High-performance alloys are indispensable in modern engineering because of their exceptional strength,ductility,corrosion resistance,fatigue resistance,and thermal stability,which are all significantly influenced by t...High-performance alloys are indispensable in modern engineering because of their exceptional strength,ductility,corrosion resistance,fatigue resistance,and thermal stability,which are all significantly influenced by the alloy interface structures.Despite substantial efforts,a comprehensive overview of interface engineering of high-performance alloys has not been presented so far.In this study,the interfaces in high-performance alloys,particularly grain and phase boundaries,were systematically examined,with emphasis on their crystallographic characteristics and chemical element segregations.The effects of the interfaces on the electrical conductivity,mechanical strength,toughness,hydrogen embrittlement resistance,and thermal stability of the alloys were elucidated.Moreover,correlations among various types of interfaces and advanced experimental and computational techniques were examined using big data analytics,enabling robust design strategies.Challenges currently faced in the field of interface engineering and emerging opportunities in the field are also discussed.The study results would guide the development of next-generation high-performance alloys.展开更多
Invasive as well as non-invasive neurotechnologies conceptualized to interface the central and peripheral nervous system have been probed for the past decades,which refer to electroencephalography,electrocorticography...Invasive as well as non-invasive neurotechnologies conceptualized to interface the central and peripheral nervous system have been probed for the past decades,which refer to electroencephalography,electrocorticography and microelectrode arrays.The challenges of these mentioned approaches are characterized by the bandwidth of the spatiotemporal resolution,which in turn is essential for large-area neuron recordings(Abiri et al.,2019).展开更多
Composite polymer electrolytes(CPEs)offer a promising solution for all-solid-state lithium-metal batteries(ASSLMBs).However,conventional nanofillers with Lewis-acid-base surfaces make limited contribution to improving...Composite polymer electrolytes(CPEs)offer a promising solution for all-solid-state lithium-metal batteries(ASSLMBs).However,conventional nanofillers with Lewis-acid-base surfaces make limited contribution to improving the overall performance of CPEs due to their difficulty in achieving robust electrochemical and mechanical interfaces simultaneously.Here,by regulating the surface charge characteristics of halloysite nanotube(HNT),we propose a concept of lithium-ion dynamic interface(Li^(+)-DI)engineering in nano-charged CPE(NCCPE).Results show that the surface charge characteristics of HNTs fundamentally change the Li^(+)-DI,and thereof the mechanical and ion-conduction behaviors of the NCCPEs.Particularly,the HNTs with positively charged surface(HNTs+)lead to a higher Li^(+)transference number(0.86)than that of HNTs-(0.73),but a lower toughness(102.13 MJ m^(-3)for HNTs+and 159.69 MJ m^(-3)for HNTs-).Meanwhile,a strong interface compatibilization effect by Li^(+)is observed for especially the HNTs+-involved Li^(+)-DI,which improves the toughness by 2000%compared with the control.Moreover,HNTs+are more effective to weaken the Li^(+)-solvation strength and facilitate the formation of Li F-rich solid-electrolyte interphase of Li metal compared to HNTs-.The resultant Li|NCCPE|LiFePO4cell delivers a capacity of 144.9 m Ah g^(-1)after 400 cycles at 0.5 C and a capacity retention of 78.6%.This study provides deep insights into understanding the roles of surface charges of nanofillers in regulating the mechanical and electrochemical interfaces in ASSLMBs.展开更多
The corrosion of waste canisters in the deep geological disposal facilities(GDFs)for high-level radioactive waste(HLRW)can generate gas,which escapes from the engineered barrier system through the interfaces between t...The corrosion of waste canisters in the deep geological disposal facilities(GDFs)for high-level radioactive waste(HLRW)can generate gas,which escapes from the engineered barrier system through the interfaces between the bentonite buffer blocks and the host rock and those between the bentonite blocks.In this study,a series of water infiltration and gas breakthrough experiments were conducted on granite and on granite-bentonite specimens with smooth and grooved interfaces.On this basis,this study presents new insights and a quantitative assessment of the impact of the interface between clay and host rock on gas transport.As the results show,the water permeability values from water infiltration tests on granite and granite-bentonite samples(10−19-10−20m^(2))are found to be slightly higher than that of bentonite.The gas permeability of the mock-up samples with smooth interfaces is one order of magnitude larger than that of the mock-up with grooved interfaces.The gas results of breakthrough pressures for the granite and the granite-bentonite mock-up samples are significantly lower than that of bentonite.The results highlight the potential existence of preferential gas migration channels between the rock and bentonite buffer that require further considerations in safety assessment.展开更多
The diffuse-interface immersed boundary method(IBM)possesses excellent capabilities for simulating flows around complex geometries and moving boundaries.In this method,the flow field is solved on a fixed Cartesian mes...The diffuse-interface immersed boundary method(IBM)possesses excellent capabilities for simulating flows around complex geometries and moving boundaries.In this method,the flow field is solved on a fixed Cartesian mesh,while the solid boundary is discretized into a series of Lagrangian points immersed in the flow field.The boundary condition is implemented by introducing a force term into the momentum equation,and the interaction between the immersed boundary and the fluid domain is achieved via an interpolation process.Over the past decades,the diffuse-interface IBM has gained popularity and spawned many variants,effectively handling a wide range of flow problems from isothermal to thermal flows,from laminar to turbulent flows,and from complex geometries to fluidstructure interaction scenarios.This paper first outlines the basic principles of the diffuse-interface IBM,then highlights recent advancements achieved by the authors’research group,and finally shows the method’s excellent numerical performance and wide applicability through several case studies involving complex moving boundary problems.展开更多
