A bow echo is a type of mesoscale convective phenomenon that often induces extreme weather and appears with strong reflectivity on radar images. A strong bow echo that developed from a supercell was observed over Fosh...A bow echo is a type of mesoscale convective phenomenon that often induces extreme weather and appears with strong reflectivity on radar images. A strong bow echo that developed from a supercell was observed over Foshan City in southern China on 17 April 2011. The intense gusty winds and showers caused huge losses of property and severely affected human lives. This paper presents an analysis of this strong meso- n-scale convective system based on Doppler radar observations. The isolated bow echo exhibited a horizontal scale of about 80 km in terms of reflectivity above 40 dBZ, and a life span of 8 hours. The system originated from the merging of a couple of weakly organized cells in a shear line, and developed into an arch shape as it moved through the shear zone. Sufficient surface moisture supply ensured the convective instability and development of the bow echo. The low-altitude winds retrieved from single Doppler radar observations showed an obvious rear-inflow jet along the notch area. Different from the conventional definition, no book- end anticyclone was observed throughout the life cycle. Very strong slantwise updrafts and downdrafts were recognizable from the retrieved winds, even though the spatial scale of the bow echo was small. Strong winds and induced damage on the surface are considered to have been caused by the mid-level rear-inflow jet and intense convective downdrafts.展开更多
Based on previously released data,this paper first presented the criteria for recognizing bow echoes and divided their life cycle into three stages:the development stage,the mature stage,and the attenuation stage.Base...Based on previously released data,this paper first presented the criteria for recognizing bow echoes and divided their life cycle into three stages:the development stage,the mature stage,and the attenuation stage.Based on Doppler weather radar data during 2011-2020,43 bow echo events(including 54 individual bow echoes)in western South China were identified.The spatial and temporal distributions,formation and dissipation modes of these bow echoes,and the severe weather they caused were statistically analyzed.The results show that:(1)The bow echo events were unevenly distributed year-to-year,but all occurred from March to July,with the highest in April and May and the lowest in July.The period from night to early morning was found to be the main period for bow echo generation and intensification.(2)A banded area from Hechi City on the southeastern edge of the Yunnan-Guizhou Plateau to Wuzhou City in southeast Guangxi was identified as a high-incidence area of bow echoes.The length of bow echoes was correlated with their life cycle.(3)The origins of the bow echoes could be divided into five locations,most of which were in the eastern Yunnan-Guizhou Plateau.After entering western South China,their moving paths were categorized into three types,among which most bow echoes moved southeastward,generally because of the effect of cold air.Specifically,bow echoes generally moved eastward when cold air was weak or in the warm zone.Meanwhile,the fewest bow echoes moved northeastward.(4)Four modes of bow echo formation were identified:linearly organized,broken areal,linearly merging,and broken line.Dissipation could also be classified into four types.(5)The probability of convective weather generated by a bow echo was largest in the mature stage.展开更多
Observational analyses and convection-permitting simulations are conducted to study an extreme event of damaging surface winds within a bow-shaped squall line over South China.Prevailing explanations for the formation...Observational analyses and convection-permitting simulations are conducted to study an extreme event of damaging surface winds within a bow-shaped squall line over South China.Prevailing explanations for the formation of damaging surface winds were applied to investigate the detailed processes at the mature stage of a squall line in a complicated real-world scenario.It is shown that environmental vertical wind shear was adequately strong to cause a shearing vorticity,and the shearing vorticity was comparable to the baroclinic vorticity by a cold pool.The balance led to strong upward motions at the leading edge of the squall line and brought plenty of rainfall.The descending rainfall cooled the surrounding air and entrained the upper-level cold air downward to the lower level,strengthening the cold pool by excessive evaporation and melting.The cold pool accelerated the propagation speed of the squall line and caused extensive wind damage at the surface.Meanwhile,the horizontal vortex lines at the leading edge of the cold pool were lifted by frontal updrafts and tilted to form the anti-cyclonic vortex at the middle level.This maintained and intensified the rearinflow jet behind the apex of bow echo in association with a notable midlevel pressure gradient.The rear-inflow jet was then transported downward to the surface by descending condensate,leading to damaging winds there.Other factors,such as environmental flows,however,contributed less to the damaging surface winds.展开更多
