辆油耗和碳... 为了推进城市物流配送领域的节能减排,提出时间-位置依赖型多目标绿色车辆路径问题.首先,提出考虑不同情形交通拥堵状况下的车辆行驶时间计算方法,综合考虑车辆行驶速度动态变化、实时载重等因素对油耗和碳排放的影响,建立车辆油耗和碳排放测度模型;然后,分析车辆配送时刻与顾客满意度间的关系,建立顾客满意度函数;接着,以车辆使用成本、油耗和碳排放成本和最小化以及顾客平均满意度最大化作为优化目标,构建数学模型;最后,设计一种改进的头脑风暴优化算法进行求解.实验结果表明,所构建模型和所提出算法能够在物流配送的多个目标间取得平衡,有效规避交通拥堵,降低物流配送总成本,减少油耗和碳排放,提高顾客满意度. 展开更多
关键词 绿色车辆路径问题 时间依赖型 位置依赖型 头脑风暴优化算法 多目标优化
原文传递
融合独立思维与局部逃逸的头脑风暴优化算法
14
作者 贾鹤鸣 饶洪华 +3 位作者 吴迪 薛博文 文昌盛 李永超 《计算机科学与探索》 北大核心 2025年第6期1522-1539,共18页
头脑风暴优化算法(BSO)是一种模拟人脑思维活动所提出的群智能优化算法。针对传统头脑风暴优化算法精度较差、寻优能力弱、易陷入局部最优等问题,提出了融合独立思维与局部逃逸的头脑风暴优化算法(IBSO)。提出了一种独立思维策略,当算... 头脑风暴优化算法(BSO)是一种模拟人脑思维活动所提出的群智能优化算法。针对传统头脑风暴优化算法精度较差、寻优能力弱、易陷入局部最优等问题,提出了融合独立思维与局部逃逸的头脑风暴优化算法(IBSO)。提出了一种独立思维策略,当算法陷入局部最优解停滞时,加入了一个阈值用于判断是否需要执行独立思维策略。当算法陷入局部最优导致无法获得更优解时,算法会通过独立思维策略寻找一个新的位置,协助算法寻求更优解以跳出局部最优。采用了局部逃逸策略(LEO),加强了算法全局探索能力,使得算法的搜索效率更强。通过CEC2014基准测试函数和CEC2020基准测试函数来测试IBSO算法的优化性能,并与8种优化算法进行对比实验。结果表明,所改进的算法寻优能力更强,具有更高的稳定性和全局搜索能力。采用最新的工程问题评价指标对三杆桁架设计和拉伸/压缩弹簧设计两种工程问题进行测试实验,进一步验证了IBSO算法在工程问题中的实用性。 展开更多
关键词 头脑风暴优化算法 局部逃逸策略 基准测试函数 工程问题
在线阅读 下载PDF
基于头脑风暴优化算法的多机器人气味源定位 被引量:11
15
作者 梁志刚 顾军华 董永峰 《计算机应用》 CSCD 北大核心 2017年第12期3614-3619,共6页
针对现有室内湍流环境下多机器人气味源搜索算法存在历史浓度信息利用率不高、缺少调节全局与局部搜索的机制等问题,提出头脑风暴优化(BSO)算法与逆风搜索结合的多机器人协同搜索算法。首先,将机器人已搜索位置初始化为个体,以机器人位... 针对现有室内湍流环境下多机器人气味源搜索算法存在历史浓度信息利用率不高、缺少调节全局与局部搜索的机制等问题,提出头脑风暴优化(BSO)算法与逆风搜索结合的多机器人协同搜索算法。首先,将机器人已搜索位置初始化为个体,以机器人位置为中心聚类,有效利用了历史信息的指引作用;然后,将逆风搜索作为个体变异操作,动态调节选中一个类中个体或两个类中个体融合生成新个体的数量,有效调节了全局和局部搜索方式;最后,根据浓度和持久性两个指标对气味源进行确认。在有障碍和无障碍两个环境中将所提算法与三种群体智能多机器人气味源定位算法进行定位对比仿真实验,实验结果表明,所提算法的平均搜索时间减少33%以上,且定位准确率达到100%。该算法能够有效调节机器人全局和局部搜索关系,快速准确定位气味源。 展开更多