Copper–carbon(Cu–C)composites have achieved great success in various fields owing to the greatly improved electrical properties compared to pure Cu,for example,a two-order-of-magnitude increase in current-carrying c...Copper–carbon(Cu–C)composites have achieved great success in various fields owing to the greatly improved electrical properties compared to pure Cu,for example,a two-order-of-magnitude increase in current-carrying capacity(ampacity).However,the frequent fuse failure caused by the poor thermal transport at the Cu–C heterointerface is still the main factor affecting the ampacity.In this study,we unconventionally leverage atomic distortion at Cu grain boundaries to alter the local atomic environments,thereby placing a premium on noticeable enhancement of phonon coupling at the Cu–C heterointerface.Without introducing any additional materials,interfacial thermal transport can be regulated solely through rational microstructural design.This new strategy effectively improves the interfacial thermal conductance by three-fold,reaching the state-of-the-art level in van der Waals(vdW)interface regulation.It can be an innovative strategy for interfacial thermal management by turning the detrimental grain boundaries into a beneficial thermal transport accelerator.展开更多
The electrical resistivity of Cu/Ta multilayers deposited by radio-frequency magnetron sputtering on a polyimide substrate was investigated as a function of monolayer thickness. It is found that the resistivity of the...The electrical resistivity of Cu/Ta multilayers deposited by radio-frequency magnetron sputtering on a polyimide substrate was investigated as a function of monolayer thickness. It is found that the resistivity of the multilayer increases with decreasing monolayer thickness from 500 nm to 10 nm. Two significant effects of layer interface scattering and grain boundary scattering were identified to dominate electronic transportation behavior in the Cu/Ta multilayers at different length scales. The electrical resistivity of the multilayer with monolayer thickness ranging from nanometer to submicron scales can be well described by a newly-proposed Fuchs-Sandheimair (F-S) and Mayadas-Shatzkes (M-S) combined model.展开更多
A novel method is proposed to combine the wall-modeled large-eddy simulation(LES) with the diffuse-interface direct-forcing immersed boundary(IB) method.The new developments in this method include:(i) the momentum equ...A novel method is proposed to combine the wall-modeled large-eddy simulation(LES) with the diffuse-interface direct-forcing immersed boundary(IB) method.The new developments in this method include:(i) the momentum equation is integrated along the wall-normal direction to link the tangential component of the effective body force for the IB method to the wall shear stress predicted by the wall model;(ii) a set of Lagrangian points near the wall are introduced to compute the normal component of the effective body force for the IB method by reconstructing the normal component of the velocity. This novel method will be a classical direct-forcing IB method if the grid is fine enough to resolve the flow near the wall. The method is used to simulate the flows around the DARPA SUBOFF model. The results obtained are well comparable to the measured experimental data and wall-resolved LES results.展开更多
Currently,the demand for electromagnetic wave(EMW)absorbing materials with specific functions and capable of withstanding harsh environments is becoming increasingly urgent.Multi-component interface engineering is con...Currently,the demand for electromagnetic wave(EMW)absorbing materials with specific functions and capable of withstanding harsh environments is becoming increasingly urgent.Multi-component interface engineering is considered an effective means to achieve high-efficiency EMW absorption.However,interface modulation engineering has not been fully discussed and has great potential in the field of EMW absorption.In this study,multi-component tin compound fiber composites based on carbon fiber(CF)substrate were prepared by electrospinning,hydrothermal synthesis,and high-temperature thermal reduction.By utilizing the different properties of different substances,rich heterogeneous interfaces are constructed.This effectively promotes charge transfer and enhances interfacial polarization and conduction loss.The prepared SnS/SnS_(2)/SnO_(2)/CF composites with abundant heterogeneous interfaces have and exhibit excellent EMW absorption properties at a loading of 50 wt%in epoxy resin.The minimum reflection loss(RL)is−46.74 dB and the maximum effective absorption bandwidth is 5.28 GHz.Moreover,SnS/SnS_(2)/SnO_(2)/CF epoxy composite coatings exhibited long-term corrosion resistance on Q235 steel surfaces.Therefore,this study provides an effective strategy for the design of high-efficiency EMW absorbing materials in complex and harsh environments.展开更多
In this paper,we study a one-dimensional motion of viscous gas near vacuum. We are interested in the case that the gas is in contact with the vacuum at a finite interval. This is a free boundary problem for the one-di...In this paper,we study a one-dimensional motion of viscous gas near vacuum. We are interested in the case that the gas is in contact with the vacuum at a finite interval. This is a free boundary problem for the one-dimensional isentropic Navier-Stokes equations, and the free boundaries are the interfaces separating the gas from vacuum,across which the density changes discontinuosly.Smoothness of the solutions and the uniqueness of the weak solutions are also discussed.The present paper extends results in Luo-Xin-Yang[12] to the jump boundary conditions case.展开更多
