Fiber Bragg grating(FBG)sensors are extensively used in various sensing applications due to their high sensitivity.However,they are inherently sensitive to both strain and temperature,with a cross-sensitivity problem,...Fiber Bragg grating(FBG)sensors are extensively used in various sensing applications due to their high sensitivity.However,they are inherently sensitive to both strain and temperature,with a cross-sensitivity problem,making it impossible to simultaneously monitor these two parameters using the Bragg wavelength shifts of a single uniform FBG.In this study,we bend the FBG pigtail to cause bending loss.The peak power of the FBG is used as the second characterization quantity.Our experimental results show that the Bragg wavelength sensitivities to strain(K_(ε))and temperature(K_(T))are 0.17 pm/ue and 16.5 pm/℃,respectively.Additionally,the peak power sensitivities to strain(P_(ε))and temperature(P_(T))are-0.00202 dBm/μεand-0.06 dBm/℃,respectively.The linear correlation coefficients for these measurements are all above 0.996.In this way,it is possible to simultaneously measure both strain and temperature using a single uniform FBG.展开更多
A compact and highly sensitive gas pressure and temperature sensor based on Fabry-Pérot interferometer(FPI)and fiber Bragg grating(FBG)is proposed and demonstrated experimentally in this paper.The theoretical mod...A compact and highly sensitive gas pressure and temperature sensor based on Fabry-Pérot interferometer(FPI)and fiber Bragg grating(FBG)is proposed and demonstrated experimentally in this paper.The theoretical model for pressure and temperature sensing is established.Building on this foundation,a novel micro silicon cavity sensor structure sensitive to pressure is devised downstream of an FBG.The concept of separate measurement and the mechanisms enhancing pressure sensitivity are meticulously analyzed,and the corresponding samples are fabricated.The experimental results indicate that the pressure sensitivity of the sensor is-747.849 nm/MPa in 0—100 k Pa and its linearity is 99.7%and it maintains good stability in 150 min.The sensor offers the advantages of compact size,robust construction,easy fabrication,and high sensitivity,making it potentially valuable for micro-pressure application.展开更多
Aiming at the requirement for high-precision tilt monitoring in the field of structural health monitoring(SHM),this paper proposes a sensitivity-enhanced tilt sensor based on a femtosecond fiber Bragg grating(FBG).Fir...Aiming at the requirement for high-precision tilt monitoring in the field of structural health monitoring(SHM),this paper proposes a sensitivity-enhanced tilt sensor based on a femtosecond fiber Bragg grating(FBG).Firstly,structural design of the tilt sensor was conducted based on static mechanics principles.By positioning the FBG away from the beam’s neutral axis,linear strain enhancement in the FBG was achieved,thereby improving sensor sensitivity.The relationship between FBG strain,applied force,and the offset distance from the neutral axis was established,determining the optimal distance corresponding to maximum strain.Based on this optimization scheme,a prototype of the tilt sensor was designed,fabricated,and experimentally tested.Experimental results show that the FBG offset distance yielding maximum sensitivity is 4.4 mm.Within a tilt angle range of−30°to 30°,the sensor achieved a sensitivity of 129.95 pm/°and a linearity of 0.9997.Compared to conventional FBG-based tilt sensors,both sensitivity and linearity were significantly improved.Furthermore,the sensor demonstrated excellent repeatability(error<0.94%),creep resistance(error<0.30%),and temperature stability(error<0.90%).These results demonstrate the sensor’s excellent potential for SHM applications.The sensor has been successfully deployed in an underground pipeline project,conducting long-term monitoring of tilt and deformation in the steel support structures,further proving its value for engineering safety monitoring.展开更多
Purpose–To address the encapsulation challenge of fiber Bragg grating(FBG)sensors in complex railway environments,this paper designs a clip-on composite sensor enabling installation-friendly deployment and long-term ...Purpose–To address the encapsulation challenge of fiber Bragg grating(FBG)sensors in complex railway environments,this paper designs a clip-on composite sensor enabling installation-friendly deployment and long-term axle counting system monitoring.Design/methodology/approach–Wheel–rail mechanical behavior was simulated via finite element analysis(FEA)to determine optimal sensor placement.A clip-on composite sensor was subsequently engineered.Stress transduction efficacy was validated through FEA quantification of stress responses at the axle counter location.Findings–The proposed FBG axle counter integrates temperature compensation and anti-detachment monitoring as well as advantages such as simplified installation with minimal maintenance and sustained operational reliability.It effectively transmits stress,yielding a measured strain of 39μe under static loading conditions without sensitivity-enhancing elements.Originality/value–This study performs FEA of wheel-rail stress distribution and engineers the dual-slot composite sensor,FEAwas conducted to quantify the stress magnitude at the axle sensor position of the dual-slot composite sensor.Additionally,FEA was performed on sensors with different structural configurations,including adjustments to the axle sensor position,number of slots and axle position.The results confirmed that the designed composite sensor exhibits superior stress transfer characteristics.展开更多
