OBJECTIVE:To examine the variations in brain regions among individuals with decreasing ovarian reserve(DOR) compared to healthy controls using resting-state functional magnetic resonance imaging(rs-fMRI),and to assess...OBJECTIVE:To examine the variations in brain regions among individuals with decreasing ovarian reserve(DOR) compared to healthy controls using resting-state functional magnetic resonance imaging(rs-fMRI),and to assess the immediate effects of acupuncture stimulation on these brain regions in DOR patients.METHODS:Twenty patients diagnosed with DOR(DOR group) and twenty healthy controls(HC group) who underwent rs-fMRI scans were included.The DOR group received acupuncture and underwent a subsequent rsfMRI scan.Amplitude of low-frequency fluctuations(ALFF) analysis was utilized to identify disparities in brain regions between DOR and HC groups,and to evaluate the immediate effects of acupuncture on DOR patients' brain regions.Common brain regions were identified as seed points for functional connectivity(FC) analysis.RESULTS:In this study,a total of 20 HCs and 20 patients with DOR were initially enrolled.However,due to incomplete personal information,three participants were removed from the HC group.Additionally,two DOR patients experienced symptoms such as physical discomfort and shortness of breath during the MRI scan,leading to their exclusion due to excessive head movement parameters.Consequently,17 HCs and 16 DOR patients completed the entire study protocol.Comparative analysis revealed that DOR patients exhibited increased ALFF values in the left inferior temporal gyrus(ITG) and middle temporal gyrus(MTG),while ALFF values in the bilateral superior frontal gyrus(SFG),middle frontal gyrus(MFG),and left inferior frontal gyrus(IFG) were decreased compared to HCs.Following acupuncture intervention,ALFF values in the left SFG,MFG,and supplementary motor area(SMA) of DOR patients increased.Furthermore,functional connectivity(FC) analysis demonstrated increased connectivity of the left SFG with the bilateral calcarine sulcus and lingual gyrus post-acupuncture.CONCLUSION:This study highlights abnormal neural activity in the SFG,MFG,IFG,and ACC in DOR patients compared to HCs.Acupuncture was found to regulate the activity of the SFG,bringing it closer to normal levels,and enhancing its functional connectivity with the bilateral calcarine sulcus and lingual gyrus.展开更多
Working memory is an executive memory process that includes encoding,maintenance,and retrieval.These processes can be modulated by transcranial alternating current stimulation(tACS)with sinusoidal waves.However,little...Working memory is an executive memory process that includes encoding,maintenance,and retrieval.These processes can be modulated by transcranial alternating current stimulation(tACS)with sinusoidal waves.However,little is known about the impact of the rate of current change on working memory.In this study,we aimed to investigate the effects of two types of tACS with different rates of current change on working memory performance and brain activity.We applied a randomized,single-blind design and divided 81 young participants who received triangular wave tACS,sinusoidal wave tACS,or sham stimulation into three groups.Participants performed n-back tasks,and electroencephalograms were recorded before,during,and after active or sham stimulation.Compared to the baseline,working memory performance(accuracy and response time)improved after stimulation under all stimulation conditions.According to drift-diffusion model analysis,triangular wave tACS significantly increased the efficiency of non-target information processing.In addition,compared with sham conditions,triangular wave tACS reduced alpha power oscillations in the occipital lobe throughout the encoding period,while sinusoidal wave tACS increased theta power in the central frontal region only during the later encoding period.The brain network connectivity results showed that triangular wave tACS improved the clustering coefficient,local efficiency,and node degree intensity in the early encoding stage,and these parameters were positively correlated with the non-target drift rate and decision starting point.Our findings on how tACS modulates working memory indicate that triangular wave tACS significantly enhances brain network connectivity during the early encoding stage,demonstrating an improvement in the efficiency of working memory processing.In contrast,sinusoidal wave tACS increased the theta power during the later encoding stage,suggesting its potential critical role in late-stage information processing.These findings provide valuable insights into the potential mechanisms by which tACS modulates working memory.展开更多
AIM:To investigate changes in local brain activity after laser assisted in situ keratomileusis(LASIK)in myopia patients,and further explore whether post-LASIK(POL)patients and healthy controls(HCs)can be distinguished...AIM:To investigate changes in local brain activity after laser assisted in situ keratomileusis(LASIK)in myopia patients,and further explore whether post-LASIK(POL)patients and healthy controls(HCs)can be distinguished by differences in dynamic amplitude of low-frequency fluctuations(dALFF)in specific brain regions.METHODS:The resting-state functional magnetic resonance imaging(rs-fMRI)data were collected from 15 myopic patients who underwent LASIK and 15 matched healthy controls.This method was selected to calculate the corresponding dALFF values of each participant,to compare dALFF between the groups and to determine whether dALFF distinguishes reliably between myopic patients after LASIK and HCs using the linear support vector machine(SVM)permutation test(5000 repetitions).RESULTS:dALFF was lower in POL than in HCs at the right precentral gyrus and right insula.Classification accuracy of the SVM was 89.1%(P<0.001).CONCLUSION:The activity of spontaneous neurons in the right precentral gyrus and right insula of myopic patients change significantly after LASIK.SVM can correctly classify POL patients and HCs based on dALFF differences.展开更多
The human brain undergoes rapid development during childhood,with significant improvement in a wide spectrum of cognitive and affective functions.Mapping domain-and age-specific brain activity patterns has important i...The human brain undergoes rapid development during childhood,with significant improvement in a wide spectrum of cognitive and affective functions.Mapping domain-and age-specific brain activity patterns has important implications for characterizing the development of children’s cognitive and affective functions.The current mainstay of brain templates is primarily derived from structural magnetic resonance imaging(MRI),and thus is not ideal for mapping children’s cognitive and affective brain development.By integrating task-dependent functional MRI data from a large sample of 250 children(aged 7 to 12)across multiple domains and the latest easy-to-use and transparent preprocessing workflow,we here created a set of age-specific brain functional activity maps across four domains:attention,executive function,emotion,and risky decision-making.Moreover,we developed a toolbox named Developmental Brain Functional Activity maps across multiple domains that enables researchers to visualize and download domain-and age-specific brain activity maps for various needs.This toolbox and maps have been released on the Neuroimaging Informatics Tools and Resources Clearinghouse website(http://www.nitrc.org/projects/dbfa).Our study provides domain-and age-specific brain activity maps for future developmental neuroimaging studies in both healthy and clinical populations.展开更多
Methylphenidate (MPH) is one of the most commonly used stimulants for the treatment of attention deficit hyperactivity disorder (ADHD). Although several studies have evaluated the effects of MPH on human brain act...Methylphenidate (MPH) is one of the most commonly used stimulants for the treatment of attention deficit hyperactivity disorder (ADHD). Although several studies have evaluated the effects of MPH on human brain activation during specific cognitive tasks using functional magnetic resonance imaging (fMRI), few studies have focused on spontaneous brain activity. In the current study, we investigated the effect of MPH on the intra-regional synchronization of spontaneous brain activity during the resting state in 18 normal adult males. A handedness questionnaire and the Wechsler Adult Intelligence Scale were applied before medication, and a resting-state fMRI scan was obtained 1 h after medication (20 mg MPH or placebo, order counterbalanced between participants). We demonstrated that: (1) there were no significant differences in the performance of behavioral tasks between the MPH and placebo groups; (2) the left middle and superior temporal gyri had stronger MPH-related regional homogeneity (ReHo); and (3) the left lingual gyrus had weaker MPH-related ReHo. Our findings showed that the ReHo in some brain areas changes with MPH compared to placebo in normal adults, even though there are no behavioral differences. This method can be applied to patients with mental illness who may be treated with MPH, and be used to compare the difference between patients taking MPH and normal participants, to help reveal the mechanism of how MPH works.展开更多