Significantly enhanced varistor properties via tailoring interface states were obtained in Ca_(1-2x/3)Y_(x)Cu_(3)Ti_(4)O_(12)-SrCu_(3)Ti_(4)O_(12) composite ceramics.The breakdown field was improved to 35.8 kV cm^(-1)...Significantly enhanced varistor properties via tailoring interface states were obtained in Ca_(1-2x/3)Y_(x)Cu_(3)Ti_(4)O_(12)-SrCu_(3)Ti_(4)O_(12) composite ceramics.The breakdown field was improved to 35.8 kV cm^(-1) and the nonlinear coefficient in 0.1-1 mA cm^(-2) was enhanced to 14.6 for Ca_(0.67)Y_(0.5)Cu_(3)Ti_(4)O_(12)-SrCu_(3)Ti_(4)O_(12).Noticeably,the withstand voltage of single grain boundary reached up to 24 V while the reported ones were constant to about 3 V.Greatly improved properties were attributed to the formation of superior grain boundary rather than the reduced grain size.Surprisingly,with distinct discrepancy of nonlinear performance in the composites,the resistance and activation energy of grain boundary exhibited little differences.Based on the double Schottky barrier at grain boundary and the field-assisted thermal emission model,it was found that the excellent electrical nonlinearity arose from the formation of deeper and broader interface states at grain boundary.In this case,interface states were not easily entirely filled and the barrier could maintain its height under applied voltage.This work provides a novel routine for enhancing the varistor properties of CaCu_(3)Ti_(4)O_(12) based ceramics by manipulating interface states at grain boundary.展开更多
Acoording to the classical elastic theory, there is always adiscontinuity of rotation angle on the interface different materials.This illogic result can be overcome by the strain gradient plasticitytheory. In the ligh...Acoording to the classical elastic theory, there is always adiscontinuity of rotation angle on the interface different materials.This illogic result can be overcome by the strain gradient plasticitytheory. In the light of this theory, there is a group of boundarylayer solutions near the in- terface, which have made importantadjustment of the classical results.展开更多
The embedded boundary method for solving elliptic and parabolic problems in geometrically complex domains using Cartesian meshes by Johansen and Colella (1998, J. Comput. Phys. 147, 60) has been extended for ellipti...The embedded boundary method for solving elliptic and parabolic problems in geometrically complex domains using Cartesian meshes by Johansen and Colella (1998, J. Comput. Phys. 147, 60) has been extended for elliptic and parabolic problems with interior boundaries or interfaces of discontinuities of material properties or solutions. Second order accuracy is achieved in space and time for both stationary and moving interface problems. The method is conservative for elliptic and parabolic problems with fixed interfaces. Based on this method, a front tracking algorithm for the Stefan problem has been developed. The accuracy of the method is measured through comparison with exact solution to a two-dimensional Stefan problem. The algorithm has been used for the study of melting and solidification problems.展开更多
Brain-computer interfaces(BCIs)represent an emerging technology that facilitates direct communication between the brain and external devices.In recent years,numerous review articles have explored various aspects of BC...Brain-computer interfaces(BCIs)represent an emerging technology that facilitates direct communication between the brain and external devices.In recent years,numerous review articles have explored various aspects of BCIs,including their fundamental principles,technical advancements,and applications in specific domains.However,these reviews often focus on signal processing,hardware development,or limited applications such as motor rehabilitation or communication.This paper aims to offer a comprehensive review of recent electroencephalogram(EEG)-based BCI applications in the medical field across 8 critical areas,encompassing rehabilitation,daily communication,epilepsy,cerebral resuscitation,sleep,neurodegenerative diseases,anesthesiology,and emotion recognition.Moreover,the current challenges and future trends of BCIs were also discussed,including personal privacy and ethical concerns,network security vulnerabilities,safety issues,and biocompatibility.展开更多
The shear strength properties of the frozen sand–structure interface are critical for evaluating the serviceability of pile foundations in frozen ground.The shear characteristics of the frozen sand–concrete interfac...The shear strength properties of the frozen sand–structure interface are critical for evaluating the serviceability of pile foundations in frozen ground.The shear characteristics of the frozen sand–concrete interface were studied with two boundary conditions(constant normal load(CNL)and constant normal height(CNH)),at three normal stresses(100,200,and 300 k Pa),and at three temperatures(-2,-5,and-8℃).A detailed comparative analysis was performed to explore the principal factors affecting the shear/normal-shear displacement.The results showed that the shear behavior of the frozen sand–concrete interface under CNL was similar to that under CNH.The shear stress–shear displacement exhibited strain softening.The temperature and normal stress were the major influences on normal properties.The lower the temperature and the higher the normal stress,the greater was the elastic shear modulus.The peak shear stress and critical shear stress exhibited a dependence on normal stress.An exponential growth in the peak shear stress was observed as the temperature decreased.Critical shear stress was dependent on temperature.The value and percentage of peak ice-cementation in peak shear stress was affected by temperature and normal stress.展开更多