The actively heated fiber-optic(AHFO)technology has emerged as a frontier and hotspot in soil water content measurement,offering advantages such as easy installation,large-scale distributed measurement capability,and ...The actively heated fiber-optic(AHFO)technology has emerged as a frontier and hotspot in soil water content measurement,offering advantages such as easy installation,large-scale distributed measurement capability,and resistance to electromagnetic interference.However,current AHFO water content sensors fail to simultaneously achieve high precision,applicability for deep soil,and automated real-time monitoring,thereby limiting their development and application.Therefore,this study introduces a novel actively heated fiber Bragg grating(AH-FBG)cable.Laboratory tests were conducted to assess the heating uniformity of the AH-FBG cable and to establish the temperature characteristic value(T_(t))-soil water content(θ)calibration formula for water content measurement.Subsequently,AH-FBG cables were deployed for in situ soil water content monitoring in a test pit on the Loess Plateau.Through two-year monitoring data verified the accuracy of the AH-FBG cable and elucidated the spatiotemporal distribution of in situ loess water content.Laboratory results demonstrated superior heating uniformity of AHFBG cable,with a T_(t) standard deviation of approximately 0.3℃.In the field,the AH-FBG cable exhibited excellent performance in soil water content measurement,achieving a high accuracy of 0.023 cm^(3)/cm^(3).Further analysis revealed that the θ fluctuation predominantly occurred within a 10 m depth from the soil surface,with an overall upward trend over the two-year monitoring period;the response of shallow θ to precipitation was significant but exhibited increasing hysteresis with depth;frequent precipitation significantly enhanced water infiltration depth.This study provides technical guidance for highprecision,quasi-distributed,automated and real-time water content measurement of deep soil.展开更多
A multi-wavelength and transversely mode-switchable fiber laser based on a ring-core fiber Bragg grating(RCFBG) is proposed. Two RCFBGs with high and low reflectivity are inscribed using a femtosecond laser and the ph...A multi-wavelength and transversely mode-switchable fiber laser based on a ring-core fiber Bragg grating(RCFBG) is proposed. Two RCFBGs with high and low reflectivity are inscribed using a femtosecond laser and the phase mask scanning technique, serving as the mirrors in an all-fiber laser linear resonator. Leveraging the polarization dependence of the RCFBG through side exposure, we can readily achieve switchable single-wavelength, dual-wavelength, or triple-wavelength laser outputs by adjusting the polarization controller(PC) inside the resonator. Additionally, three distinct modes, namely, cylindrical vector beam(CVB), fundamental and mixed modes, are successfully obtained in single-wavelength laser operation.Azimuthally or radially polarized lasers can be realized by tuning two PCs inside and outside the resonator while operating in CVB mode. This innovative multi-wavelength and transversely mode-switchable fiber laser based on RCFBGs holds significant potential for applications in wavelength division multiplexing and mode division multiplexing systems.展开更多
The fabrication of Bragg gratings on silicon-on-insulator (SOI) rib waveguides using electron-beam lithography is presented. The grating waveguide is optimally designed for actual photonic integration. Experimental ...The fabrication of Bragg gratings on silicon-on-insulator (SOI) rib waveguides using electron-beam lithography is presented. The grating waveguide is optimally designed for actual photonic integration. Experimental and theoretical evaluations of the Bragg grating are demonstrated. By thinning the SOl device layer and deeply etching the Bragg grating, a large grating coupling coefficient of 30cm^-1 is obtained.展开更多
A double-exposure fabrication method without any intensity shadow mask to fabricate arbitrarily apodized fiber Bragg gratings( FBGs) with narrow bandwidth is demonstrated by controlling the total ultra violet (UV)...A double-exposure fabrication method without any intensity shadow mask to fabricate arbitrarily apodized fiber Bragg gratings( FBGs) with narrow bandwidth is demonstrated by controlling the total ultra violet (UV) irradiation along the grating by varying the speed of a translation stage. The UV source used is a stable continuous intracavity frequency-doubled argonion laser. The parameters (such as length, apodization profile, average index change)of FBGs can be easily changed with this method. The total UV irradiation is kept constant in the doubleexposure process because of the precise control of the exposure time, which ensures that the apodized FBG's bandwidth can be extremely narrow. The full width at half maximum (FWHM) bandwidth of the 2-cm-long apodized FBG fabricated by this method is 0. 15 nm with a maximum reflectivity of more than 95%.展开更多
A method to interrogate fiber Bragg grating vibration sensor by narrow line width light is demonstrated. The interrogation scheme takes advantage of the intensity modulation of narrow spectral bandwidth light, such as...A method to interrogate fiber Bragg grating vibration sensor by narrow line width light is demonstrated. The interrogation scheme takes advantage of the intensity modulation of narrow spectral bandwidth light, such as distributed feedback laser, when a reflection or transmission spectrum curve of an fiber Bragg grating (FBG) moves due to the strain which is applied on the sensor. The sensor's response to accelerating frequency and amplitude is measured by experiment. The factors which have impacts on the sensitivity of the interrogation system are also discussed.展开更多
