期刊文献+
共找到1,552篇文章
< 1 2 78 >
每页显示 20 50 100
Irreversibility as a signature of non-equilibrium phase transition in large-scale human brain networks:An fMRI study
1
作者 Jing Wang Kejian Wu +1 位作者 Jiaqi Dong Lianchun Yu 《Chinese Physics B》 2025年第5期636-644,共9页
It has been argued that the human brain,as an information-processing machine,operates near a phase transition point in a non-equilibrium state,where it violates detailed balance leading to entropy production.Thus,the ... It has been argued that the human brain,as an information-processing machine,operates near a phase transition point in a non-equilibrium state,where it violates detailed balance leading to entropy production.Thus,the assessment of irreversibility in brain networks can provide valuable insights into their non-equilibrium properties.In this study,we utilized an open-source whole-brain functional magnetic resonance imaging(fMRI)dataset from both resting and task states to evaluate the irreversibility of large-scale human brain networks.Our analysis revealed that the brain networks exhibited significant irreversibility,violating detailed balance,and generating entropy.Notably,both physical and cognitive tasks increased the extent of this violation compared to the resting state.Regardless of the state(rest or task),interactions between pairs of brain regions were the primary contributors to this irreversibility.Moreover,we observed that as global synchrony increased within brain networks,so did irreversibility.The first derivative of irreversibility with respect to synchronization peaked near the phase transition point,characterized by the moderate mean synchronization and maximized synchronization entropy of blood oxygenation level-dependent(BOLD)signals.These findings deepen our understanding of the non-equilibrium dynamics of large-scale brain networks,particularly in relation to their phase transition behaviors,and may have potential clinical applications for brain disorders. 展开更多
关键词 large-scale brain networks FMRI IRREVERSIBILITY non-equilibrium phase transition
原文传递
Identification of key brain networks and functional connectivities of successful aging:A surface-based resting-state functional magnetic resonance study
2
作者 Jiao-Jiao Sun Li Zhang +3 位作者 Ru-Hong Sun Xue-Zheng Gao Chun-Xia Fang Zhen-He Zhou 《World Journal of Psychiatry》 2025年第3期216-226,共11页
BACKGROUND Successful aging(SA)refers to the ability to maintain high levels of physical,cognitive,psychological,and social engagement in old age,with high cognitive function being the key to achieving SA.AIM To explo... BACKGROUND Successful aging(SA)refers to the ability to maintain high levels of physical,cognitive,psychological,and social engagement in old age,with high cognitive function being the key to achieving SA.AIM To explore the potential characteristics of the brain network and functional connectivity(FC)of SA.METHODS Twenty-six SA individuals and 47 usual aging individuals were recruited from community-dwelling elderly,which were taken the magnetic resonance imaging scan and the global cognitive function assessment by Mini Mental State Examination(MMSE).The resting state-functional magnetic resonance imaging data were preprocessed by DPABISurf,and the brain functional network was conducted by DPABINet.The support vector machine model was constructed with altered functional connectivities to evaluate the identification value of SA.RESULTS The results found that the 6 inter-network FCs of 5 brain networks were significantly altered and related to MMSE performance.The FC of the right orbital part of the middle frontal gyrus and right angular gyrus was mostly increased and positively related to MMSE score,and the FC of the right supramarginal gyrus and right temporal pole:Middle temporal gyrus was the only one decreased and negatively related to MMSE score.All 17 significantly altered FCs of SA were taken into the support vector machine model,and the area under the curve was 0.895.CONCLUSION The identification of key brain networks and FC of SA could help us better understand the brain mechanism and further explore neuroimaging biomarkers of SA. 展开更多
关键词 Successful aging Resting-state functional magnetic resonance imaging Surface-based brain network analysis Functional connectivity Support vector machine algorithm
暂未订购
Resting-state brain network remodeling after different nerve reconstruction surgeries:a functional magnetic resonance imaging study in brachial plexus injury rats
3
作者 Yunting Xiang Xiangxin Xing +6 位作者 Xuyun Hua Yuwen Zhang Xin Xue Jiajia Wu Mouxiong Zheng He Wang Jianguang Xu 《Neural Regeneration Research》 SCIE CAS 2025年第5期1495-1504,共10页
Distinct brain remodeling has been found after different nerve reconstruction strategies,including motor representation of the affected limb.However,differences among reconstruction strategies at the brain network lev... Distinct brain remodeling has been found after different nerve reconstruction strategies,including motor representation of the affected limb.However,differences among reconstruction strategies at the brain network level have not been elucidated.This study aimed to explore intranetwork changes related to altered peripheral neural pathways after different nerve reconstruction surgeries,including nerve repair,endto-end nerve transfer,and end-to-side nerve transfer.Sprague–Dawley rats underwent complete left brachial plexus transection and were divided into four equal groups of eight:no nerve repair,grafted nerve repair,phrenic nerve end-to-end transfer,and