Internet addiction is associated with an increased risk of suicidal behavior and can lead to brain dysfunction among adolescents.However,whether brain dysfunction occurs in adolescents with Internet addiction who atte...Internet addiction is associated with an increased risk of suicidal behavior and can lead to brain dysfunction among adolescents.However,whether brain dysfunction occurs in adolescents with Internet addiction who attempt suicide remains unknown.This observational cross-sectional study enrolled 41 young Internet addicts,aged from 15 to 20 years,from the Department of Psychiatry,the First Affiliated Hospital of Chongqing Medical University,China from January to May 2018.The participants included 21 individuals who attempted suicide and 20 individuals with Internet addiction without a suicidal attempt history.Brain images in the resting state were obtained by a 3.0 T magnetic resonance imaging scanner.The results showed that activity in the gyrus frontalis inferior of the right pars triangularis and the right pars opercularis was significantly increased in the suicidal attempt group compared with the non-suicidal attempt group.In the resting state,the prefrontal lobe of adolescents who had attempted suicide because of Internet addiction exhibited functional abnormalities,which may provide a new basis for studying suicide pathogenesis in Internet addicts.The study was authorized by the Ethics Committee of Chongqing Medical University,China(approval No.2017 Scientific Research Ethics(2017-157))on December 11,2017.展开更多
One of the most significant challenges in the neuroscience community is to understand how the human brain works.Recent progress in neuroimaging techniques have validated that it is possible to decode a person′s thoug...One of the most significant challenges in the neuroscience community is to understand how the human brain works.Recent progress in neuroimaging techniques have validated that it is possible to decode a person′s thoughts,memories,and emotions via functional magnetic resonance imaging(i.e.,fMRI)since it can measure the neural activation of human brains with satisfied spatiotemporal resolutions.However,the unprecedented scale and complexity of the fMRI data have presented critical computational bottlenecks requiring new scientific analytic tools.Given the increasingly important role of machine learning in neuroscience,a great many machine learning algorithms are presented to analyze brain activities from the fMRI data.In this paper,we mainly provide a comprehensive and up-to-date review of machine learning methods for analyzing neural activities with the following three aspects,i.e.,brain image functional alignment,brain activity pattern analysis,and visual stimuli reconstruction.In addition,online resources and open research problems on brain pattern analysis are also provided for the convenience of future research.展开更多
BACKGROUND Diabetes is a common chronic disease.Given the increasing incidence of diabetes,more individuals are affected by diabetic optic neuropathy(DON),which results in decreased vision.Whether DON leads to abnorma...BACKGROUND Diabetes is a common chronic disease.Given the increasing incidence of diabetes,more individuals are affected by diabetic optic neuropathy(DON),which results in decreased vision.Whether DON leads to abnormalities of other visual systems,including the eye,the visual cortex,and other brain regions,remains unknown.AIM To investigate the local characteristics of spontaneous brain activity using regional homogeneity(ReHo)in patients with DON.METHODS We matched 22 patients with DON with 22 healthy controls(HCs).All subjects underwent resting-state functional magnetic resonance imaging.The ReHo technique was used to record spontaneous changes in brain activity.Receiver operating characteristic(ROC)curves were applied to differentiate between ReHo values for patients with DON and HCs.We also assessed the correlation between Hospital Anxiety and Depression Scale scores and ReHo values in DON patients using Pearson correlation analysis.RESULTS ReHo values of the right middle frontal gyrus(RMFG),left anterior cingulate(LAC),and superior frontal gyrus(SFG)/left frontal superior orbital gyrus(LFSO)were significantly lower in DON patients compared to HCs.Among these,the greatest difference was observed in the RMFG.The result of the ROC curves suggest that ReHo values in altered brain regions may help diagnose DON,and the RMFG and LAC ReHo values are more clinically relevant than SFG/LFSO.We also found that anxiety and depression scores of the DON group were extremely negatively correlated with the LAC ReHo values(r=-0.9336,P<0.0001 and r=-0.8453,P<0.0001,respectively).CONCLUSION Three different brain regions show ReHo changes in DON patients,and these changes could serve as diagnostic and/or prognostic biomarkers to further guide the prevention and treatment of DON patients.展开更多
Background Alexithymia is a multidimensional personality construct.Objective This study aims to investigate the neuronal correlates of each alexithymia dimension by examining the regional homogeneity (ReHo) of int...Background Alexithymia is a multidimensional personality construct.Objective This study aims to investigate the neuronal correlates of each alexithymia dimension by examining the regional homogeneity (ReHo) of intrinsic brain activity in a resting situation.Methods From university freshmen, students with alexithymia and non-alexithymia were recruited. Their alexithymic traits were assessed using the Toronto Alexithymia Scale-20. The ReHo was examined using a resting-state functional MRI approach.Results This study suggests signifcant group differences in ReHo in multiple brain regions distributed in the frontal lobe, parietal lobe, temporal lobe, occipital lobe and insular cortex. However, only the ReHo in the insula was positively associated with diffculty identifying feelings, a main dimension of alexithymia. The ReHo in the lingual gyrus, precentral gyrus and postcentral gyrus was?positively associated with diffculty describing feelings in?participants with?alexithymia. Lastly, the ReHo in the right dorsomedial prefrontal cortex (DMPFC_R) was negatively related to the externally oriented thinking style of participants with?alexithymia.Conclusion In conclusion, these results suggest that the main dimensions of alexithymia are correlated with specifc brain regions’ function, and the role of the insula, lingual gyrus, precentral gyrus, postcentral gyrus and DMPFC_R in the neuropathology of alexithymia should be further investigated.展开更多
Objective The resting-state functional magnetic resonance imaging(rs-f MRI)method was used to observe brain activity and its functional connection upon electroacupuncture stimulation at bilateral uterine acupoints(EX-...Objective The resting-state functional magnetic resonance imaging(rs-f MRI)method was used to observe brain activity and its functional connection upon electroacupuncture stimulation at bilateral uterine acupoints(EX-CA1),as well as to investigate the mechanism of acupuncture in the treatment of gynecological diseases.Methods Twenty-two healthy female subjects were stimulated by electroacupuncture at bilateral uterine acupoints;rs-f MRI data of the brain were acquired and standardized.Degree centrality(DC),amplitude of low-frequency fluctuation(ALFF),and regional homogeneity(ReHo)were used to analyze local spontaneous brain activity via acupuncture.An independent component analysis was used to evaluate the functional connectivity of the resting brain networks after acupuncture.Results Analytical results showed that the neural activity intensity of the precuneus lobe,orbitofrontal cortex,lingual gyrus,amygdala,and posterior central gyrus decreased after acupuncture(voxel P<0.001,cluster P<0.05).Functional connectivity analysis revealed weakened auditory and right frontal-parietal networks(voxel P<0.001,cluster P<0.05),enhanced visual network(voxel P<0.001,cluster P<0.05),and synergistic auditory network and hypothalamic-pituitary system.Conclusion Significant differences in neural activity and functional connectivity in specific brain regions were observed after acupuncture intervention at uterine acupoints;the hypothalamic-pituitary system also showed various active states in different brain regions.It is speculated that the effective mechanism of acupuncture at uterine acupoints is related to the regulation of reproductive hormones,emotional changes,and somatic sensations.Therefore,the methods used in this study could clarify the neural mechanism of uterine-point acupuncture in the treatment of gynecological diseases and may serve as a reference for other studies pertaining to acupuncture.展开更多