Based on the transfer matrix method,a detailed theoretical and numerical study on double-phase-shifted fiber Bragg grating(FBG)is investigated.Temporal responses of the double-phase-shifted FBG to optical pulse are an...Based on the transfer matrix method,a detailed theoretical and numerical study on double-phase-shifted fiber Bragg grating(FBG)is investigated.Temporal responses of the double-phase-shifted FBG to optical pulse are analyzed and the influence of the two phase-shifts’position on the reflected output pulse is evaluated.Results demonstrate that very different temporal pulse waveforms can be achieved by adjusting the length ratio(α=L2/L1).Specifically,a transform-limited Gaussian input optical pulse can be shaped into flat-top square pulse(α=1.81)or two identical optical pulse sequences(α=1.93).展开更多
This paper deals with an improved bonding approach of surface-bonded fiber Bragg grating (FBG) sensors for airship envelope structural health monitoring (SHM) under the strain transfer theory. A theoretical formula is...This paper deals with an improved bonding approach of surface-bonded fiber Bragg grating (FBG) sensors for airship envelope structural health monitoring (SHM) under the strain transfer theory. A theoretical formula is derived from the proposed model to predict the strain transfer relationship between the airship envelope and fiber core. Then theoretical predictions are validated by numerical analysis using the finite element method (FEM). Finally, on the basis of the theoretical approach and numerical validation, parameters that influence the strain transfer rate from the airship envelope to fiber core and the ratio of effective sensing length are analyzed, and some meaningful conclusions are provided.展开更多
The multiplexing ability of a novel multiplexing fiber Bragg grating(FBG)method based on Optical Time Domain Reflecto meter(OTDR)and Time Division Multiplexing TDM technologies has been theoretically analyzed and stud...The multiplexing ability of a novel multiplexing fiber Bragg grating(FBG)method based on Optical Time Domain Reflecto meter(OTDR)and Time Division Multiplexing TDM technologies has been theoretically analyzed and studied.This method permits the interrogation of hundreds of identical FBGs with low reflectivity in a single fiber,making the FBG sensors more applicable in the aerospace health monitoring engineering.The analysis shows that the multiplexing ability can be greatly improved if the FBG reflectivity is sufficiently low.And hence,an inexpensive large-scale distributed sensing system based on this method can be realized,When evaluating the multiplexing ability of this system,we propose for the first time that the interference effect of multi-reflections among FBGs should be taken into consideration.展开更多
Many theoretical studies have been developed to study the spectral response of a fiber Bragg grating (FBG) under non-uniform strain distribution along the length of FBG in recent years. However, almost no experiments ...Many theoretical studies have been developed to study the spectral response of a fiber Bragg grating (FBG) under non-uniform strain distribution along the length of FBG in recent years. However, almost no experiments were designed to obtain the evolution of the spectrum when a FBG is subjected to non-uniform strain. In this paper, the spectral responses of a FBG under non-uniform strain distributions are given and a numerical simulation based on the Runge-Kutta method is introduced to investigate the responses of the FBG under some typical non-uniform transverse strain fields, including both linear strain gradient and quadratic strain field. Experiment is carried out by using loads applied at different locations near the FBG. Good agreements between experimental results and numerical simulations are obtained.展开更多
A fiber Bragg grating temperature sensor network was designed to implement the real-time health monitoring of the aluminum reduction cell. The heat transfer process was simulated using software ANSYS, and an on-line s...A fiber Bragg grating temperature sensor network was designed to implement the real-time health monitoring of the aluminum reduction cell. The heat transfer process was simulated using software ANSYS, and an on-line shell monitoring system was established based on optical sensing technology. According to aluminum reduction cell heat transfer theory, the 2D slice finite element model was developed. The relationship between shell temperature and cell status was discussed. Fiber Bragg grating (FBG) was chosen as the temperature sensor in light of its unique advantages. The accuracy of designed FBG temperature sensors exceeds 2 ~C, and good repeatability was exhibited. An interrogation system with 104 sensors based on VPG (volume phase grating) filter was established. Through the long-term monitoring on running state, the status of the aluminum reduction cell, including security and fatigue life could be acquired and estimated exactly. The obtained results provide the foundation for the production status monitoring and fault diagnosis. Long-term test results show good stability and repeatability which are compatible with electrolysis process.展开更多