end-to-side transfer with a graft sutured to the anterior upper trunk.Resting-state brain functional magnetic resonance imaging was obtained 7 months after surgery.The independent component analysis algorithm was utilized to identify group-level network components of interest and extract resting-state functional connectivity values of each voxel within the component.Alterations in intra-network resting-state functional connectivity were compared among the groups.Target muscle reinnervation was assessed by behavioral observation(elbow flexion)and electromyography.The results showed that alterations in the sensorimotor and interoception networks were mostly related to changes in the peripheral neural pathway.Nerve repair was related to enhanced connectivity within the sensorimotor network,while end-to-side nerve transfer might be more beneficial for restoring control over the affected limb by the original motor representation.The thalamic-cortical pathway was enhanced within the interoception network after nerve repair and end-to-end nerve transfer.Brain areas related to cognition and emotion were enhanced after end-to-side nerve transfer.Our study revealed important brain networks related to different nerve reconstructions.These networks may be potential targets for enhancing motor recovery. 展开更多
关键词 brain functional networks end-to-end nerve transfer end-to-side nerve transfer independent component analysis nerve repair peripheral plexus injury resting-state functional connectivity
暂未订购
rTMS Improves Cognitive Function and Brain Network Connectivity in Patients With Alzheimer’s Disease
4
作者 XU Gui-Zhi LIU Lin +4 位作者 GUO Miao-Miao WANG Tian GAO Jiao-Jiao JI Yong WANG Pan 《生物化学与生物物理进展》 北大核心 2025年第8期2131-2145,共15页
Objective Repetitive transcranial magnetic stimulation(rTMS)has demonstrated efficacy in enhancing neurocognitive performance in Alzheimer’s disease(AD),but the neurobiological mechanisms linking synaptic pathology,n... Objective Repetitive transcranial magnetic stimulation(rTMS)has demonstrated efficacy in enhancing neurocognitive performance in Alzheimer’s disease(AD),but the neurobiological mechanisms linking synaptic pathology,neural oscillatory dynamics,and brain network reorganization remain unclear.This investigation seeks to systematically evaluate the therapeutic potential of rTMS as a non-invasive neuromodulatory intervention through a multimodal framework integrating clinical assessments,molecular profiling,and neurophysiological monitoring.Methods In this prospective double-blind trial,12 AD patients underwent a 14-day protocol of 20 Hz rTMS,with comprehensive multimodal assessments performed pre-and postintervention.Cognitive functioning was quantified using the mini-mental state examination(MMSE)and Montreal cognitive assessment(MOCA),while daily living capacities and neuropsychiatric profiles were respectively evaluated through the activities of daily living(ADL)scale and combined neuropsychiatric inventory(NPI)-Hamilton depression rating scale(HAMD).Peripheral blood biomarkers,specifically Aβ1-40 and phosphorylated tau(p-tau181),were analyzed to investigate the effects of rTMS on molecular metabolism.Spectral power analysis was employed to investigate rTMS-induced modulations of neural rhythms in AD patients,while brain network analyses incorporating topological properties were conducted to examine stimulus-driven network reorganization.Furthermore,systematic assessment of correlations between cognitive scale scores,blood biomarkers,and network characteristics was performed to elucidate cross-modal therapeutic associations.Results Clinically,MMSE and MOCA scores improved significantly(P<0.05).Biomarker showed that Aβ1-40 level increased(P<0.05),contrasting with p-tau181 reduction.Moreover,the levels of Aβ1-40 were positively correlated with MMSE and MOCA scores.Post-intervention analyses revealed significant modulations in oscillatory power,characterized by pronounced reductions in delta(P<0.05)and theta bands(P<0.05),while concurrent enhancements were observed in alpha,beta,and gamma band activities(all P<0.05).Network analysis revealed frequency-specific reorganization:clustering coefficients were significantly decreased in delta,theta,and alpha bands(P<0.05),while global efficiency improvement was exclusively detected in the delta band(P<0.05).The alpha band demonstrated concurrent increases in average nodal degree(P<0.05)and characteristic path length reduction(P<0.05).Further research findings indicate that the changes in the clinical scale HAMD scores before and after rTMS stimulation are negatively correlated with the changes in the blood biomarkers Aβ1-40 and p-tau181.Additionally,the changes in the clinical scales MMSE and MoCA scores were negatively correlated with the changes in the node degree of the alpha frequency band and negatively correlated with the clustering coefficient of the delta frequency band.However,the changes in MMSE scores are positively correlated with the changes in global efficiency of both the delta and alpha frequency bands.Conclusion 20 Hz rTMS targeting dorsolateral prefrontal cortex(DLPFC)significantly improves cognitive function and enhances the metabolic clearance ofβ-amyloid and tau proteins in AD patients.This neurotherapeutic effect is mechanistically associated with rTMS-mediated frequency-selective neuromodulation,which enhances the connectivity of oscillatory networks through improved neuronal synchronization and optimized topological organization of functional brain networks.These findings not only support the efficacy of rTMS as an adjunctive therapy for AD but also underscore the importance of employing multiple assessment methods—including clinical scales,blood biomarkers,and EEG——in understanding and monitoring the progression of AD.This research provides a significant theoretical foundation and empirical evidence for further exploration of rTMS applications in AD treatment. 展开更多