The “3·31” severe squall line event in eastern China was notable for its exceptional intensity and persistence,posing significant challenges to forecast accuracy. This study analyzed the maintenance stage of th...The “3·31” severe squall line event in eastern China was notable for its exceptional intensity and persistence,posing significant challenges to forecast accuracy. This study analyzed the maintenance stage of this event using highresolution convection-permitting numerical simulations, with a focus on vorticity budgets of the environmental flow, multiscale synoptic diagnostics, and Rotunno-Klemp-Weisman(RKW) theory. These analyses aimed to elucidate the mechanisms governing the morphological transition, the generation of associated convective gales, and the prolonged maintenance of the squall line event. The results show that the numerical simulation accurately reproduced the development and evolution of the squall line, particularly its location, with surface wind errors remaining within a reasonable range. The development of a mesoscale vortex modulated the dynamic and water vapor fields, providing favorable mesoscale environmental conditions for the organization and maintenance of the squall line. Vorticity budget analysis indicates that the divergence and tilting terms were the primary contributors to vorticity tendency. After the squall line entered Jiangxi Province, it exhibited a sharper leading edge and enhanced upward motion. Dry intrusion from the mid-toupper troposphere led to rapid downward momentum transfer at the meso-γ scale, thereby generating convective gales. In addition, the enhancement of the rear-inflow jet(RIJ) was related to the pressure difference between the interior and exterior of system, which resulted from the phase change of condensate within tilted updrafts. The RIJ was orthogonal to the squall line, causing it to transform from a linear into a bowing shape. Diagnosis based on the RKW theory underscore the important roles in both low-level and deep vertical wind shear in maintenaning the squall line. The ratios of the cold pool propagation velocity to the vertical wind shear were close to 1, which balanced with the ambient horizontal vorticity that allowed the convection to remain upright, thus sustaining the squall line's intensity for an extended period. In summary, the squall line event was sustained by a favorable environment created by the environmental vortex. The dry intrusion from the mid-to-upper troposphere and intensified RIJ resulted in the severe convective winds, while the balance between cold pool and ambient vertical wind shear promoted the system's prolonged maintenance. These findings provide an effective reference for the short-range forecasting of squall lines throughout their lifecycle.展开更多
基金supported by the National Basic Research Program of China(Grant No.2012CB417204)National Natural Science Foundation of China projects(Grant Nos.41175095 and 40875065)partly by the National Key Technology R&D Program(Grant No.2012BAC22B01)
文摘A bow echo is a type of mesoscale convective phenomenon that often induces extreme weather and appears with strong reflectivity on radar images. A strong bow echo that developed from a supercell was observed over Foshan City in southern China on 17 April 2011. The intense gusty winds and showers caused huge losses of property and severely affected human lives. This paper presents an analysis of this strong meso- n-scale convective system based on Doppler radar observations. The isolated bow echo exhibited a horizontal scale of about 80 km in terms of reflectivity above 40 dBZ, and a life span of 8 hours. The system originated from the merging of a couple of weakly organized cells in a shear line, and developed into an arch shape as it moved through the shear zone. Sufficient surface moisture supply ensured the convective instability and development of the bow echo. The low-altitude winds retrieved from single Doppler radar observations showed an obvious rear-inflow jet along the notch area. Different from the conventional definition, no book- end anticyclone was observed throughout the life cycle. Very strong slantwise updrafts and downdrafts were recognizable from the retrieved winds, even though the spatial scale of the bow echo was small. Strong winds and induced damage on the surface are considered to have been caused by the mid-level rear-inflow jet and intense convective downdrafts.
基金National Natural Science Foundation of China(52239006,41975001,41930972)Natural Science Foundation of Guangxi Zhuang Autonomous Region(2022GXNSFBA035565)。
文摘Based on previously released data,this paper first presented the criteria for recognizing bow echoes and divided their life cycle into three stages:the development stage,the mature stage,and the attenuation stage.Based on Doppler weather radar data during 2011-2020,43 bow echo events(including 54 individual bow echoes)in western South China were identified.The spatial and temporal distributions,formation and dissipation modes of these bow echoes,and the severe weather they caused were statistically analyzed.The results show that:(1)The bow echo events were unevenly distributed year-to-year,but all occurred from March to July,with the highest in April and May and the lowest in July.The period from night to early morning was found to be the main period for bow echo generation and intensification.(2)A banded area from Hechi City on the southeastern edge of the Yunnan-Guizhou Plateau to Wuzhou City in southeast Guangxi was identified as a high-incidence area of bow echoes.The length of bow echoes was correlated with their life cycle.(3)The origins of the bow echoes could be divided into five locations,most of which were in the eastern Yunnan-Guizhou Plateau.After entering western South China,their moving paths were categorized into three types,among which most bow echoes moved southeastward,generally because of the effect of cold air.Specifically,bow echoes generally moved eastward when cold air was weak or in the warm zone.Meanwhile,the fewest bow echoes moved northeastward.(4)Four modes of bow echo formation were identified:linearly organized,broken areal,linearly merging,and broken line.Dissipation could also be classified into four types.(5)The probability of convective weather generated by a bow echo was largest in the mature stage.