AIM:To assess changed spontaneous brain activity in hyperthyroid exophthalmos(HE)patients by the amplitude of the low-frequency fluctuation(ALFF)method,and to analyze the correlation between brain activity and ALFF va...AIM:To assess changed spontaneous brain activity in hyperthyroid exophthalmos(HE)patients by the amplitude of the low-frequency fluctuation(ALFF)method,and to analyze the correlation between brain activity and ALFF values in these patients.METHODS:Totally 18 HE and 18 hyperthyroid nonexophthalmos(HNE)patients were enrolled.The participants were tested by resting-state functional magnetic resonance imaging,and receiver operating characteristic(ROC)curves were generated to classify the ALFF values of the study population.Pearson’s correlation analysis was utilized to evaluate the relationship between the ALFF values obtained from different brain areas and clinical manifestations.RESULTS:Contrary to HNE patients,we observed lower ALFF values in the left calcarine fissure and surrounding cortex(LCFSC)in HE patients.In the ROC curve analysis of the LCFSC,the area under the curve reflected a high degree of accuracy.In addition,there was positive correlation between mean ALFF values of the LCFSC and the bestcorrected visual acuity of the affected eyes.CONCLUSION:The study displays abnormal brain activity in LCFSC in patients with HE,which might suggest pathological mechanism of visual impairment of HE patients.展开更多
In the field of functional MRI,compared to observations of task-related brain activity,a growing number of studies have shown that spontaneous brain activity during the resting state may be more sensitive to defects i...In the field of functional MRI,compared to observations of task-related brain activity,a growing number of studies have shown that spontaneous brain activity during the resting state may be more sensitive to defects in the cognitive functions of our brain.展开更多
Cosmetics are used to improve physical appearance, but the benefits may be limited to people without visual impairment. The importance of attractiveness among blind persons has not been assessed. We investigated the i...Cosmetics are used to improve physical appearance, but the benefits may be limited to people without visual impairment. The importance of attractiveness among blind persons has not been assessed. We investigated the influence of makeup on brain activity of blind persons using functional magnetic resonance imaging (fMRI). Participants were 7 blind females (BFs) who learned to fully apply makeup and 9 mostly age-matched normally sighted females (NSFs). Brain activity was measured using fMRI before and after application of makeup and during a makeup image task in each state. In the default mode network at rest, there was no difference between the BFs and NSFs. However, a lateral visual network to the opposite side was observed in the NSFs, whereas no such network was noted in the BFs. A weak network was noted in the BFs in the occipital fusiform gyrus and temporal occipital fusiform cortex, and an extensive visual area network defect was noted. Also, activity after makeup application was significantly higher in the nucleus accumbens, pallidum, and hippocampus. Activity in the right middle cingulate gyrus, right cerebral white matter, and right anterior cingulate gyrus was higher before makeup in both BFs and NSFs, and the activity was significantly higher and more extensive in the BFs. In conclusion, applying makeup is a personally rewarding activity, even for BFs, as it strongly activates the reward system and the reward/memory system network, even in the absence of a visual area network.展开更多
Dear Editor,Sleep deprivation and loss can have detrimental effects on brain function.Among common patterns of sleep loss are delayed sleep onset(early night sleep loss,EL)and premature awakening(late night sleep loss...Dear Editor,Sleep deprivation and loss can have detrimental effects on brain function.Among common patterns of sleep loss are delayed sleep onset(early night sleep loss,EL)and premature awakening(late night sleep loss,LL).Here,we investigated the distinct impacts of EL and LL on resting-state brain activity.A total of 100 healthy students from several universities in Beijing were recruited and randomly assigned to one of three groups:EL,LL,or full sleep(FS).Restingstate functional magnetic resonance imaging(rs-fMRI)scans were conducted following the sleep manipulations.Compared to the FS group,the LL group showed abnormal low-frequency fluctuation(fALFF)in the prefrontal cortex and insula.展开更多
Background:Excessive heat exposure can lead to hyperthermia in humans,which impairs physical performance and disrupts cognitive function.While heat is a known physiological stressor,it is unclear how severe heat stres...Background:Excessive heat exposure can lead to hyperthermia in humans,which impairs physical performance and disrupts cognitive function.While heat is a known physiological stressor,it is unclear how severe heat stress affects brain physiology and function.Methods:Eleven healthy participants were subjected to heat stress from prolonged exercise or warm water immersion until their rectal temperatures(T_(re))attained 39.5℃,inducing exertional or passive hyperthermia,respectively.In a separate trial,blended ice was ingested before and during exercise as a cooling strategy.Data were compared to a control condition with seated rest(normothermic).Brain temperature(T_(br)),cerebral perfusion,and task-based brain activity were assessed using magnetic resonance imaging techniques.Results:T_(br)in motor cortex was found to be tightly regulated at rest(37.3℃±0.4℃(mean±SD))despite fluctuations in T_(re).With the development of hyperthermia,T_(br)increases and dovetails with the rising T_(re).Bilateral motor cortical activity was suppressed during high-intensity plantarflexion tasks,implying a reduced central motor drive in hyperthermic participants(T_(re)=38.5℃±0.1℃).Global gray matter perfusion and regional perfusion in sensorimotor cortex were reduced with passive hyperthermia.Executive function was poorer under a passive hyperthermic state,and this could relate to compromised visual processing as indicated by the reduced activation of left lateral-occipital cortex.Conversely,ingestion of blended ice before and during exercise alleviated the rise in both T_(re)and T_(bc)and mitigated heat-related neural perturbations.Conclusion:Severe heat exposure elevates T_(br),disrupts motor cortical activity and executive function,and this can lead to impairment of physical and cognitive performance.展开更多
Within the context of the computer metaphor,evoked brain activity acts as a primary carrier for the brain mechanisms of mental processing.However,many studies have found that evoked brain activity is not the major par...Within the context of the computer metaphor,evoked brain activity acts as a primary carrier for the brain mechanisms of mental processing.However,many studies have found that evoked brain activity is not the major part of brain activity.Instead,spontaneous brain activity exhibits greater intensity and coevolves with evoked brain activity through continuous interaction.Spontaneous and evoked brain activities are similar but not identical.They are not separate parts,but always dynamically interact with each other.Therefore,the enactive cognition theory further states that the brain is characterized by unified and active patterns of activity.The brain adjusts its activity pattern by minimizing the error between expectation and stimulation,adapting to the ever-changing environment.Therefore,the dynamic regulation of brain activity in response to task situations is the core brain mechanism of mental processing.Beyond the evoked brain activity and spontaneous brain activity,the enactive brain activity provides a novel framework to completely describe brain activities during mental processing.It is necessary for upcoming researchers to introduce innovative indicators and paradigms for investigating enactive brain activity during mental processing.展开更多
The BRAIN project recently announced by the president Obama is the reflection of unrelenting human quest for cracking the brain code, the patterns of neuronal activity that define who we are and what we are. While the...The BRAIN project recently announced by the president Obama is the reflection of unrelenting human quest for cracking the brain code, the patterns of neuronal activity that define who we are and what we are. While the Brain Activity Mapping proposal has rightly emphasized on the need to develop new technologies for measuring every spike from every neuron, it might be helpful to consider both the theoretical and experimental aspects that would accelerate our search for the organizing principles of the brain code. Here we share several insights and lessons from the similar proposal, namely, Brain Decoding Project that we initiated since 2007. We provide a specific example in our initial mapping of real-time memory traces from one part of the memory circuit, namely, the CA1 region of the mouse hippocampus. We show how innovative behavioral tasks and appropriate mathematical analyses of large datasets can play equally, if not more, important roles in uncovering the specific-to-general feature-coding cell assembly mechanism by which episodic memory, semantic knowledge, and imagination are generated and organized. Our own experiences suggest that the bottleneck of the Brain Project is not only at merely developing additional new technologies, but also the lack of efficient avenues to disseminate cutting edge platforms and decoding expertise to neuroscience community. Therefore, we propose that in order to harness unique insights and extensive knowledge from various investigators working in diverse neuroscience subfields, ranging from perception and emotion to memory and social behaviors, the BRAIN project should create a set of International and National Brain Decoding Centers at which cutting-edge recording technologies and expertise on analyzing large datasets analyses can be made readily available to the entire community of neuroscientists who can apply and schedule to perform cutting-edge research.展开更多