关键词 transcranial magnetic stimulation Alzheimer’s disease power spectral density ELECTROENCEPHALOGRAM brain functional network
原文传递
Epileptic brain network mechanisms and neuroimaging techniques for the brain network 被引量:1
5
作者 Yi Guo Zhonghua Lin +1 位作者 Zhen Fan Xin Tian 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第12期2637-2648,共12页
Epilepsy can be defined as a dysfunction of the brain network,and each type of epilepsy involves different brain-network changes that are implicated diffe rently in the control and propagation of interictal or ictal d... Epilepsy can be defined as a dysfunction of the brain network,and each type of epilepsy involves different brain-network changes that are implicated diffe rently in the control and propagation of interictal or ictal discharges.Gaining more detailed information on brain network alterations can help us to further understand the mechanisms of epilepsy and pave the way for brain network-based precise therapeutic approaches in clinical practice.An increasing number of advanced neuroimaging techniques and electrophysiological techniques such as diffusion tensor imaging-based fiber tra ctography,diffusion kurtosis imaging-based fiber tractography,fiber ball imagingbased tra ctography,electroencephalography,functional magnetic resonance imaging,magnetoencephalography,positron emission tomography,molecular imaging,and functional ultrasound imaging have been extensively used to delineate epileptic networks.In this review,we summarize the relevant neuroimaging and neuroelectrophysiological techniques for assessing structural and functional brain networks in patients with epilepsy,and extensively analyze the imaging mechanisms,advantages,limitations,and clinical application ranges of each technique.A greater focus on emerging advanced technologies,new data analysis software,a combination of multiple techniques,and the construction of personalized virtual epilepsy models can provide a theoretical basis to better understand the brain network mechanisms of epilepsy and make surgical decisions. 展开更多
关键词 electrophysiological techniques EPILEPSY functional brain network functional magnetic resonance imaging functional near-infrared spectroscopy machine leaning molecular imaging neuroimaging techniques structural brain network virtual epileptic models
暂未订购
A neural regulation mechanism of head electroacupuncture on brain network of patients with stroke related sleep disorders 被引量:3
6
作者 ZHANG Boyang ZHOU Yang +7 位作者 FENG Liyuan SUI Dan HE Lei TONG Dan WANG Ruoyu SUI Xue SONG Jing WANG Dongyan 《Journal of Traditional Chinese Medicine》 SCIE CSCD 2024年第6期1268-1276,共9页
OBJECTIVE: To analyze part of the mechanism of electroacupuncture on Sishencong(EX-HN1) for strokerelated sleep disorders(SSD) and post-stroke cognitive impairment(PSCI). METHODS: Using a randomized controlled trial(R... OBJECTIVE: To analyze part of the mechanism of electroacupuncture on Sishencong(EX-HN1) for strokerelated sleep disorders(SSD) and post-stroke cognitive impairment(PSCI). METHODS: Using a randomized controlled trial(RCT) design, 72 patients were assigned to the electroacupuncture(EA) group or the sham acupuncture(SA) group. A healthy control(HC) group was also included. Both groups were given routine rehabilitation treatment. Then, patients in the EA group were given additional electroacupuncture at Sishencong(EX_HN1). Meanwhile, patients in the SA group were given a flat-head needle sham/placebo treatment placed at the bilateral Jianyu (LI15) and Binao(LI14) line midpoints and the Jianyu(LI15) and Jianzhen(SI9) line midpoints. Before and after treatment, scales were collected and analyzed. In the second phase of the study, some subjects from the EA group were selected for functional magnetic resonance imaging(f MRI) data acquisition and comparative analysis with the HC group using a non-RCT design. RESULTS: The EA group performed better than the SA group on the Pittsburgh sleep quality index(PSQI), Montreal cognitive assessment basic(Mo CA_B), selfrating anxiety scale(SAS), and self-rating depression scale(SDS). Analysis of the f MRI showed that lowfrequency(2 Hz) electroacupuncture stimulation at Sishencong(EX_HN1) can restrain frontal sup medial right(SFGmed.R), precuneus right(PCUN.R), and posterior cingulate cortex right(PCC.R) and enhance angular left(ANG.L), parietal inf left(IPL.L) and occipital mid left(MOG.L). The functional connectivity(FC) of SFGmed.R was positively correlated with PSQI. Electroacupuncture stimulation at Sishencong(EX_HN1) can reduce the side efficiency of the whole brain connection with the Thalamus.L, Hippocampus.L, and Occipital.Mid.L. CONCLUSIONS: Low frequency(2 Hz) electroacupuncture stimulation at Sishencong(EX_HN1) can simultaneously improve sleep quality, negative emotions, and cognitive functions, the first two of which may be related to SFGmed.R restraint. Electroacupuncture can make some brain areas approach the physiological bias state, which is characterized by dominant hemispheric enhancement and non-dominant hemispheric weakening. The reduced whole brain connection side efficiency with some key nodes of the brain net may relate to sleep quality improvements in SSD patients. 展开更多