The pre-wetting of aggregate surface is a means to improve the interface performance of SBS modified asphalt and aggregate.The effect of pre-wetting technology on the interaction between SBS modified asphalt and aggre...The pre-wetting of aggregate surface is a means to improve the interface performance of SBS modified asphalt and aggregate.The effect of pre-wetting technology on the interaction between SBS modified asphalt and aggregate was analyzed by molecular dynamics simulation.The diffusion coefficient and concentration distribution of SBS modified asphalt on aggregate surface are included.The simulation results show that the diffusion coefficient of the aggregate surface of SBS modified asphalt is increased by 47.6%and 70.5%respectively after 110#asphalt and 130#asphalt are pre-wetted.The concentration distribution of SBS modified asphalt on the aggregate surface after pre-wetting is more uniform.According to the results of interface energy calculation,the interface energy of SBS modified bitumen and aggregate can be increased by about 5%after pre-wetting.According to the results of molecular dynamics simulation,the pre-wetting technology can effectively improve the interface workability of SBS modified bitumen and aggregate,so as to improve the interface performance.展开更多
Silicon stands as a key anode material in lithium-ion battery ascribing to its high energy density.Nevertheless,the poor rate performance and limited cycling life remain unresolved through conventional approaches that...Silicon stands as a key anode material in lithium-ion battery ascribing to its high energy density.Nevertheless,the poor rate performance and limited cycling life remain unresolved through conventional approaches that involve carbon composites or nanostructures,primarily due to the un-controllable effects arising from the substantial formation of a solid electrolyte interphase(SEI)during the cycling.Here,an ultra-thin and homogeneous Ti doping alumina oxide catalytic interface is meticulously applied on the porous Si through a synergistic etching and hydrolysis process.This defect-rich oxide interface promotes a selective adsorption of fluoroethylene carbonate,leading to a catalytic reaction that can be aptly described as“molecular concentration-in situ conversion”.The resultant inorganic-rich SEI layer is electrochemical stable and favors ion-transport,particularly at high-rate cycling and high temperature.The robustly shielded porous Si,with a large surface area,achieves a high initial Coulombic efficiency of 84.7%and delivers exceptional high-rate performance at 25 A g^(−1)(692 mAh g^(−1))and a high Coulombic efficiency of 99.7%over 1000 cycles.The robust SEI constructed through a precious catalytic layer promises significant advantages for the fast development of silicon-based anode in fast-charging batteries.展开更多
Spontaneous potential well-logging is one of the important techniques in petroleum exploitation. A spontaneous potential satisfies an elliptic equivalued surface boundary value problem with discontinuous interface con...Spontaneous potential well-logging is one of the important techniques in petroleum exploitation. A spontaneous potential satisfies an elliptic equivalued surface boundary value problem with discontinuous interface conditions. In practice, the measuring electrode is so small that we can simplify the corresponding equivalued surface to a point. In this paper, we give a positive answer to this approximation process:when the equivalued surface shrinks to a point, the solution of the original equivalued surface boundary value problem converges to the solution of the corresponding limit boundary value problem.展开更多
A boundary layer model was developed to predict the capture of inclusions by steel-slag interface in a turbulent fluid flow,which is based on the detailed analysis of inclusion trajectories.The effective boundary laye...A boundary layer model was developed to predict the capture of inclusions by steel-slag interface in a turbulent fluid flow,which is based on the detailed analysis of inclusion trajectories.The effective boundary layer for inclusion removal was proposed by a statistical method.It is noticed that the capture of inclusions by steel-slag interface is not only dependent on the diameter of inclusions but also related to the local turbulent conditions.In high turbulent flow fields,the transport of inclusions is mainly dominated by the turbulent flow,and thus,the effective boundary layer thickness is mainly affected by the level of turbulent kinetic energy and is almost independent of the inclusion diameter.The inertia of inclusions gradually takes over the stochastic effect of turbulent flow,and the effect of inclusion diameter on effective boundary layer thickness becomes more noticeable with the decrease in the level of turbulent kinetic energy.Besides,the effective boundary layer thickness is more susceptible to the inclusion diameter for larger inclusions due to its greater inertia under the same turbulent condition while it principally depends on the level of turbulent kinetic energy for smaller inclusions.As the characteristic velocity increases,the time for inclusions transport and interaction with steel-slag interface decreases,and thus,the effective boundary layer thickness decreases.Moreover,the graphical user interface was developed by using the cubic spline interpolation for ease of coupling the current boundary layer model with the macro-scale model of a turbulent fluid flow in the metallurgical vessel.展开更多
Interface and scale effects are the two most important factors which strongly affect the structure and the properties of nano-/micro-crystals under pressure.We conduct an experiment under high pressure in situ alterna...Interface and scale effects are the two most important factors which strongly affect the structure and the properties of nano-/micro-crystals under pressure.We conduct an experiment under high pressure in situ alternating current impedance to elucidate the effects of interface on the structure and electrical transport behavior of two Zn Se samples with different sizes obtained by physical grinding.The results show that(i) two different-sized Zn Se samples undergo the same phase transitions from zinc blend to cinnabar-type phase and then to rock salt phase;(ii) the structural transition pressure of the859-nm Zn Se sample is higher than that of the sample of 478 nm,which indicates the strong scale effect.The pressure induced boundary resistance change is obtained by fitting the impedance spectrum,which shows that the boundary conduction dominates the electrical transport behavior of Zn Se in the whole experimental pressure range.By comparing the impedance spectra of two different-sized Zn Se samples at high pressure,we find that the resistance of the 478-nm Zn Se sample is lower than that of the 859-nm sample,which illustrates that the sample with smaller particle size has more defects which are due to physical grinding.展开更多