OBJECTIVE:To evaluate the clinical effect of transcutaneous auricular vagus nerve nerve stimulation(ta VNS)on disorders of consciousness(DOC)patients with Coma Recovery Scale-Revised(CRS-R)and cerebral cortex activity...OBJECTIVE:To evaluate the clinical effect of transcutaneous auricular vagus nerve nerve stimulation(ta VNS)on disorders of consciousness(DOC)patients with Coma Recovery Scale-Revised(CRS-R)and cerebral cortex activity by electroencephalogram(EEG)detection.METHODS:Randomized controlled methods were used to evaluate the clinical effect of ta VNS on patients with DOC.Twelve patients with initial CRS-R of 6-10 were randomly divided into the treatment group of ta VNS and control group of transcutaneous non-auricular vague nerve stimulation(tn VNS).According to clinical diagnosis,the treatment group was divided into vegetative state(VS)group and minimally conscious state(MCS)group.RESULTS:The energy of delta and beta bands is positively correlated with the brain activity of patients.ta VNS has different regulatory effects on patients with different conscious States.In ta VNS group,the energy of delta band in local brain regions changed significantly.Significant changes in brain connection activity were limited to local brain regions.While in patients with MCS in the ta VNS group,delta and beta band energy significantly changed in multiple brain regions and crossbrain connection activity also changed significantly.CONCLUSION:These findings suggest that ta VNS may be a related extra method for arousing patients’awakening by improving brain connection activity.And the effect is remarkable in MCS patients.展开更多
BACKGROUND: It has been proved that brain electrical activity mapping (BEAM) and transcranial Doppler (TCD) detection can reflect the function of brain cell and its diseased degree of infant patients with moderat...BACKGROUND: It has been proved that brain electrical activity mapping (BEAM) and transcranial Doppler (TCD) detection can reflect the function of brain cell and its diseased degree of infant patients with moderate to severe hypoxic-ischemic encephalopathy (HIE). OBJECTIVE: To observe the abnormal results of HIE at different degrees detected with BEAM and TCD in infant patients, and compare the detection results at the same time point between BEAM, TCD and computer tomography (CT) examinations. DESIGN : Contrast observation SETTING: Departments of Neuro-electrophysiology and Pediatrics, Second Affiliated Hospital of Qiqihar Medical College. PARTICIPANTS: Totally 416 infant patients with HIE who received treatment in the Department of Newborn Infants, Second Affiliated Hospital of Qiqihar Medical College during January 2001 and December 2005. The infant patients, 278 male and 138 female, were at embryonic 37 to 42 weeks and weighing 2.0 to 4.1 kg, and they were diagnosed with CT and met the diagnostic criteria of HIE of newborn infants compiled by Department of Neonatology, Pediatric Academy, Chinese Medical Association. According to diagnostic criteria, 130 patients were mild abnormal, 196 moderate abnormal and 90 severe abnormal. The relatives of all the infant patients were informed of the experiment. METHOOS: BEAM and TCD examinations were performed in the involved 416 infant patients with HIE at different degrees with DYD2000 16-channel BEAM instrument and EME-2000 ultrasonograph before preliminary diagnosis treatment (within 1 month after birth) and 1,3,6,12 and 24 months after birth, and detected results were compared between BEAM, TCD and CT examinations. MAIN OUTCOME MEASURES: Comparison of detection results of HIE at different time points in infant patients between BEAM. TCD and CT examinations. RESULTS: All the 416 infant patients with HIE participated in the result analysis. (1) Comparison of the detected results in infant patients with mild HIE at different time points after birth between BEAM, TCD and CT examinations: BEAM examination showed that the recovery was delayed, and the abnormal rate of BEAM examination was significantly higher than that of CT examination 1 and 3 months after birth [55.4%(72/130)vs. 17.0% (22/130 ),x^2=41.66 ;29.2% ( 38/130 ) vs. 6.2% ( 8/130 ), x^2=23.77, P 〈 0.01 ], exceptional patients had mild abnormality and reached the normal level in about 6 months. TCD examination showed that the disease condition significantly improved and infant patients with HIE basically recovered 1 or 2 months after birth, while CT examination showed that infant patients recovered 3 or 4 months after birth. (2) Comparison of detection results of infant patients with moderate HIE at different time points between BEAM, TCD and CT examinations: The abnormal rate of BEAM examination was significantly higher than that of CT examination 1,3,6 and 12 months after birth [90.8% (178/196),78.6% (154/196),x^2=4.32,P 〈 0.05;64.3% (126/196),43.9% (86/196) ,x^2=16.44 ;44.9% (88/196) ,22.4% (44/196),x^2=22.11 ;21.4% (42/196), 10.2% (20/196),x^2=9.27, P 〈 0.01]. BEAM examination showed that there was still one patient who did not completely recovered in the 24^th month due to the relatives of infant patients did not combine the treatment,. TCD examination showed that the abnormal rate was 23.1%(30/196)in the 1^st month after birth, and all the patients recovered to the normal in the 3^rd month after birth, while CT examination showed that mild abnormality still existed in the 24^th month after birth (1.0% ,2/196). (3) Comparison of detection results of infant patients with severe HIE at different time points between BEAM, TCD and CT examinations: The abnormal rate of BEAM examination was significantly higher than that of CT examination in the 1^st, 3^rd, 6^th and 12^th months after birth[86.7% (78/90),44.4% (40/90),x^2=35.53;62.2% (56/90),31.1% (28/90),x^2=17.51 ;37.8% (34/90),6.7% (6/90), x^2=27.14, P 〈 0.01]. BEAM examination showed that mild abnormality still existed in 4 infant patients in the 24^th month after birth. TCD examination showed that the abnormal rate was 11.1% (10/90) in the 3^rd month after birth, and all the infant patients recovered in the 6^th month after birth. CT examination showed that the abnormal rate was 6.7%(6/90) in the 12^th month after birth, and all of infant patients recovered to the normal in the 24^th month after birth.CONCLUSION : BEAM is the direct index to detect brain function of infant patients with HIE, and positive reaction is still very sensitive in the tracking detection of convalescent period. The positive rate of morphological reaction in CT examination is superior to that in TCD examination, and the positive rate is very high in the acute period of HIE in examination.展开更多
The enhancement of adhesive perception is crucial to maintaining a stable and comfortable grip of the skin-touch products.To study the tactile perception of adhesive surfaces,subjective evaluation,skin friction and vi...The enhancement of adhesive perception is crucial to maintaining a stable and comfortable grip of the skin-touch products.To study the tactile perception of adhesive surfaces,subjective evaluation,skin friction and vibrations,and neurophysiological response of the brain activity were investigated systematically.Silicone materials,which are commonly used for bionic materials and skin-touch products,were chosen for the tactile stimulus.The results showed that with the increasing of surface adhesion,the dominant friction transferred from a combination of adhesive friction and deformation friction to adhesive friction.The friction coefficient and vibration amplitude had strong correlations with the perceived adhesion of surfaces.The parietal lobe and occipital lobe were involved in adhesive perceptions,and the area and intensity of brain activation increased with the increasing surface adhesion.Surfaces with larger adhesion tended to excite a high P300 amplitude and short latency,indicating that the judgment was faster and that more attentional resources were involved in adhesive perception.Furthermore,the electroencephalograph signals of the adhesive perception were simulated by the neural mass model.It demonstrated that the excitability and intensity of brain activity,and the connectivity strength between two neural masses increased with the increasing surface adhesion.This study is meaningful to understand the role of surface adhesion in tactile friction and the cognitive mechanism in adhesive perception to improve the tactile experience of adhesive materials.展开更多