关键词 ELECTROACUPUNCTURE brain network neural regulation sleep disorder
原文传递
Brain Network Studies in Chronic Disorders of Consciousness:Advances and Perspectives 被引量:11
7
作者 Ming Song Yujin Zhang +2 位作者 Yue Cui Yi Yang Tianzi Jiang 《Neuroscience Bulletin》 SCIE CAS CSCD 2018年第4期592-604,共13页
Neuroimaging has opened new opportunities to study the neural correlates of consciousness, and provided additional information concerning diagnosis, prognosis, and therapeutic interventions in patients with disorders ... Neuroimaging has opened new opportunities to study the neural correlates of consciousness, and provided additional information concerning diagnosis, prognosis, and therapeutic interventions in patients with disorders of consciousness. Here, we aim to review neuroimaging studies in chronic disorders of consciousness from the viewpoint of the brain network, focusing on positron emission tomogra- phy, functional MRI, functional near-infrared spectroscopy, electrophysiology, and diffusion MRI. To accelerate basic research on disorders of consciousness and provide a panoramic view of unconsciousness, we propose that it is urgent to integrate different techniques at various spatiotemporal scales, and to merge fragmented findings into a uniform "Brainnetome" (Brain-net-ome) research framework. 展开更多
关键词 Disorders of consciousness NEUROIMAGING brain network brainnetome
原文传递
Scopolamine causes delirium-like brain network dysfunction and reversible cognitive impairment without neuronal loss 被引量:5
8
作者 Qing Wang Xiang Zhang +10 位作者 Yu-Jie Guo Ya-Yan Pang Jun-Jie Li Yan-Li Zhao Jun-Fen Wei Bai-Ting Zhu Jing-Xiang Tang Yang-Yang Jiang Jie Meng Ji-Rong Yue Peng Lei 《Zoological Research》 SCIE CSCD 2023年第4期712-724,共13页
Delirium is a severe acute neuropsychiatric syndrome that commonly occurs in the elderly and is considered an independent risk factor for later dementia.However,given its inherent complexity,few animal models of delir... Delirium is a severe acute neuropsychiatric syndrome that commonly occurs in the elderly and is considered an independent risk factor for later dementia.However,given its inherent complexity,few animal models of delirium have been established and the mechanism underlying the onset of delirium remains elusive.Here,we conducted a comparison of three mouse models of delirium induced by clinically relevant risk factors,including anesthesia with surgery(AS),systemic inflammation,and neurotransmission modulation.We found that both bacterial lipopolysaccharide(LPS)and cholinergic receptor antagonist scopolamine(Scop)induction reduced neuronal activities in the delirium-related brain network,with the latter presenting a similar pattern of reduction as found in delirium patients.Consistently,Scop injection resulted in reversible cognitive impairment with hyperactive behavior.No loss of cholinergic neurons was found with treatment,but hippocampal synaptic functions were affected.These findings provide further clues regarding the mechanism underlying delirium onset and demonstrate the successful application of the Scop injection model in mimicking delirium-like phenotypes in mice. 展开更多
关键词 DELIRIUM SCOPOLAMINE Cholinergic neuron Neuronal activity brain network
暂未订购
Modulatory effects of acupuncture on brain networks in mild cognitive impairment patients 被引量:42
9
作者 Ting-ting Tan Dan Wang +10 位作者 Ju-ke Huang Xiao-mei Zhou Xu Yuan Jiu-ping Liang Liang Yin Hong-liang Xie Xin-yan Jia Jiao Shi Fang Wang Hao-bo Yang Shang-jie Chen 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第2期250-258,共9页
Functional magnetic resonance imaging has been widely used to investigate the effects of acupuncture on neural activity. However, most functional magnetic resonance imaging studies have focused on acute changes in bra... Functional magnetic resonance imaging has been widely used to investigate the effects of acupuncture on neural activity. However, most functional magnetic resonance imaging studies have focused on acute changes in brain activation induced by acupuncture. Thus, the time course of the therapeutic effects of acupuncture remains unclear. In this study, 32 patients with amnestic mild cognitive impairment were randomly divided into two groups, where they received either Tiaoshen Yizhi acupuncture or sham acupoint acupuncture. The needles were either twirled at Tiaoshen Yizhi acupoints, including Sishencong(EX-HN1), Yintang(EX-HN3), Neiguan(PC6), Taixi(KI3), Fenglong(ST40), and Taichong(LR3), or at related sham acupoints at a depth of approximately 15 mm, an angle of ± 60°, and a rate of approximately 120 times per minute. Acupuncture was conducted for 4 consecutive weeks, five times per week, on weekdays. Resting-state functional magnetic resonance imaging indicated that connections between cognition-related regions such as the insula, dorsolateral prefrontal cortex, hippocampus, thalamus, inferior parietal lobule, and anterior cingulate cortex increased after acupuncture at Tiaoshen Yizhi acupoints. The insula, dorsolateral prefrontal cortex, and hippocampus acted as central brain hubs. Patients in the Tiaoshen Yizhi group exhibited improved cognitive performance after acupuncture. In the sham acupoint acupuncture group, connections between brain regions were dispersed, and we found no differences in cognitive function following the treatment. These results indicate that acupuncture at Tiaoshen Yizhi acupoints can regulate brain networks by increasing connectivity between cognition-related regions, thereby improving cognitive function in patients with mild cognitive impairment. 展开更多