基金Research(2020B0301030004)National Natural Science Foundation of China(42275002)+3 种基金Natural Science Foundation of Chongqing(CSTB2022NSCQ-MSX0890)Scientific and Technological Project of Chongqing Meteorological Service(YWJSGG-202124)Key Innovation Team of China Meteorological Administration(CMA2022ZD09)Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)(SML2023SP209)。
文摘Observational analyses and convection-permitting simulations are conducted to study an extreme event of damaging surface winds within a bow-shaped squall line over South China.Prevailing explanations for the formation of damaging surface winds were applied to investigate the detailed processes at the mature stage of a squall line in a complicated real-world scenario.It is shown that environmental vertical wind shear was adequately strong to cause a shearing vorticity,and the shearing vorticity was comparable to the baroclinic vorticity by a cold pool.The balance led to strong upward motions at the leading edge of the squall line and brought plenty of rainfall.The descending rainfall cooled the surrounding air and entrained the upper-level cold air downward to the lower level,strengthening the cold pool by excessive evaporation and melting.The cold pool accelerated the propagation speed of the squall line and caused extensive wind damage at the surface.Meanwhile,the horizontal vortex lines at the leading edge of the cold pool were lifted by frontal updrafts and tilted to form the anti-cyclonic vortex at the middle level.This maintained and intensified the rearinflow jet behind the apex of bow echo in association with a notable midlevel pressure gradient.The rear-inflow jet was then transported downward to the surface by descending condensate,leading to damaging winds there.Other factors,such as environmental flows,however,contributed less to the damaging surface winds.
基金Jiangxi Meteorological Bureau Project (JXCX202304,JX2024Y01)Geological Disaster Prevention and Control Project of Jiangxi Provincial Department of Natural Resources(B360000030004)+1 种基金Key Research and Development Project of Jiangxi Province (20243BBH81005)Weather Review Project of China Meteorological Administration (FPZJ2025-066)。
文摘The “3·31” severe squall line event in eastern China was notable for its exceptional intensity and persistence,posing significant challenges to forecast accuracy. This study analyzed the maintenance stage of this event using highresolution convection-permitting numerical simulations, with a focus on vorticity budgets of the environmental flow, multiscale synoptic diagnostics, and Rotunno-Klemp-Weisman(RKW) theory. These analyses aimed to elucidate the mechanisms governing the morphological transition, the generation of associated convective gales, and the prolonged maintenance of the squall line event. The results show that the numerical simulation accurately reproduced the development and evolution of the squall line, particularly its location, with surface wind errors remaining within a reasonable range. The development of a mesoscale vortex modulated the dynamic and water vapor fields, providing favorable mesoscale environmental conditions for the organization and maintenance of the squall line. Vorticity budget analysis indicates that the divergence and tilting terms were the primary contributors to vorticity tendency. After the squall line entered Jiangxi Province, it exhibited a sharper leading edge and enhanced upward motion. Dry intrusion from the mid-toupper troposphere led to rapid downward momentum transfer at the meso-γ scale, thereby generating convective gales. In addition, the enhancement of the rear-inflow jet(RIJ) was related to the pressure difference between the interior and exterior of system, which resulted from the phase change of condensate within tilted updrafts. The RIJ was orthogonal to the squall line, causing it to transform from a linear into a bowing shape. Diagnosis based on the RKW theory underscore the important roles in both low-level and deep vertical wind shear in maintenaning the squall line. The ratios of the cold pool propagation velocity to the vertical wind shear were close to 1, which balanced with the ambient horizontal vorticity that allowed the convection to remain upright, thus sustaining the squall line's intensity for an extended period. In summary, the squall line event was sustained by a favorable environment created by the environmental vortex. The dry intrusion from the mid-to-upper troposphere and intensified RIJ resulted in the severe convective winds, while the balance between cold pool and ambient vertical wind shear promoted the system's prolonged maintenance. These findings provide an effective reference for the short-range forecasting of squall lines throughout their lifecycle.