基金Innovation and Development Joint Fund of Natural Science Foundation of Shandong Province:based on the Nuclear Factor-erythroid 2 Related Factor 2/AU-rich Element Antioxidant Pathway,the Effect and Mechanism of Menstrual Stimulation Acupuncture on in vitro Fertilization and Embryo Transfer Pregnancy Outcomes in Poor Ovarian Response Patients were Studied (ZR2022LZY008)Shandong Provincial Traditional Chinese Medicine High-level Personnel Training Program Supported by Special Funds (No.6 [2021])+3 种基金Qilu Health and Health Leading Talents Training Project (No.3 [2020])Clinical Science and Technology Innovation Program of Jinan Science and Technology Bureau:Study on the Regulatory Mechanism of Menstrual Regulation and Pregnancy Promotion Acupuncture Method based on rs-functional Magnetic Resonance Imaging Technology on the Brain Function Network of Decreasing Ovarian Reserve Patients (202225059)Shandong Traditional Chinese Medicine Science and Technology Development Plan Project:a Multimodal Neuroimaging Study of Menstrual Stimulation Acupuncture in Patients with Polycystic Ovary Syndrome (No.Q-2022099)Shandong Traditional Chinese Medicine Science and Technology Development Plan Project:based on the Immunoregulation of Treg Cells,the Mechanism of Menstruation and Pregnancy Promotion Injection in the Treatment of Early-onset Ovarian Insufficiency was Explored (No.B-2022002)。
文摘OBJECTIVE:To examine the variations in brain regions among individuals with decreasing ovarian reserve(DOR) compared to healthy controls using resting-state functional magnetic resonance imaging(rs-fMRI),and to assess the immediate effects of acupuncture stimulation on these brain regions in DOR patients.METHODS:Twenty patients diagnosed with DOR(DOR group) and twenty healthy controls(HC group) who underwent rs-fMRI scans were included.The DOR group received acupuncture and underwent a subsequent rsfMRI scan.Amplitude of low-frequency fluctuations(ALFF) analysis was utilized to identify disparities in brain regions between DOR and HC groups,and to evaluate the immediate effects of acupuncture on DOR patients' brain regions.Common brain regions were identified as seed points for functional connectivity(FC) analysis.RESULTS:In this study,a total of 20 HCs and 20 patients with DOR were initially enrolled.However,due to incomplete personal information,three participants were removed from the HC group.Additionally,two DOR patients experienced symptoms such as physical discomfort and shortness of breath during the MRI scan,leading to their exclusion due to excessive head movement parameters.Consequently,17 HCs and 16 DOR patients completed the entire study protocol.Comparative analysis revealed that DOR patients exhibited increased ALFF values in the left inferior temporal gyrus(ITG) and middle temporal gyrus(MTG),while ALFF values in the bilateral superior frontal gyrus(SFG),middle frontal gyrus(MFG),and left inferior frontal gyrus(IFG) were decreased compared to HCs.Following acupuncture intervention,ALFF values in the left SFG,MFG,and supplementary motor area(SMA) of DOR patients increased.Furthermore,functional connectivity(FC) analysis demonstrated increased connectivity of the left SFG with the bilateral calcarine sulcus and lingual gyrus post-acupuncture.CONCLUSION:This study highlights abnormal neural activity in the SFG,MFG,IFG,and ACC in DOR patients compared to HCs.Acupuncture was found to regulate the activity of the SFG,bringing it closer to normal levels,and enhancing its functional connectivity with the bilateral calcarine sulcus and lingual gyrus.
基金supported by the Key-Area Research and Development Program of Guangdong Province(2023B0303030002)the Beijing Natural Science Foundation(IS23114,7242274)+4 种基金the China Postdoctoral Science Foundation(2023TQ0027 and 2024M754099)the STI 2030-Major Projects(2022ZD0208500)the National Natural Science Foundation of China(62336002,82071912,62406025,82202291,62373056,62306035)the Beijing Nova Program(20230484465)the Shenzhen Basic Research Program(JCYJ20241202124804007).
文摘Working memory is an executive memory process that includes encoding,maintenance,and retrieval.These processes can be modulated by transcranial alternating current stimulation(tACS)with sinusoidal waves.However,little is known about the impact of the rate of current change on working memory.In this study,we aimed to investigate the effects of two types of tACS with different rates of current change on working memory performance and brain activity.We applied a randomized,single-blind design and divided 81 young participants who received triangular wave tACS,sinusoidal wave tACS,or sham stimulation into three groups.Participants performed n-back tasks,and electroencephalograms were recorded before,during,and after active or sham stimulation.Compared to the baseline,working memory performance(accuracy and response time)improved after stimulation under all stimulation conditions.According to drift-diffusion model analysis,triangular wave tACS significantly increased the efficiency of non-target information processing.In addition,compared with sham conditions,triangular wave tACS reduced alpha power oscillations in the occipital lobe throughout the encoding period,while sinusoidal wave tACS increased theta power in the central frontal region only during the later encoding period.The brain network connectivity results showed that triangular wave tACS improved the clustering coefficient,local efficiency,and node degree intensity in the early encoding stage,and these parameters were positively correlated with the non-target drift rate and decision starting point.Our findings on how tACS modulates working memory indicate that triangular wave tACS significantly enhances brain network connectivity during the early encoding stage,demonstrating an improvement in the efficiency of working memory processing.In contrast,sinusoidal wave tACS increased the theta power during the later encoding stage,suggesting its potential critical role in late-stage information processing.These findings provide valuable insights into the potential mechanisms by which tACS modulates working memory.
基金Supported by National Natural Science Foundation of China(No.82160195No.82460203)Key R&D Program of Jiangxi Province(No.20223BBH80014).
文摘AIM:To investigate changes in local brain activity after laser assisted in situ keratomileusis(LASIK)in myopia patients,and further explore whether post-LASIK(POL)patients and healthy controls(HCs)can be distinguished by differences in dynamic amplitude of low-frequency fluctuations(dALFF)in specific brain regions.METHODS:The resting-state functional magnetic resonance imaging(rs-fMRI)data were collected from 15 myopic patients who underwent LASIK and 15 matched healthy controls.This method was selected to calculate the corresponding dALFF values of each participant,to compare dALFF between the groups and to determine whether dALFF distinguishes reliably between myopic patients after LASIK and HCs using the linear support vector machine(SVM)permutation test(5000 repetitions).RESULTS:dALFF was lower in POL than in HCs at the right precentral gyrus and right insula.Classification accuracy of the SVM was 89.1%(P<0.001).CONCLUSION:The activity of spontaneous neurons in the right precentral gyrus and right insula of myopic patients change significantly after LASIK.SVM can correctly classify POL patients and HCs based on dALFF differences.
基金This work was supported by the National Natural Science Foundation of China(31522028,71834002,31530031,81571056,31521063,and 61775139)the Youth Science and Technology Innovation Program,Beijing Brain Initiative of Beijing Municipal Science and Technology Commission(Z181100001518003)+1 种基金the Open Research Fund of the State Key Laboratory of Cognitive Neuroscience and Learning(CNLZD1503 and CNLZD1703)the Fundamental Research Funds for the Central Universities.
文摘The human brain undergoes rapid development during childhood,with significant improvement in a wide spectrum of cognitive and affective functions.Mapping domain-and age-specific brain activity patterns has important implications for characterizing the development of children’s cognitive and affective functions.The current mainstay of brain templates is primarily derived from structural magnetic resonance imaging(MRI),and thus is not ideal for mapping children’s cognitive and affective brain development.By integrating task-dependent functional MRI data from a large sample of 250 children(aged 7 to 12)across multiple domains and the latest easy-to-use and transparent preprocessing workflow,we here created a set of age-specific brain functional activity maps across four domains:attention,executive function,emotion,and risky decision-making.Moreover,we developed a toolbox named Developmental Brain Functional Activity maps across multiple domains that enables researchers to visualize and download domain-and age-specific brain activity maps for various needs.This toolbox and maps have been released on the Neuroimaging Informatics Tools and Resources Clearinghouse website(http://www.nitrc.org/projects/dbfa).Our study provides domain-and age-specific brain activity maps for future developmental neuroimaging studies in both healthy and clinical populations.