关键词 nerve regeneration mild cognitive impairment Alzheimer's disease neuroimaging resting-state functional magnetic resonance imaging brain network acupuncture Tiaoshen Yizhi neural regeneration
暂未订购
Adaptability of language-related brain network in a low-grade glioma patient
10
作者 Olivera Sveljo Katarina Koprivsek Milos Lucic 《Neural Regeneration Research》 SCIE CAS CSCD 2011年第30期2372-2375,共4页
Because functional magnetic resonance imaging can be used for dynamic observation of functional cortical changes after brain injuries, we followed up functional magnetic resonance imaging manifestations of a language-... Because functional magnetic resonance imaging can be used for dynamic observation of functional cortical changes after brain injuries, we followed up functional magnetic resonance imaging manifestations of a language-related brain network in a low-grade glioma patient. Disease progression and therapy during a 3-year period were followed up at different time points: before and after reoperation, after radiation therapy, and 1 year after irradiation. During the whole 3-year follow-up period, the patient exhibited no neurological deficits while functional magnetic resonance imaging revealed different topologies of the language-related brain network. During disease progression and after irradiation, the language-related brain network was extended or completely transferred to the nondominant (right) hemisphere. In addition, after reoperation and 1 year after irradiation, language areas were primarily found in the language dominant (left) hemisphere. Our results suggest a high level of adaptability of the language-related cortical network of the bilateral hemispheres in this low-grade glioma patient. 展开更多
关键词 functional magnetic resonance imaging low-grade glioma cortical changes language-related brain network
暂未订购
Progress of Brain Network Studies on Anesthesia and Consciousness: Framework and Clinical Applications
11
作者 Jun Liu Kangli Dong +8 位作者 Yi Sun Ioannis Kakkos Fan Huang Guozheng Wang Peng Qi Xing Chen Delin Zhang Anastasios Bezerianos Yu Sun 《Engineering》 SCIE EI CAS CSCD 2023年第1期77-95,共19页
Although the relationship between anesthesia and consciousness has been investigated for decades, our understanding of the underlying neural mechanisms of anesthesia and consciousness remains rudimentary, which limits... Although the relationship between anesthesia and consciousness has been investigated for decades, our understanding of the underlying neural mechanisms of anesthesia and consciousness remains rudimentary, which limits the development of systems for anesthesia monitoring and consciousness evaluation. Moreover, the current practices for anesthesia monitoring are mainly based on methods that do not provide adequate information and may present obstacles to the precise application of anesthesia. Most recently, there has been a growing trend to utilize brain network analysis to reveal the mechanisms of anesthesia, with the aim of providing novel insights to promote practical application. This review summarizes recent research on brain network studies of anesthesia, and compares the underlying neural mechanisms of consciousness and anesthesia along with the neural signs and measures of the distinct aspects of neural activity. Using the theory of cortical fragmentation as a starting point, we introduce important methods and research involving connectivity and network analysis. We demonstrate that whole-brain multimodal network data can provide important supplementary clinical information. More importantly, this review posits that brain network methods, if simplified, will likely play an important role in improving the current clinical anesthesia monitoring systems. 展开更多
关键词 ANESTHESIA brain network CONNECTIVITY Graph theoretical analysis Clinical monitoring system
暂未订购
Sex Differences in Reconstructed Resting-State Functional Brain Networks for Children
12
作者 Xianglai Yang Han Zhang 《Journal of Biosciences and Medicines》 2020年第12期166-177,共12页
Neuroscience studies have demonstrated that functional differences in human brains between males and females might result in their cognitive and psychological distinctions. To investigate sex differences in resting-st... Neuroscience studies have demonstrated that functional differences in human brains between males and females might result in their cognitive and psychological distinctions. To investigate sex differences in resting-state functional networks for children, the functional brain networks of two groups including boys and girls were reconstructed by functional connectivity with significant between-group differences respectively based on two brain atlases, and then the reconstructed functional networks were compared from the viewpoint of small-world properties. The functional brain networks of the two groups both displayed topological properties of the small-world network based on different brain atlases but exhibited some sex differences in certain measures. Specifically, for the automated anatomical labeling atlas, compared with girls, boys showed stronger small-world properties and higher ability of local information processing in brain networks;for the Harvard Oxford Atlas, the shortest path length of boys increased, indicating poorer performance in both global information transmission and resistance to the random attack. 展开更多