关键词 气味源定位 湍流环境 多机器人 头脑风暴优化算法 逆风搜索
在线阅读 下载PDF
基于讨论机制的头脑风暴优化算法 被引量:27
16
作者 杨玉婷 史玉回 夏顺仁 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2013年第10期1705-1711,1746,共8页
为了克服头脑风暴优化(BSO)算法易陷入局部最优导致早熟收敛的问题,提出新型的基于讨论机制的头脑风暴优化(DMBSO)算法.该算法运用组内讨论和组间讨论这一新机制取代BSO算法中的个体更新过程,分别控制算法的全局搜索和局部搜索能力.通... 为了克服头脑风暴优化(BSO)算法易陷入局部最优导致早熟收敛的问题,提出新型的基于讨论机制的头脑风暴优化(DMBSO)算法.该算法运用组内讨论和组间讨论这一新机制取代BSO算法中的个体更新过程,分别控制算法的全局搜索和局部搜索能力.通过线性递减和线性递增方式调整组间讨论和组内讨论次数,使算法搜索初期加强全局搜索能力,搜索后期加强局部细致搜索能力,有效地防止早熟问题.对6个经典测试函数(BFs)的10维、20维、30维问题分别进行测试来评估DMBSO的效果.结果表明,DMBSO算法与BSO算法和经典的粒子群(PSO)算法相比,可以有效地避免陷入局部最优,稳定地找到更好的最优值,而且随着问题维度的增加,DMBSO表现出更强的鲁棒性. 展开更多
关键词 群体智能优化算法 头脑风暴优化算法 讨论机制
在线阅读 下载PDF
目标空间聚类的差分头脑风暴优化算法 被引量:7
17
作者 吴亚丽 付玉龙 +1 位作者 王鑫睿 刘庆 《控制理论与应用》 EI CAS CSCD 北大核心 2017年第12期1583-1593,共11页
作为一种新型的群体智能优化算法,头脑风暴优化(brain storm optimization,BSO)算法一经提出便引起了众多研究者的关注.本文在对原始头脑风暴算法的聚类操作和变异操作改进的基础上,提出了基于目标空间聚类的差分头脑风暴(difference br... 作为一种新型的群体智能优化算法,头脑风暴优化(brain storm optimization,BSO)算法一经提出便引起了众多研究者的关注.本文在对原始头脑风暴算法的聚类操作和变异操作改进的基础上,提出了基于目标空间聚类的差分头脑风暴(difference brain storm optimization based on clustering in objective space,DBSO–OS)算法.算法通过对目标空间的聚类替代对决策空间的聚类,减小了算法的运算复杂度;采用差分变异代替高斯变异来增加种群的多样性.多个测试函数的仿真结果表明,目标空间聚类的差分头脑风暴算法不仅提高了算法的寻优速度,而且提高了算法的寻优精度.文中进一步分析了参数对算法性能的影响,设计了最佳参数选择方案,并用于对实际热电联供经济调度问题的求解,验证了算法的实用性. 展开更多
关键词 头脑风暴算法 聚类 差分变异 目标空间
在线阅读 下载PDF
分布式多AUV协同搜索方法 被引量:4
18
作者 高永琪 马威强 +2 位作者 张林森 王鹏 赵苗 《系统工程与电子技术》 EI CSCD 北大核心 2022年第5期1670-1676,共7页