基金supported by the National Natural Science Foundation of China(30600181)a Key Project of the Department of Science and Technology of Zhejiang Province,China(2006C23030)
文摘Methylphenidate (MPH) is one of the most commonly used stimulants for the treatment of attention deficit hyperactivity disorder (ADHD). Although several studies have evaluated the effects of MPH on human brain activation during specific cognitive tasks using functional magnetic resonance imaging (fMRI), few studies have focused on spontaneous brain activity. In the current study, we investigated the effect of MPH on the intra-regional synchronization of spontaneous brain activity during the resting state in 18 normal adult males. A handedness questionnaire and the Wechsler Adult Intelligence Scale were applied before medication, and a resting-state fMRI scan was obtained 1 h after medication (20 mg MPH or placebo, order counterbalanced between participants). We demonstrated that: (1) there were no significant differences in the performance of behavioral tasks between the MPH and placebo groups; (2) the left middle and superior temporal gyri had stronger MPH-related regional homogeneity (ReHo); and (3) the left lingual gyrus had weaker MPH-related ReHo. Our findings showed that the ReHo in some brain areas changes with MPH compared to placebo in normal adults, even though there are no behavioral differences. This method can be applied to patients with mental illness who may be treated with MPH, and be used to compare the difference between patients taking MPH and normal participants, to help reveal the mechanism of how MPH works.
基金supported by a grant from Chongqing Science and Technology Commission of China,Nos.CSTC2018jxj1130009,cstc2019 jscx-msxmX0279(both to YH)the Traditional Chinese Medicine Scientific Research Fund from Chongqing Health Committee of China,No.2019ZY023315(to YH)
文摘Internet addiction is associated with an increased risk of suicidal behavior and can lead to brain dysfunction among adolescents.However,whether brain dysfunction occurs in adolescents with Internet addiction who attempt suicide remains unknown.This observational cross-sectional study enrolled 41 young Internet addicts,aged from 15 to 20 years,from the Department of Psychiatry,the First Affiliated Hospital of Chongqing Medical University,China from January to May 2018.The participants included 21 individuals who attempted suicide and 20 individuals with Internet addiction without a suicidal attempt history.Brain images in the resting state were obtained by a 3.0 T magnetic resonance imaging scanner.The results showed that activity in the gyrus frontalis inferior of the right pars triangularis and the right pars opercularis was significantly increased in the suicidal attempt group compared with the non-suicidal attempt group.In the resting state,the prefrontal lobe of adolescents who had attempted suicide because of Internet addiction exhibited functional abnormalities,which may provide a new basis for studying suicide pathogenesis in Internet addicts.The study was authorized by the Ethics Committee of Chongqing Medical University,China(approval No.2017 Scientific Research Ethics(2017-157))on December 11,2017.
基金This work was supported by National Natural Science Foundation of China(Nos.61876082,61861130366,6173-2006 and 61902183)National Key Research and Development Program of China(Nos.2018 YFC2001600,2018YFC 2001602)+1 种基金the Royal Society-Academy of Medical Sciences Newton Advanced Fellowship(No.NAF\R1\180371)China Postdoctoral Science Foundation funded project(No.2019M661831).
文摘One of the most significant challenges in the neuroscience community is to understand how the human brain works.Recent progress in neuroimaging techniques have validated that it is possible to decode a person′s thoughts,memories,and emotions via functional magnetic resonance imaging(i.e.,fMRI)since it can measure the neural activation of human brains with satisfied spatiotemporal resolutions.However,the unprecedented scale and complexity of the fMRI data have presented critical computational bottlenecks requiring new scientific analytic tools.Given the increasingly important role of machine learning in neuroscience,a great many machine learning algorithms are presented to analyze brain activities from the fMRI data.In this paper,we mainly provide a comprehensive and up-to-date review of machine learning methods for analyzing neural activities with the following three aspects,i.e.,brain image functional alignment,brain activity pattern analysis,and visual stimuli reconstruction.In addition,online resources and open research problems on brain pattern analysis are also provided for the convenience of future research.
基金National Natural Science Foundation of China,No.81660158 and No.81400372Natural Science Research Foundation of Jiangxi Province,No.20161ACB21017Medical Science Foundation of Jiangxi Province,No.20181BBG70004 and No.20164017.
文摘BACKGROUND Diabetes is a common chronic disease.Given the increasing incidence of diabetes,more individuals are affected by diabetic optic neuropathy(DON),which results in decreased vision.Whether DON leads to abnormalities of other visual systems,including the eye,the visual cortex,and other brain regions,remains unknown.AIM To investigate the local characteristics of spontaneous brain activity using regional homogeneity(ReHo)in patients with DON.METHODS We matched 22 patients with DON with 22 healthy controls(HCs).All subjects underwent resting-state functional magnetic resonance imaging.The ReHo technique was used to record spontaneous changes in brain activity.Receiver operating characteristic(ROC)curves were applied to differentiate between ReHo values for patients with DON and HCs.We also assessed the correlation between Hospital Anxiety and Depression Scale scores and ReHo values in DON patients using Pearson correlation analysis.RESULTS ReHo values of the right middle frontal gyrus(RMFG),left anterior cingulate(LAC),and superior frontal gyrus(SFG)/left frontal superior orbital gyrus(LFSO)were significantly lower in DON patients compared to HCs.Among these,the greatest difference was observed in the RMFG.The result of the ROC curves suggest that ReHo values in altered brain regions may help diagnose DON,and the RMFG and LAC ReHo values are more clinically relevant than SFG/LFSO.We also found that anxiety and depression scores of the DON group were extremely negatively correlated with the LAC ReHo values(r=-0.9336,P<0.0001 and r=-0.8453,P<0.0001,respectively).CONCLUSION Three different brain regions show ReHo changes in DON patients,and these changes could serve as diagnostic and/or prognostic biomarkers to further guide the prevention and treatment of DON patients.
基金supported by the Natural Science Foundation of Zhejiang Province(no Q14H090014)
文摘Background Alexithymia is a multidimensional personality construct.Objective This study aims to investigate the neuronal correlates of each alexithymia dimension by examining the regional homogeneity (ReHo) of intrinsic brain activity in a resting situation.Methods From university freshmen, students with alexithymia and non-alexithymia were recruited. Their alexithymic traits were assessed using the Toronto Alexithymia Scale-20. The ReHo was examined using a resting-state functional MRI approach.Results This study suggests signifcant group differences in ReHo in multiple brain regions distributed in the frontal lobe, parietal lobe, temporal lobe, occipital lobe and insular cortex. However, only the ReHo in the insula was positively associated with diffculty identifying feelings, a main dimension of alexithymia. The ReHo in the lingual gyrus, precentral gyrus and postcentral gyrus was?positively associated with diffculty describing feelings in?participants with?alexithymia. Lastly, the ReHo in the right dorsomedial prefrontal cortex (DMPFC_R) was negatively related to the externally oriented thinking style of participants with?alexithymia.Conclusion In conclusion, these results suggest that the main dimensions of alexithymia are correlated with specifc brain regions’ function, and the role of the insula, lingual gyrus, precentral gyrus, postcentral gyrus and DMPFC_R in the neuropathology of alexithymia should be further investigated.
基金National Nature Science Foundation of China(61872225)Natural Science Foundation of Shandong Province(ZR2020KF013,ZR2020ZD44,ZR2019ZD04,and ZR2020QF043)+1 种基金Introduction and Cultivation Program for Young Creative Talents in Colleges and Universities of Shandong Province(2019-173)Special Fund of Qilu Health and Health Leading Talents Training Project。
文摘Objective The resting-state functional magnetic resonance imaging(rs-f MRI)method was used to observe brain activity and its functional connection upon electroacupuncture stimulation at bilateral uterine acupoints(EX-CA1),as well as to investigate the mechanism of acupuncture in the treatment of gynecological diseases.Methods Twenty-two healthy female subjects were stimulated by electroacupuncture at bilateral uterine acupoints;rs-f MRI data of the brain were acquired and standardized.Degree centrality(DC),amplitude of low-frequency fluctuation(ALFF),and regional homogeneity(ReHo)were used to analyze local spontaneous brain activity via acupuncture.An independent component analysis was used to evaluate the functional connectivity of the resting brain networks after acupuncture.Results Analytical results showed that the neural activity intensity of the precuneus lobe,orbitofrontal cortex,lingual gyrus,amygdala,and posterior central gyrus decreased after acupuncture(voxel P<0.001,cluster P<0.05).Functional connectivity analysis revealed weakened auditory and right frontal-parietal networks(voxel P<0.001,cluster P<0.05),enhanced visual network(voxel P<0.001,cluster P<0.05),and synergistic auditory network and hypothalamic-pituitary system.Conclusion Significant differences in neural activity and functional connectivity in specific brain regions were observed after acupuncture intervention at uterine acupoints;the hypothalamic-pituitary system also showed various active states in different brain regions.It is speculated that the effective mechanism of acupuncture at uterine acupoints is related to the regulation of reproductive hormones,emotional changes,and somatic sensations.Therefore,the methods used in this study could clarify the neural mechanism of uterine-point acupuncture in the treatment of gynecological diseases and may serve as a reference for other studies pertaining to acupuncture.