基金supported by the National Natural Science Foundation of China(Nos.52122408 and 52474397)the High-level Talent Research Start-up Project Funding of Henan Academy of Sciences(No.242017127)+1 种基金the financial support from the Fundamental Research Funds for the Central Universities(University of Science and Technology Beijing(USTB),Nos.FRF-TP-2021-04C1 and 06500135)supported by USTB MatCom of Beijing Advanced Innovation Center for Materials Genome Engineering。
文摘High-performance alloys are indispensable in modern engineering because of their exceptional strength,ductility,corrosion resistance,fatigue resistance,and thermal stability,which are all significantly influenced by the alloy interface structures.Despite substantial efforts,a comprehensive overview of interface engineering of high-performance alloys has not been presented so far.In this study,the interfaces in high-performance alloys,particularly grain and phase boundaries,were systematically examined,with emphasis on their crystallographic characteristics and chemical element segregations.The effects of the interfaces on the electrical conductivity,mechanical strength,toughness,hydrogen embrittlement resistance,and thermal stability of the alloys were elucidated.Moreover,correlations among various types of interfaces and advanced experimental and computational techniques were examined using big data analytics,enabling robust design strategies.Challenges currently faced in the field of interface engineering and emerging opportunities in the field are also discussed.The study results would guide the development of next-generation high-performance alloys.
文摘Invasive as well as non-invasive neurotechnologies conceptualized to interface the central and peripheral nervous system have been probed for the past decades,which refer to electroencephalography,electrocorticography and microelectrode arrays.The challenges of these mentioned approaches are characterized by the bandwidth of the spatiotemporal resolution,which in turn is essential for large-area neuron recordings(Abiri et al.,2019).
基金the financial support from the National Natural Science Foundation of China(52203123 and 52473248)State Key Laboratory of Polymer Materials Engineering(sklpme2024-2-04)+1 种基金the Fundamental Research Funds for the Central Universitiessponsored by the Double First-Class Construction Funds of Sichuan University。
文摘Composite polymer electrolytes(CPEs)offer a promising solution for all-solid-state lithium-metal batteries(ASSLMBs).However,conventional nanofillers with Lewis-acid-base surfaces make limited contribution to improving the overall performance of CPEs due to their difficulty in achieving robust electrochemical and mechanical interfaces simultaneously.Here,by regulating the surface charge characteristics of halloysite nanotube(HNT),we propose a concept of lithium-ion dynamic interface(Li^(+)-DI)engineering in nano-charged CPE(NCCPE).Results show that the surface charge characteristics of HNTs fundamentally change the Li^(+)-DI,and thereof the mechanical and ion-conduction behaviors of the NCCPEs.Particularly,the HNTs with positively charged surface(HNTs+)lead to a higher Li^(+)transference number(0.86)than that of HNTs-(0.73),but a lower toughness(102.13 MJ m^(-3)for HNTs+and 159.69 MJ m^(-3)for HNTs-).Meanwhile,a strong interface compatibilization effect by Li^(+)is observed for especially the HNTs+-involved Li^(+)-DI,which improves the toughness by 2000%compared with the control.Moreover,HNTs+are more effective to weaken the Li^(+)-solvation strength and facilitate the formation of Li F-rich solid-electrolyte interphase of Li metal compared to HNTs-.The resultant Li|NCCPE|LiFePO4cell delivers a capacity of 144.9 m Ah g^(-1)after 400 cycles at 0.5 C and a capacity retention of 78.6%.This study provides deep insights into understanding the roles of surface charges of nanofillers in regulating the mechanical and electrochemical interfaces in ASSLMBs.
基金The Royal Society,UK,Grant/Award Number:IEC\NSFC\211366Fundamental Research Funds for the Central Universities(China University of Mining and Technology),Grant/Award Number:2023ZDPY11National Natural Science Foundation of China,Grant/Award Numbers:51809263,52174133。
文摘The corrosion of waste canisters in the deep geological disposal facilities(GDFs)for high-level radioactive waste(HLRW)can generate gas,which escapes from the engineered barrier system through the interfaces between the bentonite buffer blocks and the host rock and those between the bentonite blocks.In this study,a series of water infiltration and gas breakthrough experiments were conducted on granite and on granite-bentonite specimens with smooth and grooved interfaces.On this basis,this study presents new insights and a quantitative assessment of the impact of the interface between clay and host rock on gas transport.As the results show,the water permeability values from water infiltration tests on granite and granite-bentonite samples(10−19-10−20m^(2))are found to be slightly higher than that of bentonite.The gas permeability of the mock-up samples with smooth interfaces is one order of magnitude larger than that of the mock-up with grooved interfaces.The gas results of breakthrough pressures for the granite and the granite-bentonite mock-up samples are significantly lower than that of bentonite.The results highlight the potential existence of preferential gas migration channels between the rock and bentonite buffer that require further considerations in safety assessment.