关键词 Sex Difference Functional Connectivity brain network FMRI
在线阅读 下载PDF
Functional Brain Network Learning Based on Spatial Similarity for Brain Disorders Identification
13
作者 Lei Sun Tingting Guo 《Journal of Applied Mathematics and Physics》 2020年第11期2427-2437,共11页
Functional brain network (FBN) measures based on functional magnetic resonance imaging (fMRI) data, has become important biomarkers for early diagnosis and prediction of clinical outcomes in neurological diseases, suc... Functional brain network (FBN) measures based on functional magnetic resonance imaging (fMRI) data, has become important biomarkers for early diagnosis and prediction of clinical outcomes in neurological diseases, such as Alzheimer’s diseases (AD) and its prodromal state (<em>i</em>.<em>e</em>., Mild cognitive impairment, MCI). In the past decades, researchers have developed numbers of approaches for FBN estimation, including Pearson’s correction (PC), sparse representation (SR), and so on. Despite their popularity and wide applications in current studies, most of the approaches for FBN estimation only consider the dependency between the measured blood oxygen level dependent (BOLD) time series, but ignore the spatial relationships between pairs of brain regions. In practice, the strength of functional connection between brain regions will decrease as their distance increases. Inspired by this, we proposed a new approach for FBN estimation based on the assumption that the closer brain regions tend to share stronger relationships or similarities. To verify the effectiveness of the proposed method, we conduct experiments on a public dataset to identify the patients with MCIs from health controls (HCs) using the estimated FBNs. Experimental results demonstrate that the proposed approach yields statistically significant improvement in seven performance metrics over using the baseline methods. 展开更多
关键词 Functional brain network Pearson’s Correction Sparse Representation Spatial Relationships SIMILARITY Mild Cognitive Impairment
暂未订购
Consistent and Specific Multi-View Functional Brain Networks Fusion for Autism Spectrum Disorder Diagnosis
14
作者 Chaojun Zhang Chengcheng Wang +1 位作者 Limei Zhang Yunling Ma 《Journal of Applied Mathematics and Physics》 2023年第7期1914-1929,共16页
Functional brain networks (FBN) based on resting-state functional magnetic resonance imaging (rs-fMRI) have become an important tool for exploring underlying organization patterns in the brain, which can provide an ob... Functional brain networks (FBN) based on resting-state functional magnetic resonance imaging (rs-fMRI) have become an important tool for exploring underlying organization patterns in the brain, which can provide an objective basis for brain disorders such as autistic spectrum disorder (ASD). Due to its importance, researchers have proposed a number of FBN estimation methods. However, most existing methods only model a type of functional connection relationship between brain regions-of-interest (ROIs), such as partial correlation or full correlation, which is difficult to fully capture the subtle connections among ROIs since these connections are extremely complex. Motivated by the multi-view learning, in this study we propose a novel Consistent and Specific Multi-view FBNs Fusion (CSMF) approach. Concretely, we first construct multi-view FBNs (i.e., multiple types of FBNs modelling various relationships among ROIs), and then these FBNs are decomposed into a consistent representation matrix and their own specific matrices which capture their common and unique information, respectively. Lastly, to obtain a better brain representation, it is fusing the consistent and specific representation matrices in the latent representation spaces of FBNs, but not directly fusing the original FBNs. This potentially makes it more easily to find the comprehensively brain connections. The experimental results of ASD identification on the ABIDE datasets validate the effectiveness of our proposed method compared to several state-of-the-art methods. Our proposed CSMF method achieved 72.8% and 76.67% classification performance on the ABIDE dataset. 展开更多
关键词 Functional brain network FUSION CONSISTENCY SPECIFICITY Autism Spectrum Disorder
在线阅读 下载PDF
Estimating Functional Brain Network with Low-Rank Structure via Matrix Factorization for MCI/ASD Identification
15
作者 Yue Du Limei Zhang 《Journal of Applied Mathematics and Physics》 2021年第8期1946-1963,共18页
Functional brain networks (FBNs) provide a potential way for understanding the brain organizational patterns and diagnosing neurological diseases. Due to its importance, many FBN construction methods have been propose... Functional brain networks (FBNs) provide a potential way for understanding the brain organizational patterns and diagnosing neurological diseases. Due to its importance, many FBN construction methods have been proposed currently, including the low-order Pearson’s correlation (PC) and sparse representation (SR), as well as the high-order functional connection (HoFC). However, most existing methods usually ignore the information of topological structures of FBN, such as low-rank structure which can reduce the noise and improve modularity to enhance the stability of networks. In this paper, we propose a novel method for improving the estimated FBNs utilizing matrix factorization (MF). More specifically, we firstly construct FBNs based on three traditional methods, including PC, SR, and HoFC. Then, we reduce the rank of these FBNs via MF model for estimating FBN with low-rank structure. Finally, to evaluate the effectiveness of the proposed method, experiments have been conducted to identify the subjects with mild cognitive impairment (MCI) and autism spectrum disorder (ASD) from norm controls (NCs) using the estimated FBNs. The results on Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset and Autism Brain Imaging Data Exchange (ABIDE) dataset demonstrate that the classification performances achieved by our proposed method are better than the selected baseline methods. 展开更多