基金the National Natural ScienceFoundation (No.82160195)Central Government GuidesLocal Science and Technology Development Foundation(No.20211ZDG02003)+2 种基金Key Research Foundation of JiangxiProvince (No.20181BBG70004No.20203BBG73059)Excellent Talents Development Project of Jiangxi Province(No.20192BCBL23020).
文摘AIM:To assess changed spontaneous brain activity in hyperthyroid exophthalmos(HE)patients by the amplitude of the low-frequency fluctuation(ALFF)method,and to analyze the correlation between brain activity and ALFF values in these patients.METHODS:Totally 18 HE and 18 hyperthyroid nonexophthalmos(HNE)patients were enrolled.The participants were tested by resting-state functional magnetic resonance imaging,and receiver operating characteristic(ROC)curves were generated to classify the ALFF values of the study population.Pearson’s correlation analysis was utilized to evaluate the relationship between the ALFF values obtained from different brain areas and clinical manifestations.RESULTS:Contrary to HNE patients,we observed lower ALFF values in the left calcarine fissure and surrounding cortex(LCFSC)in HE patients.In the ROC curve analysis of the LCFSC,the area under the curve reflected a high degree of accuracy.In addition,there was positive correlation between mean ALFF values of the LCFSC and the bestcorrected visual acuity of the affected eyes.CONCLUSION:The study displays abnormal brain activity in LCFSC in patients with HE,which might suggest pathological mechanism of visual impairment of HE patients.
文摘In the field of functional MRI,compared to observations of task-related brain activity,a growing number of studies have shown that spontaneous brain activity during the resting state may be more sensitive to defects in the cognitive functions of our brain.
文摘Cosmetics are used to improve physical appearance, but the benefits may be limited to people without visual impairment. The importance of attractiveness among blind persons has not been assessed. We investigated the influence of makeup on brain activity of blind persons using functional magnetic resonance imaging (fMRI). Participants were 7 blind females (BFs) who learned to fully apply makeup and 9 mostly age-matched normally sighted females (NSFs). Brain activity was measured using fMRI before and after application of makeup and during a makeup image task in each state. In the default mode network at rest, there was no difference between the BFs and NSFs. However, a lateral visual network to the opposite side was observed in the NSFs, whereas no such network was noted in the BFs. A weak network was noted in the BFs in the occipital fusiform gyrus and temporal occipital fusiform cortex, and an extensive visual area network defect was noted. Also, activity after makeup application was significantly higher in the nucleus accumbens, pallidum, and hippocampus. Activity in the right middle cingulate gyrus, right cerebral white matter, and right anterior cingulate gyrus was higher before makeup in both BFs and NSFs, and the activity was significantly higher and more extensive in the BFs. In conclusion, applying makeup is a personally rewarding activity, even for BFs, as it strongly activates the reward system and the reward/memory system network, even in the absence of a visual area network.
基金supported by the STI2030-Major Projects(2021ZD0202100,2021ZD0200801,and 2021ZD0201900)the National Natural Science Foundation of China(82130040,82288101).
文摘Dear Editor,Sleep deprivation and loss can have detrimental effects on brain function.Among common patterns of sleep loss are delayed sleep onset(early night sleep loss,EL)and premature awakening(late night sleep loss,LL).Here,we investigated the distinct impacts of EL and LL on resting-state brain activity.A total of 100 healthy students from several universities in Beijing were recruited and randomly assigned to one of three groups:EL,LL,or full sleep(FS).Restingstate functional magnetic resonance imaging(rs-fMRI)scans were conducted following the sleep manipulations.Compared to the FS group,the LL group showed abnormal low-frequency fluctuation(fALFF)in the prefrontal cortex and insula.
基金supported by Defence Innovative Research Program(DIRP)Grant(PA No.9015102335)from Defence Research&Technology Office,Ministry of Defence,Singapore。
文摘Background:Excessive heat exposure can lead to hyperthermia in humans,which impairs physical performance and disrupts cognitive function.While heat is a known physiological stressor,it is unclear how severe heat stress affects brain physiology and function.Methods:Eleven healthy participants were subjected to heat stress from prolonged exercise or warm water immersion until their rectal temperatures(T_(re))attained 39.5℃,inducing exertional or passive hyperthermia,respectively.In a separate trial,blended ice was ingested before and during exercise as a cooling strategy.Data were compared to a control condition with seated rest(normothermic).Brain temperature(T_(br)),cerebral perfusion,and task-based brain activity were assessed using magnetic resonance imaging techniques.Results:T_(br)in motor cortex was found to be tightly regulated at rest(37.3℃±0.4℃(mean±SD))despite fluctuations in T_(re).With the development of hyperthermia,T_(br)increases and dovetails with the rising T_(re).Bilateral motor cortical activity was suppressed during high-intensity plantarflexion tasks,implying a reduced central motor drive in hyperthermic participants(T_(re)=38.5℃±0.1℃).Global gray matter perfusion and regional perfusion in sensorimotor cortex were reduced with passive hyperthermia.Executive function was poorer under a passive hyperthermic state,and this could relate to compromised visual processing as indicated by the reduced activation of left lateral-occipital cortex.Conversely,ingestion of blended ice before and during exercise alleviated the rise in both T_(re)and T_(bc)and mitigated heat-related neural perturbations.Conclusion:Severe heat exposure elevates T_(br),disrupts motor cortical activity and executive function,and this can lead to impairment of physical and cognitive performance.
基金supported by the National Social Science Found of China (No.BBA200030).
文摘Within the context of the computer metaphor,evoked brain activity acts as a primary carrier for the brain mechanisms of mental processing.However,many studies have found that evoked brain activity is not the major part of brain activity.Instead,spontaneous brain activity exhibits greater intensity and coevolves with evoked brain activity through continuous interaction.Spontaneous and evoked brain activities are similar but not identical.They are not separate parts,but always dynamically interact with each other.Therefore,the enactive cognition theory further states that the brain is characterized by unified and active patterns of activity.The brain adjusts its activity pattern by minimizing the error between expectation and stimulation,adapting to the ever-changing environment.Therefore,the dynamic regulation of brain activity in response to task situations is the core brain mechanism of mental processing.Beyond the evoked brain activity and spontaneous brain activity,the enactive brain activity provides a novel framework to completely describe brain activities during mental processing.It is necessary for upcoming researchers to introduce innovative indicators and paradigms for investigating enactive brain activity during mental processing.
基金Georgia Research Alliance for funding the Brain Decoding Initiative (2007 present)Yunnan Province Department of Science and Technology for the support of our work
文摘The BRAIN project recently announced by the president Obama is the reflection of unrelenting human quest for cracking the brain code, the patterns of neuronal activity that define who we are and what we are. While the Brain Activity Mapping proposal has rightly emphasized on the need to develop new technologies for measuring every spike from every neuron, it might be helpful to consider both the theoretical and experimental aspects that would accelerate our search for the organizing principles of the brain code. Here we share several insights and lessons from the similar proposal, namely, Brain Decoding Project that we initiated since 2007. We provide a specific example in our initial mapping of real-time memory traces from one part of the memory circuit, namely, the CA1 region of the mouse hippocampus. We show how innovative behavioral tasks and appropriate mathematical analyses of large datasets can play equally, if not more, important roles in uncovering the specific-to-general feature-coding cell assembly mechanism by which episodic memory, semantic knowledge, and imagination are generated and organized. Our own experiences suggest that the bottleneck of the Brain Project is not only at merely developing additional new technologies, but also the lack of efficient avenues to disseminate cutting edge platforms and decoding expertise to neuroscience community. Therefore, we propose that in order to harness unique insights and extensive knowledge from various investigators working in diverse neuroscience subfields, ranging from perception and emotion to memory and social behaviors, the BRAIN project should create a set of International and National Brain Decoding Centers at which cutting-edge recording technologies and expertise on analyzing large datasets analyses can be made readily available to the entire community of neuroscientists who can apply and schedule to perform cutting-edge research.