基金partially supported by the National Natural Science Foundation of China(Nos.92271103,12202191)。
文摘The diffuse-interface immersed boundary method(IBM)possesses excellent capabilities for simulating flows around complex geometries and moving boundaries.In this method,the flow field is solved on a fixed Cartesian mesh,while the solid boundary is discretized into a series of Lagrangian points immersed in the flow field.The boundary condition is implemented by introducing a force term into the momentum equation,and the interaction between the immersed boundary and the fluid domain is achieved via an interpolation process.Over the past decades,the diffuse-interface IBM has gained popularity and spawned many variants,effectively handling a wide range of flow problems from isothermal to thermal flows,from laminar to turbulent flows,and from complex geometries to fluidstructure interaction scenarios.This paper first outlines the basic principles of the diffuse-interface IBM,then highlights recent advancements achieved by the authors’research group,and finally shows the method’s excellent numerical performance and wide applicability through several case studies involving complex moving boundary problems.
基金financial support from the National Natural Science Foundation of China(Nos.52222602 and 52476052)Fundamental Research Funds for the Central Universities(FRF-TP-22-001C1 and FRF-EYIT-23-05).
文摘Copper–carbon(Cu–C)composites have achieved great success in various fields owing to the greatly improved electrical properties compared to pure Cu,for example,a two-order-of-magnitude increase in current-carrying capacity(ampacity).However,the frequent fuse failure caused by the poor thermal transport at the Cu–C heterointerface is still the main factor affecting the ampacity.In this study,we unconventionally leverage atomic distortion at Cu grain boundaries to alter the local atomic environments,thereby placing a premium on noticeable enhancement of phonon coupling at the Cu–C heterointerface.Without introducing any additional materials,interfacial thermal transport can be regulated solely through rational microstructural design.This new strategy effectively improves the interfacial thermal conductance by three-fold,reaching the state-of-the-art level in van der Waals(vdW)interface regulation.It can be an innovative strategy for interfacial thermal management by turning the detrimental grain boundaries into a beneficial thermal transport accelerator.
基金supported by the National Basic Research Program of China(No.2004CB619303)partially by the National Natural Science Foundation of China(No.50571103 and 50971125)(B.Zhang)appreciates the support from the Program for Changjiang Scholars and Innovative Research Team in Northeastern University(IRT0713)
文摘The electrical resistivity of Cu/Ta multilayers deposited by radio-frequency magnetron sputtering on a polyimide substrate was investigated as a function of monolayer thickness. It is found that the resistivity of the multilayer increases with decreasing monolayer thickness from 500 nm to 10 nm. Two significant effects of layer interface scattering and grain boundary scattering were identified to dominate electronic transportation behavior in the Cu/Ta multilayers at different length scales. The electrical resistivity of the multilayer with monolayer thickness ranging from nanometer to submicron scales can be well described by a newly-proposed Fuchs-Sandheimair (F-S) and Mayadas-Shatzkes (M-S) combined model.
基金Project supported by the National Natural Science Foundation of China(Nos.91752118,11672305,11232011,and 11572331)the Strategic Priority Research Program(No.XDB22040104)the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences(No.QYZDJ-SSWSYS002)
文摘A novel method is proposed to combine the wall-modeled large-eddy simulation(LES) with the diffuse-interface direct-forcing immersed boundary(IB) method.The new developments in this method include:(i) the momentum equation is integrated along the wall-normal direction to link the tangential component of the effective body force for the IB method to the wall shear stress predicted by the wall model;(ii) a set of Lagrangian points near the wall are introduced to compute the normal component of the effective body force for the IB method by reconstructing the normal component of the velocity. This novel method will be a classical direct-forcing IB method if the grid is fine enough to resolve the flow near the wall. The method is used to simulate the flows around the DARPA SUBOFF model. The results obtained are well comparable to the measured experimental data and wall-resolved LES results.
基金financially supported by the National Natural Science Foundation of China(No.52377026 and No.52301192)Taishan Scholars and Young Experts Program of Shandong Province(No.tsqn202103057)+4 种基金Postdoctoral Fellowship Program of CPSF under Grant Number(No.GZB20240327)Shandong Postdoctoral Science Foundation(No.SDCXZG-202400275)Qingdao Postdoctoral Application Research Project(No.QDBSH20240102023)China Postdoctoral Science Foundation(No.2024M751563)the Qingchuang Talents Induction Program of Shandong Higher Education Institution(Research and Innovation Team of Structural-Functional Polymer Composites).