In this paper,we present a novel oil level monitoring sensor based on string tilted fiber Bragg grating(TFBG).The measurement range and sensitivity of oil level monitoring can be modulated via changing the length and ...In this paper,we present a novel oil level monitoring sensor based on string tilted fiber Bragg grating(TFBG).The measurement range and sensitivity of oil level monitoring can be modulated via changing the length and number of string tilted fiber gratings.The transmission spectrum of string TFBGs immersed in oil changes obviously with the oil level variation.Experiments are conducted on three 2 cm-length serial TFBGs with the same tilted angle of 10o.A sensitivity of 3.28 dB/cm in the string TFBG sensor is achieved with good linearity by means of TFBG spectrum characteristic with peak-low value.The cladding mode transmission power and the amplitude of high order cladding mode resonance are nearly linear to the oil level variation.This kind of sensor is insensitive to temperature and attributed to be employed in extremely harsh environment oil monitoring.展开更多
In this article,we review recent advances in the technology of writing fiber Bragg gratings(FBGs)in selected cores of multicore fibers(MCFs)by using femtosecond laser pulses.The writing technology of such a key elemen...In this article,we review recent advances in the technology of writing fiber Bragg gratings(FBGs)in selected cores of multicore fibers(MCFs)by using femtosecond laser pulses.The writing technology of such a key element as the FBG opens up wide opportunities for the creation of next generation fiber lasers and sensors based on MCFs.The advantages of the technology are shown by using the examples of 3D shape sensors,acoustic emission sensors with spatially multiplexed channels,as well as multicore fiber Raman lasers.展开更多
Fiber Bragg grating (FBG) based sensors offer important advantages over traditional instrumentation with regards to real-time structural health monitoring (SHM) of composite materials and structures in recent years. F...Fiber Bragg grating (FBG) based sensors offer important advantages over traditional instrumentation with regards to real-time structural health monitoring (SHM) of composite materials and structures in recent years. FBG sensors, integrated into existing structures or embedded into new ones, have played a major role in assessing the safety and integrity of engineering structures. In this paper, a review on the latest research of the FBG-based SHM technique for composite field is presented. Firstly, the FBG sensing principle is briefly discussed and FBG and several other optical fiber sensors (OFSs) for SHM are performance-compared. Then, several examples of the use of FBG sensors in composite SHM are illustrated, including those from the field of cure monitoring, civil engineering, aviation, aerospace, marine and offshore platform. Finally, some existing problems are pointed out and some proposals for further researches are provided.展开更多
By employing three reflecting volume Bragg gratings, a near-infrared 4-channel spectral-beam-combining system is demonstrated to present 720 W combined power with a combining efficiency of 94.7%. The combined laser be...By employing three reflecting volume Bragg gratings, a near-infrared 4-channel spectral-beam-combining system is demonstrated to present 720 W combined power with a combining efficiency of 94.7%. The combined laser beam is near-diffraction-limited with a beam factor M^2-1.54. During this 4-channel beam-combining process, no special active cooling measures are used to evaluate the volume Bragg gratings as combining elements are under the higher power laser operation. Thermal expansion and period distortion are verified in a 2 k W 2-channel beam-combining process, and the heat issue in the transmission case is found to be more remarkable than that in the diffraction e-se. Transmitted and diffracted beams experience wave-front aberrations with different degrees, thus leading to distinct beam deterioration.展开更多
Centrifugal model testsare playing an increasingly importantrolein investigating slope characteristics under rainfall conditions. However, conventional electronic transducers usually fail during centrifugal model test...Centrifugal model testsare playing an increasingly importantrolein investigating slope characteristics under rainfall conditions. However, conventional electronic transducers usually fail during centrifugal model tests because of the impacts of limitedtest space, high centrifugal force, and presence of water, with the result that limited valid data is obtained. In this study, Fiber Bragg Grating(FBG) sensing technology is employed in the design and development of displacement gauge, an anchor force gauge and an anti-slide pile moment gauge for use on centrifugal model slopes with and without a retaining structure. The two model slopes were installed and monitored at a centrifugal acceleration of 100 g. The test results show that the sensors developed succeed in capturing the deformation and retaining structure mechanical response of the model slopes during and after rainfall. The deformation curvefor the slope without retaining structure shows a steepresponse that turns gradualfor the slope with retaining structure. Importantly, for the slope with the retaining structure, results suggest that more attention be paid to increase of anchor force and antislide pile moment during rainfall. This study verifies the effectiveness of FBG sensing technology in centrifuge research and presents a new and innovative method for slope model testing under rainfall conditions.展开更多
A discrimination measurement method and demodulation technique for fiber Bragg grating (FBG) sensors were presented using digital filtering technique. The system can control a tunable fiber Fabry-Perot filter with saw...A discrimination measurement method and demodulation technique for fiber Bragg grating (FBG) sensors were presented using digital filtering technique. The system can control a tunable fiber Fabry-Perot filter with sawtooth wave voltage generated by digital clock to interrogate FBG sensors. Using the analogue digital converter (ADC), the reflected FBG signals were sampled with synchronous digital clock. With the aid of digital matched filtering technique, the sampled FBG signals were processed to obtain the maximum signal-to-noise ratio (SNR) and the Bragg wavelength shift from the FBG signals was recovered. The results demonstrate that this system has a scanning range of 1 520 nm-1 575 nm,and the wavelength detection accuracy is less than 2 pm with 1.5 Hz scanning frequency.展开更多