关键词 Functional brain network Matrix Factorization Pearson’s Correlation Sparse Representation High-Order Functional Connection Mild Cognitive Impairment Autism Spectrum Disorder
暂未订购
Charting new horizons in neuroscience: The advent of brain network disorders
16
作者 Guoguang Zhao 《Brain network disorders》 2025年第1期1-2,共2页
The launch of the Brain Network Disorders journal marks a pivotal moment in neuroscience,addressing the urgent need to unravel the brain’s complex network functions.The brain orchestrates cognitive,emotional,and beha... The launch of the Brain Network Disorders journal marks a pivotal moment in neuroscience,addressing the urgent need to unravel the brain’s complex network functions.The brain orchestrates cognitive,emotional,and behavioral processes,yet its underlying mechanisms—especially how it transitions between health and disease—remain elusive due to the intricate connectivity of its networks.1,2 This journal aims to foster interdisciplinary collaboration,bridging gaps across neurology,computational neuroscience,molecular biology,and clinical research.By focusing on how brain network dynamics influence both physiological and pathological states,we aim to fundamentally reshape our understanding of brain function and disease. 展开更多
关键词 clinical research brain network disorders molecular biology NEUROSCIENCE brain network disorders journal unravel brain s complex network functionsthe computational neuroscience interdisciplinary collaboration
暂未订购
Perspective on“Brain Network Disorders”
17
作者 Zaven Khachaturian Jean-Marie C.Boutellier +1 位作者 Jiri Damborsky Ara S.Khachaturian 《Brain network disorders》 2025年第1期3-6,共4页
1.Introduction.This perspective highlights the need for a specialized publication dedicated to neuropsychiatric disorders,collectively termed“dysconnectivity syndromes.”These conditions,including dementia-Alzheimer... 1.Introduction.This perspective highlights the need for a specialized publication dedicated to neuropsychiatric disorders,collectively termed“dysconnectivity syndromes.”These conditions,including dementia-Alzheimer’s disease(AD),schizophrenia,and autism spectrum disorders,result from failures in interconnected physiological systems and neural circuits rather than isolated lesions.The proposed Brain Network Disorders(BND)journal aims to promote innovative paradigms for understanding these complex brain disorders by applying general systems theory and complexity sciences.The aim is to broaden the traditional conceptualization of these diseases by stressing the multifactorial roots of these disorders where the focus is on the dynamic interactions among several influences and the failure of multiple overlapping nets that drive clinical manifestations。 展开更多
关键词 Alzheimer s disease SCHIZOPHRENIA brain network disorders dysconnectivity syndromes physiological systems neural circuits brain network disorders bnd journal neuropsychiatric disorderscollectively autism spectrum disordersresult
暂未订购
Dynamic Organization of Large-scale Functional Brain Networks Supports Interactions Between Emotion and Executive Control
18
作者 Haiyang Geng Pengfei Xu +2 位作者 Andre Aleman Shaozheng Qin Yue-Jia Luo 《Neuroscience Bulletin》 SCIE CAS 2024年第7期981-991,共11页
Emotion and executive control are often conceptualized as two distinct modes of human brain functioning.Little,however,is known about how the dynamic organization of large-scale functional brain networks that support ... Emotion and executive control are often conceptualized as two distinct modes of human brain functioning.Little,however,is known about how the dynamic organization of large-scale functional brain networks that support flexible emotion processing and executive control,especially their interactions.The amygdala and prefrontal systems have long been thought to play crucial roles in these processes.Recent advances in human neuroimaging studies have begun to delineate functional organization principles among the large-scale brain networks underlying emotion,executive control,and their interactions.Here,we propose a dynamic brain network model to account for interactive competition between emotion and executive control by reviewing recent resting-state and task-related neuroimaging studies using network-based approaches.In this model,dynamic interactions among the executive control network,the salience network,the default mode network,and sensorimotor networks enable dynamic processes of emotion and support flexible executive control of multiple processes;neural oscillations across multiple frequency bands and the locus coeruleus−norepinephrine pathway serve as communicational mechanisms underlying dynamic synergy among large-scale functional brain networks.This model has important implications for understanding how the dynamic organization of complex brain systems and networks empowers flexible cognitive and affective functions. 展开更多
关键词 Dynamic brain network Emotion Executive control Salience network Executive control network Default mode network