针对水下协同搜索中存在通信延时、单个自主式水下航行器(autonomous underwater vehicle,AUV)易失效的问题,提出一种采用分布式协同结构和滚动优化策略,利用改进型头脑风暴优化(brain storm optimization,BSO)算法优化基于目标存在概... 针对水下协同搜索中存在通信延时、单个自主式水下航行器(autonomous underwater vehicle,AUV)易失效的问题,提出一种采用分布式协同结构和滚动优化策略,利用改进型头脑风暴优化(brain storm optimization,BSO)算法优化基于目标存在概率、环境不确定度、协调信息素的目标函数的新方法。仿真结果表明,所提方法能实现避碰,并在通信延时情况下仍有能力搜索到所有目标。通过仿真给出了所提方法关键参数的建议取值范围,并验证了个别AUV在搜索过程中失效对总体搜索效果影响不大,方法具有很强的实时性和鲁棒性。 展开更多
关键词 自主式水下航行器 协同搜索 协调信息素 改进型头脑风暴优化算法
在线阅读 下载PDF
高维多目标头脑风暴优化算法 被引量:6
19
作者 吴亚丽 付玉龙 +1 位作者 李国婷 张亚崇 《控制理论与应用》 EI CAS CSCD 北大核心 2020年第1期193-204,共12页
多目标优化的两个核心指标是收敛性和多样性,而对二者加以优化和权衡是多目标进化算法的关键.头脑风暴优化算法作为一种新型的群体智能优化算法,一经提出便引起了众多研究者的关注.本文在对现有的多目标头脑风暴优化算法研究的基础上,... 多目标优化的两个核心指标是收敛性和多样性,而对二者加以优化和权衡是多目标进化算法的关键.头脑风暴优化算法作为一种新型的群体智能优化算法,一经提出便引起了众多研究者的关注.本文在对现有的多目标头脑风暴优化算法研究的基础上,通过对决策变量进行分析,围绕收敛性和多样性分别进行优化,在对收敛性优化时通过分解策略增加选择压力,而在对多样性优化时以参考点更新种群增加多样性,最终扩展并提出了高维多目标头脑风暴优化算法.此外,本文提出一种以角点为聚类中心的自适应聚类方式,明确个体的导向,提高种群的扩展性.与现有的几种效果较好的多目标进化算法进行比较,大量的仿真结果表明了本文的算法具有优秀的性能. 展开更多
关键词 头脑风暴优化算法 聚类 决策变量聚类 分解策略 参考点
在线阅读 下载PDF
基于改进头脑风暴优化算法的隐马尔可夫模型运动识别 被引量:5
20
作者 杨玉婷 段丁娜 +1 位作者 张欢 夏顺仁 《航天医学与医学工程》 CAS CSCD 北大核心 2015年第6期403-407,共5页
目的克服隐马尔可夫模型(hidden Markov model,HMM)训练过程中易陷入局部最优问题,提高基于HMM的人体运动识别准确率。方法提出一种基于带差分步长的头脑风暴优化(brain storm optimization with differential step,BSO-DS)算法来改进HM... 目的克服隐马尔可夫模型(hidden Markov model,HMM)训练过程中易陷入局部最优问题,提高基于HMM的人体运动识别准确率。方法提出一种基于带差分步长的头脑风暴优化(brain storm optimization with differential step,BSO-DS)算法来改进HMM训练过程的方法,进而利用该方法对实际人体运动视频进行运动识别,并将结果与经典的基于Baum-Welch(BW)算法的HMM识别结果进行比较分析。结果本文所提方法在解决HMM训练问题时,可以得到更大的log-likelihood值,所得到的HMM可以更好地表达训练数据,其运动识别准确率达到92.2%,较BW算法有较大提升。结论 BSO-DS算法可以有效搜索全局最优,更好地解决HMM的训练问题,同时提升了运动识别准确率,为人体运动分析提供了新思路。 展开更多
关键词 运动识别 头脑风暴 优化算法 隐马尔可夫模型训练
原文传递
上一页 1 2 3 下一页 到第
使用帮助 返回顶部