基金supported by the Fundamental Research Funds for the Central Universities(No.2024JBZX017)。
文摘Fiber Bragg grating(FBG)sensors are extensively used in various sensing applications due to their high sensitivity.However,they are inherently sensitive to both strain and temperature,with a cross-sensitivity problem,making it impossible to simultaneously monitor these two parameters using the Bragg wavelength shifts of a single uniform FBG.In this study,we bend the FBG pigtail to cause bending loss.The peak power of the FBG is used as the second characterization quantity.Our experimental results show that the Bragg wavelength sensitivities to strain(K_(ε))and temperature(K_(T))are 0.17 pm/ue and 16.5 pm/℃,respectively.Additionally,the peak power sensitivities to strain(P_(ε))and temperature(P_(T))are-0.00202 dBm/μεand-0.06 dBm/℃,respectively.The linear correlation coefficients for these measurements are all above 0.996.In this way,it is possible to simultaneously measure both strain and temperature using a single uniform FBG.
基金supported in part by the National Natural Science Foundation of China(Nos.61735014 and 61927812)the Shaanxi Provincial Education Department(No.18JS093)+2 种基金the Natural Science Basic Research Program of Shaanxi Province(No.2024JC-YBMS-530)the Operation Fund of Logging Key Laboratory of Group Company(No.2021DQ0107-11)the Graduate Student Innovation Fund of Xi’an Shiyou University(No.YCS23213193)。
文摘A compact and highly sensitive gas pressure and temperature sensor based on Fabry-Pérot interferometer(FPI)and fiber Bragg grating(FBG)is proposed and demonstrated experimentally in this paper.The theoretical model for pressure and temperature sensing is established.Building on this foundation,a novel micro silicon cavity sensor structure sensitive to pressure is devised downstream of an FBG.The concept of separate measurement and the mechanisms enhancing pressure sensitivity are meticulously analyzed,and the corresponding samples are fabricated.The experimental results indicate that the pressure sensitivity of the sensor is-747.849 nm/MPa in 0—100 k Pa and its linearity is 99.7%and it maintains good stability in 150 min.The sensor offers the advantages of compact size,robust construction,easy fabrication,and high sensitivity,making it potentially valuable for micro-pressure application.
文摘Aiming at the requirement for high-precision tilt monitoring in the field of structural health monitoring(SHM),this paper proposes a sensitivity-enhanced tilt sensor based on a femtosecond fiber Bragg grating(FBG).Firstly,structural design of the tilt sensor was conducted based on static mechanics principles.By positioning the FBG away from the beam’s neutral axis,linear strain enhancement in the FBG was achieved,thereby improving sensor sensitivity.The relationship between FBG strain,applied force,and the offset distance from the neutral axis was established,determining the optimal distance corresponding to maximum strain.Based on this optimization scheme,a prototype of the tilt sensor was designed,fabricated,and experimentally tested.Experimental results show that the FBG offset distance yielding maximum sensitivity is 4.4 mm.Within a tilt angle range of−30°to 30°,the sensor achieved a sensitivity of 129.95 pm/°and a linearity of 0.9997.Compared to conventional FBG-based tilt sensors,both sensitivity and linearity were significantly improved.Furthermore,the sensor demonstrated excellent repeatability(error<0.94%),creep resistance(error<0.30%),and temperature stability(error<0.90%).These results demonstrate the sensor’s excellent potential for SHM applications.The sensor has been successfully deployed in an underground pipeline project,conducting long-term monitoring of tilt and deformation in the steel support structures,further proving its value for engineering safety monitoring.
文摘Purpose–To address the encapsulation challenge of fiber Bragg grating(FBG)sensors in complex railway environments,this paper designs a clip-on composite sensor enabling installation-friendly deployment and long-term axle counting system monitoring.Design/methodology/approach–Wheel–rail mechanical behavior was simulated via finite element analysis(FEA)to determine optimal sensor placement.A clip-on composite sensor was subsequently engineered.Stress transduction efficacy was validated through FEA quantification of stress responses at the axle counter location.Findings–The proposed FBG axle counter integrates temperature compensation and anti-detachment monitoring as well as advantages such as simplified installation with minimal maintenance and sustained operational reliability.It effectively transmits stress,yielding a measured strain of 39μe under static loading conditions without sensitivity-enhancing elements.Originality/value–This study performs FEA of wheel-rail stress distribution and engineers the dual-slot composite sensor,FEAwas conducted to quantify the stress magnitude at the axle sensor position of the dual-slot composite sensor.Additionally,FEA was performed on sensors with different structural configurations,including adjustments to the axle sensor position,number of slots and axle position.The results confirmed that the designed composite sensor exhibits superior stress transfer characteristics.