文摘Currently,the demand for electromagnetic wave(EMW)absorbing materials with specific functions and capable of withstanding harsh environments is becoming increasingly urgent.Multi-component interface engineering is considered an effective means to achieve high-efficiency EMW absorption.However,interface modulation engineering has not been fully discussed and has great potential in the field of EMW absorption.In this study,multi-component tin compound fiber composites based on carbon fiber(CF)substrate were prepared by electrospinning,hydrothermal synthesis,and high-temperature thermal reduction.By utilizing the different properties of different substances,rich heterogeneous interfaces are constructed.This effectively promotes charge transfer and enhances interfacial polarization and conduction loss.The prepared SnS/SnS_(2)/SnO_(2)/CF composites with abundant heterogeneous interfaces have and exhibit excellent EMW absorption properties at a loading of 50 wt%in epoxy resin.The minimum reflection loss(RL)is−46.74 dB and the maximum effective absorption bandwidth is 5.28 GHz.Moreover,SnS/SnS_(2)/SnO_(2)/CF epoxy composite coatings exhibited long-term corrosion resistance on Q235 steel surfaces.Therefore,this study provides an effective strategy for the design of high-efficiency EMW absorbing materials in complex and harsh environments.
文摘In this paper,we study a one-dimensional motion of viscous gas near vacuum. We are interested in the case that the gas is in contact with the vacuum at a finite interval. This is a free boundary problem for the one-dimensional isentropic Navier-Stokes equations, and the free boundaries are the interfaces separating the gas from vacuum,across which the density changes discontinuosly.Smoothness of the solutions and the uniqueness of the weak solutions are also discussed.The present paper extends results in Luo-Xin-Yang[12] to the jump boundary conditions case.
基金financially supported by the National Natural Science Foundation of China(No.51937008)the Science and Technology Project of State Grid Corporation of China(SGCC)(No.5216A01600W3)。
文摘Significantly enhanced varistor properties via tailoring interface states were obtained in Ca_(1-2x/3)Y_(x)Cu_(3)Ti_(4)O_(12)-SrCu_(3)Ti_(4)O_(12) composite ceramics.The breakdown field was improved to 35.8 kV cm^(-1) and the nonlinear coefficient in 0.1-1 mA cm^(-2) was enhanced to 14.6 for Ca_(0.67)Y_(0.5)Cu_(3)Ti_(4)O_(12)-SrCu_(3)Ti_(4)O_(12).Noticeably,the withstand voltage of single grain boundary reached up to 24 V while the reported ones were constant to about 3 V.Greatly improved properties were attributed to the formation of superior grain boundary rather than the reduced grain size.Surprisingly,with distinct discrepancy of nonlinear performance in the composites,the resistance and activation energy of grain boundary exhibited little differences.Based on the double Schottky barrier at grain boundary and the field-assisted thermal emission model,it was found that the excellent electrical nonlinearity arose from the formation of deeper and broader interface states at grain boundary.In this case,interface states were not easily entirely filled and the barrier could maintain its height under applied voltage.This work provides a novel routine for enhancing the varistor properties of CaCu_(3)Ti_(4)O_(12) based ceramics by manipulating interface states at grain boundary.
基金National Natural Science Foundation of China(19891180)
文摘Acoording to the classical elastic theory, there is always adiscontinuity of rotation angle on the interface different materials.This illogic result can be overcome by the strain gradient plasticitytheory. In the light of this theory, there is a group of boundarylayer solutions near the in- terface, which have made importantadjustment of the classical results.
基金supported by the U.S.Department of Energy under Contract No.DE-AC02-98CH10886 and by the State of New York
文摘The embedded boundary method for solving elliptic and parabolic problems in geometrically complex domains using Cartesian meshes by Johansen and Colella (1998, J. Comput. Phys. 147, 60) has been extended for elliptic and parabolic problems with interior boundaries or interfaces of discontinuities of material properties or solutions. Second order accuracy is achieved in space and time for both stationary and moving interface problems. The method is conservative for elliptic and parabolic problems with fixed interfaces. Based on this method, a front tracking algorithm for the Stefan problem has been developed. The accuracy of the method is measured through comparison with exact solution to a two-dimensional Stefan problem. The algorithm has been used for the study of melting and solidification problems.
基金supported by the National Key R&D Program of China(2021YFF1200602)the National Science Fund for Excellent Overseas Scholars(0401260011)+3 种基金the National Defense Science and Technology Innovation Fund of Chinese Academy of Sciences(c02022088)the Tianjin Science and Technology Program(20JCZDJC00810)the National Natural Science Foundation of China(82202798)the Shanghai Sailing Program(22YF1404200).
文摘Brain-computer interfaces(BCIs)represent an emerging technology that facilitates direct communication between the brain and external devices.In recent years,numerous review articles have explored various aspects of BCIs,including their fundamental principles,technical advancements,and applications in specific domains.However,these reviews often focus on signal processing,hardware development,or limited applications such as motor rehabilitation or communication.This paper aims to offer a comprehensive review of recent electroencephalogram(EEG)-based BCI applications in the medical field across 8 critical areas,encompassing rehabilitation,daily communication,epilepsy,cerebral resuscitation,sleep,neurodegenerative diseases,anesthesiology,and emotion recognition.Moreover,the current challenges and future trends of BCIs were also discussed,including personal privacy and ethical concerns,network security vulnerabilities,safety issues,and biocompatibility.