原文传递
A study of connectivity features analysis in brain function network for dementia recognition
19
作者 Siying Li Peng Wang +6 位作者 Zhenfeng Li Lidong Du Xianxiang Chen Jie Sun Libin Jiang Gang Cheng Zhen Fang 《Nanotechnology and Precision Engineering》 2025年第1期79-93,共15页
Dementias such as Alzheimer disease(AD)and mild cognitive impairment(MCI)lead to problems with memory,language,and daily activities resulting from damage to neurons in the brain.Given the irreversibility of this neuro... Dementias such as Alzheimer disease(AD)and mild cognitive impairment(MCI)lead to problems with memory,language,and daily activities resulting from damage to neurons in the brain.Given the irreversibility of this neuronal damage,it is crucial to find a biomarker to distinguish individuals with these diseases from healthy people.In this study,we construct a brain function network based on electroencephalography data to study changes in AD and MCI patients.Using a graph-theoretical approach,we examine connectivity features and explore their contributions to dementia recognition at edge,node,and network levels.We find that connectivity is reduced in AD and MCI patients compared with healthy controls.We also find that the edge-level features give the best performance when machine learning models are used to recognize dementia.The results of feature selection identify the top 50 ranked edge-level features constituting an optimal subset,which is mainly connected with the frontal nodes.A threshold analysis reveals that the performance of edge-level features is more sensitive to the threshold for the connection strength than that of node-and network-level features.In addition,edge-level features with a threshold of 0 provide the most effective dementia recognition.The K-nearest neighbors(KNN)machine learning model achieves the highest accuracy of 0.978 with the optimal subset when the threshold is 0.Visualization of edge-level features suggests that there are more long connections linking the frontal region with the occipital and parietal regions in AD and MCI patients compared with healthy controls.Our codes are publicly available at https://github.com/Debbie-85/eeg-connectivity. 展开更多
关键词 ELECTROENCEPHALOGRAPHY brain function network Machine learning Feature selection Dementia recognition
暂未订购
Structural and functional connectivity of the whole brain and subnetworks in individuals with mild traumatic brain injury:predictors of patient prognosis 被引量:1
20
作者 Sihong Huang Jungong Han +4 位作者 Hairong Zheng Mengjun Li Chuxin Huang Xiaoyan Kui Jun Liu 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第7期1553-1558,共6页
Patients with mild traumatic brain injury have a diverse clinical presentation,and the underlying pathophysiology remains poorly understood.Magnetic resonance imaging is a non-invasive technique that has been widely u... Patients with mild traumatic brain injury have a diverse clinical presentation,and the underlying pathophysiology remains poorly understood.Magnetic resonance imaging is a non-invasive technique that has been widely utilized to investigate neuro biological markers after mild traumatic brain injury.This approach has emerged as a promising tool for investigating the pathogenesis of mild traumatic brain injury.G raph theory is a quantitative method of analyzing complex networks that has been widely used to study changes in brain structure and function.However,most previous mild traumatic brain injury studies using graph theory have focused on specific populations,with limited exploration of simultaneous abnormalities in structural and functional connectivity.Given that mild traumatic brain injury is the most common type of traumatic brain injury encounte red in clinical practice,further investigation of the patient characteristics and evolution of structural and functional connectivity is critical.In the present study,we explored whether abnormal structural and functional connectivity in the acute phase could serve as indicators of longitudinal changes in imaging data and cognitive function in patients with mild traumatic brain injury.In this longitudinal study,we enrolled 46 patients with mild traumatic brain injury who were assessed within 2 wee ks of injury,as well as 36 healthy controls.Resting-state functional magnetic resonance imaging and diffusion-weighted imaging data were acquired for graph theoretical network analysis.In the acute phase,patients with mild traumatic brain injury demonstrated reduced structural connectivity in the dorsal attention network.More than 3 months of followup data revealed signs of recovery in structural and functional connectivity,as well as cognitive function,in 22 out of the 46 patients.Furthermore,better cognitive function was associated with more efficient networks.Finally,our data indicated that small-worldness in the acute stage could serve as a predictor of longitudinal changes in connectivity in patients with mild traumatic brain injury.These findings highlight the importance of integrating structural and functional connectivity in unde rstanding the occurrence and evolution of mild traumatic brain injury.Additionally,exploratory analysis based on subnetworks could serve a predictive function in the prognosis of patients with mild traumatic brain injury. 展开更多
关键词 cognitive function CROSS-SECTION FOLLOW-UP functional connectivity graph theory longitudinal study mild traumatic brain injury prediction small-worldness structural connectivity subnetworks whole brain network
暂未订购
上一页 1 2 78 下一页 到第
使用帮助 返回顶部