基金supported by the National Natural Science Foundation of China(Grant Nos.42307189 and 42030701)the China Postdoctoral Science Foundation(Grant No.2023M740974).
文摘The actively heated fiber-optic(AHFO)technology has emerged as a frontier and hotspot in soil water content measurement,offering advantages such as easy installation,large-scale distributed measurement capability,and resistance to electromagnetic interference.However,current AHFO water content sensors fail to simultaneously achieve high precision,applicability for deep soil,and automated real-time monitoring,thereby limiting their development and application.Therefore,this study introduces a novel actively heated fiber Bragg grating(AH-FBG)cable.Laboratory tests were conducted to assess the heating uniformity of the AH-FBG cable and to establish the temperature characteristic value(T_(t))-soil water content(θ)calibration formula for water content measurement.Subsequently,AH-FBG cables were deployed for in situ soil water content monitoring in a test pit on the Loess Plateau.Through two-year monitoring data verified the accuracy of the AH-FBG cable and elucidated the spatiotemporal distribution of in situ loess water content.Laboratory results demonstrated superior heating uniformity of AHFBG cable,with a T_(t) standard deviation of approximately 0.3℃.In the field,the AH-FBG cable exhibited excellent performance in soil water content measurement,achieving a high accuracy of 0.023 cm^(3)/cm^(3).Further analysis revealed that the θ fluctuation predominantly occurred within a 10 m depth from the soil surface,with an overall upward trend over the two-year monitoring period;the response of shallow θ to precipitation was significant but exhibited increasing hysteresis with depth;frequent precipitation significantly enhanced water infiltration depth.This study provides technical guidance for highprecision,quasi-distributed,automated and real-time water content measurement of deep soil.
基金Project supported by the National Natural Science Foundation of China (Grant No. 62075182)the National Key Research and Development Program of China (Grant No. 2022YFB3207502)。
文摘A multi-wavelength and transversely mode-switchable fiber laser based on a ring-core fiber Bragg grating(RCFBG) is proposed. Two RCFBGs with high and low reflectivity are inscribed using a femtosecond laser and the phase mask scanning technique, serving as the mirrors in an all-fiber laser linear resonator. Leveraging the polarization dependence of the RCFBG through side exposure, we can readily achieve switchable single-wavelength, dual-wavelength, or triple-wavelength laser outputs by adjusting the polarization controller(PC) inside the resonator. Additionally, three distinct modes, namely, cylindrical vector beam(CVB), fundamental and mixed modes, are successfully obtained in single-wavelength laser operation.Azimuthally or radially polarized lasers can be realized by tuning two PCs inside and outside the resonator while operating in CVB mode. This innovative multi-wavelength and transversely mode-switchable fiber laser based on RCFBGs holds significant potential for applications in wavelength division multiplexing and mode division multiplexing systems.
文摘The fabrication of Bragg gratings on silicon-on-insulator (SOI) rib waveguides using electron-beam lithography is presented. The grating waveguide is optimally designed for actual photonic integration. Experimental and theoretical evaluations of the Bragg grating are demonstrated. By thinning the SOl device layer and deeply etching the Bragg grating, a large grating coupling coefficient of 30cm^-1 is obtained.
基金The Natural Science Foundation of Jiangsu Province(No.BK2004207)
文摘A double-exposure fabrication method without any intensity shadow mask to fabricate arbitrarily apodized fiber Bragg gratings( FBGs) with narrow bandwidth is demonstrated by controlling the total ultra violet (UV) irradiation along the grating by varying the speed of a translation stage. The UV source used is a stable continuous intracavity frequency-doubled argonion laser. The parameters (such as length, apodization profile, average index change)of FBGs can be easily changed with this method. The total UV irradiation is kept constant in the doubleexposure process because of the precise control of the exposure time, which ensures that the apodized FBG's bandwidth can be extremely narrow. The full width at half maximum (FWHM) bandwidth of the 2-cm-long apodized FBG fabricated by this method is 0. 15 nm with a maximum reflectivity of more than 95%.
基金supported by the 11th Five Years Key Programs for Science and Technology Development of China under Grant No. 2006BAK04B02Natural Science Foundation of Shandong Province under Grant No. 2006ZRC01022.