基金Supported by the Fundamental Research Funds for the Central Public Welfare Research Institutes:Brain Effects and Multimodal Imaging Mechanism of Transcutaneous Auricular Vagus Nerve Stimulation in Patients with Disorder of Consciousness(No.CI2021A03305)
文摘OBJECTIVE:To evaluate the clinical effect of transcutaneous auricular vagus nerve nerve stimulation(ta VNS)on disorders of consciousness(DOC)patients with Coma Recovery Scale-Revised(CRS-R)and cerebral cortex activity by electroencephalogram(EEG)detection.METHODS:Randomized controlled methods were used to evaluate the clinical effect of ta VNS on patients with DOC.Twelve patients with initial CRS-R of 6-10 were randomly divided into the treatment group of ta VNS and control group of transcutaneous non-auricular vague nerve stimulation(tn VNS).According to clinical diagnosis,the treatment group was divided into vegetative state(VS)group and minimally conscious state(MCS)group.RESULTS:The energy of delta and beta bands is positively correlated with the brain activity of patients.ta VNS has different regulatory effects on patients with different conscious States.In ta VNS group,the energy of delta band in local brain regions changed significantly.Significant changes in brain connection activity were limited to local brain regions.While in patients with MCS in the ta VNS group,delta and beta band energy significantly changed in multiple brain regions and crossbrain connection activity also changed significantly.CONCLUSION:These findings suggest that ta VNS may be a related extra method for arousing patients’awakening by improving brain connection activity.And the effect is remarkable in MCS patients.
文摘BACKGROUND: It has been proved that brain electrical activity mapping (BEAM) and transcranial Doppler (TCD) detection can reflect the function of brain cell and its diseased degree of infant patients with moderate to severe hypoxic-ischemic encephalopathy (HIE). OBJECTIVE: To observe the abnormal results of HIE at different degrees detected with BEAM and TCD in infant patients, and compare the detection results at the same time point between BEAM, TCD and computer tomography (CT) examinations. DESIGN : Contrast observation SETTING: Departments of Neuro-electrophysiology and Pediatrics, Second Affiliated Hospital of Qiqihar Medical College. PARTICIPANTS: Totally 416 infant patients with HIE who received treatment in the Department of Newborn Infants, Second Affiliated Hospital of Qiqihar Medical College during January 2001 and December 2005. The infant patients, 278 male and 138 female, were at embryonic 37 to 42 weeks and weighing 2.0 to 4.1 kg, and they were diagnosed with CT and met the diagnostic criteria of HIE of newborn infants compiled by Department of Neonatology, Pediatric Academy, Chinese Medical Association. According to diagnostic criteria, 130 patients were mild abnormal, 196 moderate abnormal and 90 severe abnormal. The relatives of all the infant patients were informed of the experiment. METHOOS: BEAM and TCD examinations were performed in the involved 416 infant patients with HIE at different degrees with DYD2000 16-channel BEAM instrument and EME-2000 ultrasonograph before preliminary diagnosis treatment (within 1 month after birth) and 1,3,6,12 and 24 months after birth, and detected results were compared between BEAM, TCD and CT examinations. MAIN OUTCOME MEASURES: Comparison of detection results of HIE at different time points in infant patients between BEAM. TCD and CT examinations. RESULTS: All the 416 infant patients with HIE participated in the result analysis. (1) Comparison of the detected results in infant patients with mild HIE at different time points after birth between BEAM, TCD and CT examinations: BEAM examination showed that the recovery was delayed, and the abnormal rate of BEAM examination was significantly higher than that of CT examination 1 and 3 months after birth [55.4%(72/130)vs. 17.0% (22/130 ),x^2=41.66 ;29.2% ( 38/130 ) vs. 6.2% ( 8/130 ), x^2=23.77, P 〈 0.01 ], exceptional patients had mild abnormality and reached the normal level in about 6 months. TCD examination showed that the disease condition significantly improved and infant patients with HIE basically recovered 1 or 2 months after birth, while CT examination showed that infant patients recovered 3 or 4 months after birth. (2) Comparison of detection results of infant patients with moderate HIE at different time points between BEAM, TCD and CT examinations: The abnormal rate of BEAM examination was significantly higher than that of CT examination 1,3,6 and 12 months after birth [90.8% (178/196),78.6% (154/196),x^2=4.32,P 〈 0.05;64.3% (126/196),43.9% (86/196) ,x^2=16.44 ;44.9% (88/196) ,22.4% (44/196),x^2=22.11 ;21.4% (42/196), 10.2% (20/196),x^2=9.27, P 〈 0.01]. BEAM examination showed that there was still one patient who did not completely recovered in the 24^th month due to the relatives of infant patients did not combine the treatment,. TCD examination showed that the abnormal rate was 23.1%(30/196)in the 1^st month after birth, and all the patients recovered to the normal in the 3^rd month after birth, while CT examination showed that mild abnormality still existed in the 24^th month after birth (1.0% ,2/196). (3) Comparison of detection results of infant patients with severe HIE at different time points between BEAM, TCD and CT examinations: The abnormal rate of BEAM examination was significantly higher than that of CT examination in the 1^st, 3^rd, 6^th and 12^th months after birth[86.7% (78/90),44.4% (40/90),x^2=35.53;62.2% (56/90),31.1% (28/90),x^2=17.51 ;37.8% (34/90),6.7% (6/90), x^2=27.14, P 〈 0.01]. BEAM examination showed that mild abnormality still existed in 4 infant patients in the 24^th month after birth. TCD examination showed that the abnormal rate was 11.1% (10/90) in the 3^rd month after birth, and all the infant patients recovered in the 6^th month after birth. CT examination showed that the abnormal rate was 6.7%(6/90) in the 12^th month after birth, and all of infant patients recovered to the normal in the 24^th month after birth.CONCLUSION : BEAM is the direct index to detect brain function of infant patients with HIE, and positive reaction is still very sensitive in the tracking detection of convalescent period. The positive rate of morphological reaction in CT examination is superior to that in TCD examination, and the positive rate is very high in the acute period of HIE in examination.
基金support from the National Natural Science Foundation of China(Nos.52375224 and 51875566)A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.
文摘The enhancement of adhesive perception is crucial to maintaining a stable and comfortable grip of the skin-touch products.To study the tactile perception of adhesive surfaces,subjective evaluation,skin friction and vibrations,and neurophysiological response of the brain activity were investigated systematically.Silicone materials,which are commonly used for bionic materials and skin-touch products,were chosen for the tactile stimulus.The results showed that with the increasing of surface adhesion,the dominant friction transferred from a combination of adhesive friction and deformation friction to adhesive friction.The friction coefficient and vibration amplitude had strong correlations with the perceived adhesion of surfaces.The parietal lobe and occipital lobe were involved in adhesive perceptions,and the area and intensity of brain activation increased with the increasing surface adhesion.Surfaces with larger adhesion tended to excite a high P300 amplitude and short latency,indicating that the judgment was faster and that more attentional resources were involved in adhesive perception.Furthermore,the electroencephalograph signals of the adhesive perception were simulated by the neural mass model.It demonstrated that the excitability and intensity of brain activity,and the connectivity strength between two neural masses increased with the increasing surface adhesion.This study is meaningful to understand the role of surface adhesion in tactile friction and the cognitive mechanism in adhesive perception to improve the tactile experience of adhesive materials.