文摘A method to interrogate fiber Bragg grating vibration sensor by narrow line width light is demonstrated. The interrogation scheme takes advantage of the intensity modulation of narrow spectral bandwidth light, such as distributed feedback laser, when a reflection or transmission spectrum curve of an fiber Bragg grating (FBG) moves due to the strain which is applied on the sensor. The sensor's response to accelerating frequency and amplitude is measured by experiment. The factors which have impacts on the sensitivity of the interrogation system are also discussed.
基金supported by the Foundation of Beijing Municipal Committee of CPC Organization Department(No.2012D005002000001)the Talents of North China University of Technology(No.CCXZ201307)the Importation and Development of High-Caliber Talents Project of Beijing Municipal Institutions(No.CIT&TCD201304001)
文摘Based on the transfer matrix method,a detailed theoretical and numerical study on double-phase-shifted fiber Bragg grating(FBG)is investigated.Temporal responses of the double-phase-shifted FBG to optical pulse are analyzed and the influence of the two phase-shifts’position on the reflected output pulse is evaluated.Results demonstrate that very different temporal pulse waveforms can be achieved by adjusting the length ratio(α=L2/L1).Specifically,a transform-limited Gaussian input optical pulse can be shaped into flat-top square pulse(α=1.81)or two identical optical pulse sequences(α=1.93).
基金Project (No. 2011AA7052011) supported by the National High-Tech R&D (863) Program of China
文摘This paper deals with an improved bonding approach of surface-bonded fiber Bragg grating (FBG) sensors for airship envelope structural health monitoring (SHM) under the strain transfer theory. A theoretical formula is derived from the proposed model to predict the strain transfer relationship between the airship envelope and fiber core. Then theoretical predictions are validated by numerical analysis using the finite element method (FEM). Finally, on the basis of the theoretical approach and numerical validation, parameters that influence the strain transfer rate from the airship envelope to fiber core and the ratio of effective sensing length are analyzed, and some meaningful conclusions are provided.
基金Foundation item:National Natural Science Foundation of China(10376001)
文摘The multiplexing ability of a novel multiplexing fiber Bragg grating(FBG)method based on Optical Time Domain Reflecto meter(OTDR)and Time Division Multiplexing TDM technologies has been theoretically analyzed and studied.This method permits the interrogation of hundreds of identical FBGs with low reflectivity in a single fiber,making the FBG sensors more applicable in the aerospace health monitoring engineering.The analysis shows that the multiplexing ability can be greatly improved if the FBG reflectivity is sufficiently low.And hence,an inexpensive large-scale distributed sensing system based on this method can be realized,When evaluating the multiplexing ability of this system,we propose for the first time that the interference effect of multi-reflections among FBGs should be taken into consideration.
基金supported by the National High Technology Research and Development Program of China (No.2007AA03Z117)the Key Program of National Natural Science Foundation of China (No.50830201)
文摘Many theoretical studies have been developed to study the spectral response of a fiber Bragg grating (FBG) under non-uniform strain distribution along the length of FBG in recent years. However, almost no experiments were designed to obtain the evolution of the spectrum when a FBG is subjected to non-uniform strain. In this paper, the spectral responses of a FBG under non-uniform strain distributions are given and a numerical simulation based on the Runge-Kutta method is introduced to investigate the responses of the FBG under some typical non-uniform transverse strain fields, including both linear strain gradient and quadratic strain field. Experiment is carried out by using loads applied at different locations near the FBG. Good agreements between experimental results and numerical simulations are obtained.
基金Project(61174018) supported by National Natural Science Foundation, ChinaProject(ZR2011FQ025) supported by the Natural Science Foundation of Shandong Province ChinaProject(2010GN066) supported by the Independent Innovation Foundation of Shandong University, China
文摘A fiber Bragg grating temperature sensor network was designed to implement the real-time health monitoring of the aluminum reduction cell. The heat transfer process was simulated using software ANSYS, and an on-line shell monitoring system was established based on optical sensing technology. According to aluminum reduction cell heat transfer theory, the 2D slice finite element model was developed. The relationship between shell temperature and cell status was discussed. Fiber Bragg grating (FBG) was chosen as the temperature sensor in light of its unique advantages. The accuracy of designed FBG temperature sensors exceeds 2 ~C, and good repeatability was exhibited. An interrogation system with 104 sensors based on VPG (volume phase grating) filter was established. Through the long-term monitoring on running state, the status of the aluminum reduction cell, including security and fatigue life could be acquired and estimated exactly. The obtained results provide the foundation for the production status monitoring and fault diagnosis. Long-term test results show good stability and repeatability which are compatible with electrolysis process.
基金supported by the National Natural Science Foundation of China (No.51079080)
文摘In this paper,we present a novel oil level monitoring sensor based on string tilted fiber Bragg grating(TFBG).The measurement range and sensitivity of oil level monitoring can be modulated via changing the length and number of string tilted fiber gratings.The transmission spectrum of string TFBGs immersed in oil changes obviously with the oil level variation.Experiments are conducted on three 2 cm-length serial TFBGs with the same tilted angle of 10o.A sensitivity of 3.28 dB/cm in the string TFBG sensor is achieved with good linearity by means of TFBG spectrum characteristic with peak-low value.The cladding mode transmission power and the amplitude of high order cladding mode resonance are nearly linear to the oil level variation.This kind of sensor is insensitive to temperature and attributed to be employed in extremely harsh environment oil monitoring.
基金supported by the Russian Ministry of Science and Higher Education (14.Y26.31.0017)Russian Foundation for Basic Research(18-52-7822)the work concerning MCF fiber Raman lasers was supported by Russian Science Foundation (21-72-30024)
文摘In this article,we review recent advances in the technology of writing fiber Bragg gratings(FBGs)in selected cores of multicore fibers(MCFs)by using femtosecond laser pulses.The writing technology of such a key element as the FBG opens up wide opportunities for the creation of next generation fiber lasers and sensors based on MCFs.The advantages of the technology are shown by using the examples of 3D shape sensors,acoustic emission sensors with spatially multiplexed channels,as well as multicore fiber Raman lasers.
基金the National High Technology Research and Development Program (863) of China(No. 2011AA7052011)the National Natural Science Foundation of China (No. 51205253)
文摘Fiber Bragg grating (FBG) based sensors offer important advantages over traditional instrumentation with regards to real-time structural health monitoring (SHM) of composite materials and structures in recent years. FBG sensors, integrated into existing structures or embedded into new ones, have played a major role in assessing the safety and integrity of engineering structures. In this paper, a review on the latest research of the FBG-based SHM technique for composite field is presented. Firstly, the FBG sensing principle is briefly discussed and FBG and several other optical fiber sensors (OFSs) for SHM are performance-compared. Then, several examples of the use of FBG sensors in composite SHM are illustrated, including those from the field of cure monitoring, civil engineering, aviation, aerospace, marine and offshore platform. Finally, some existing problems are pointed out and some proposals for further researches are provided.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11474257 and 61605183
文摘By employing three reflecting volume Bragg gratings, a near-infrared 4-channel spectral-beam-combining system is demonstrated to present 720 W combined power with a combining efficiency of 94.7%. The combined laser beam is near-diffraction-limited with a beam factor M^2-1.54. During this 4-channel beam-combining process, no special active cooling measures are used to evaluate the volume Bragg gratings as combining elements are under the higher power laser operation. Thermal expansion and period distortion are verified in a 2 k W 2-channel beam-combining process, and the heat issue in the transmission case is found to be more remarkable than that in the diffraction e-se. Transmitted and diffracted beams experience wave-front aberrations with different degrees, thus leading to distinct beam deterioration.
基金supported by the National Natural Science Foundation of China (Grant Nos.41502299,41372306)Research Planning of Sichuan Education Department, China (Grant No.16ZB0105)State Key Laboratory of Geohazard Prevention and Geoenvironment Protection Independent Research Project (SKLGP2016Z007)
文摘Centrifugal model testsare playing an increasingly importantrolein investigating slope characteristics under rainfall conditions. However, conventional electronic transducers usually fail during centrifugal model tests because of the impacts of limitedtest space, high centrifugal force, and presence of water, with the result that limited valid data is obtained. In this study, Fiber Bragg Grating(FBG) sensing technology is employed in the design and development of displacement gauge, an anchor force gauge and an anti-slide pile moment gauge for use on centrifugal model slopes with and without a retaining structure. The two model slopes were installed and monitored at a centrifugal acceleration of 100 g. The test results show that the sensors developed succeed in capturing the deformation and retaining structure mechanical response of the model slopes during and after rainfall. The deformation curvefor the slope without retaining structure shows a steepresponse that turns gradualfor the slope with retaining structure. Importantly, for the slope with the retaining structure, results suggest that more attention be paid to increase of anchor force and antislide pile moment during rainfall. This study verifies the effectiveness of FBG sensing technology in centrifuge research and presents a new and innovative method for slope model testing under rainfall conditions.
基金Doctoral Foundation of Ministry of Education of China (No. 20040056008)
文摘A discrimination measurement method and demodulation technique for fiber Bragg grating (FBG) sensors were presented using digital filtering technique. The system can control a tunable fiber Fabry-Perot filter with sawtooth wave voltage generated by digital clock to interrogate FBG sensors. Using the analogue digital converter (ADC), the reflected FBG signals were sampled with synchronous digital clock. With the aid of digital matched filtering technique, the sampled FBG signals were processed to obtain the maximum signal-to-noise ratio (SNR) and the Bragg wavelength shift from the FBG signals was recovered. The results demonstrate that this system has a scanning range of 1 520 nm-1 575 nm,and the wavelength detection accuracy is less than 2 pm with 1.5 Hz scanning frequency.