基金the National Natural Science Foundation of China(No.41731281)the Key Foundation of Guangdong Province(No.2020B1515120083),China。
文摘The shear strength properties of the frozen sand–structure interface are critical for evaluating the serviceability of pile foundations in frozen ground.The shear characteristics of the frozen sand–concrete interface were studied with two boundary conditions(constant normal load(CNL)and constant normal height(CNH)),at three normal stresses(100,200,and 300 k Pa),and at three temperatures(-2,-5,and-8℃).A detailed comparative analysis was performed to explore the principal factors affecting the shear/normal-shear displacement.The results showed that the shear behavior of the frozen sand–concrete interface under CNL was similar to that under CNH.The shear stress–shear displacement exhibited strain softening.The temperature and normal stress were the major influences on normal properties.The lower the temperature and the higher the normal stress,the greater was the elastic shear modulus.The peak shear stress and critical shear stress exhibited a dependence on normal stress.An exponential growth in the peak shear stress was observed as the temperature decreased.Critical shear stress was dependent on temperature.The value and percentage of peak ice-cementation in peak shear stress was affected by temperature and normal stress.
基金Funded by the Research Funds of China University of Mining and Technology(No.102523215)。
文摘The pre-wetting of aggregate surface is a means to improve the interface performance of SBS modified asphalt and aggregate.The effect of pre-wetting technology on the interaction between SBS modified asphalt and aggregate was analyzed by molecular dynamics simulation.The diffusion coefficient and concentration distribution of SBS modified asphalt on aggregate surface are included.The simulation results show that the diffusion coefficient of the aggregate surface of SBS modified asphalt is increased by 47.6%and 70.5%respectively after 110#asphalt and 130#asphalt are pre-wetted.The concentration distribution of SBS modified asphalt on the aggregate surface after pre-wetting is more uniform.According to the results of interface energy calculation,the interface energy of SBS modified bitumen and aggregate can be increased by about 5%after pre-wetting.According to the results of molecular dynamics simulation,the pre-wetting technology can effectively improve the interface workability of SBS modified bitumen and aggregate,so as to improve the interface performance.
基金the National Key R&D Plan of the Ministry of Science and Technology of China(2022YFE0122400)National Natural Science Foundation of China(52002238,22102207)+1 种基金Science and Technology Commission of Shanghai Municipality(22ZR1423800,21ZR1465200,23ZR1423600)Shanghai Municipal Education Commission and the NSRF via the Program Management Unit for Human Resources&Institutional Development,Research and Innovation(B49G680115).
文摘Silicon stands as a key anode material in lithium-ion battery ascribing to its high energy density.Nevertheless,the poor rate performance and limited cycling life remain unresolved through conventional approaches that involve carbon composites or nanostructures,primarily due to the un-controllable effects arising from the substantial formation of a solid electrolyte interphase(SEI)during the cycling.Here,an ultra-thin and homogeneous Ti doping alumina oxide catalytic interface is meticulously applied on the porous Si through a synergistic etching and hydrolysis process.This defect-rich oxide interface promotes a selective adsorption of fluoroethylene carbonate,leading to a catalytic reaction that can be aptly described as“molecular concentration-in situ conversion”.The resultant inorganic-rich SEI layer is electrochemical stable and favors ion-transport,particularly at high-rate cycling and high temperature.The robustly shielded porous Si,with a large surface area,achieves a high initial Coulombic efficiency of 84.7%and delivers exceptional high-rate performance at 25 A g^(−1)(692 mAh g^(−1))and a high Coulombic efficiency of 99.7%over 1000 cycles.The robust SEI constructed through a precious catalytic layer promises significant advantages for the fast development of silicon-based anode in fast-charging batteries.
文摘Spontaneous potential well-logging is one of the important techniques in petroleum exploitation. A spontaneous potential satisfies an elliptic equivalued surface boundary value problem with discontinuous interface conditions. In practice, the measuring electrode is so small that we can simplify the corresponding equivalued surface to a point. In this paper, we give a positive answer to this approximation process:when the equivalued surface shrinks to a point, the solution of the original equivalued surface boundary value problem converges to the solution of the corresponding limit boundary value problem.
基金the National Natural Science Foundation of China(Grant Nos.51904025 and U22A20171)the Fundamental Research Funds for the Central Universities(Grant No.FRF-IDRY-20-011)+1 种基金National Postdoctoral Program for Innovative Talents(Grant No.BX20190030)the High Steel Center(HSC)at North China University of Technology and University of Science and Technology Beijing,China.
文摘A boundary layer model was developed to predict the capture of inclusions by steel-slag interface in a turbulent fluid flow,which is based on the detailed analysis of inclusion trajectories.The effective boundary layer for inclusion removal was proposed by a statistical method.It is noticed that the capture of inclusions by steel-slag interface is not only dependent on the diameter of inclusions but also related to the local turbulent conditions.In high turbulent flow fields,the transport of inclusions is mainly dominated by the turbulent flow,and thus,the effective boundary layer thickness is mainly affected by the level of turbulent kinetic energy and is almost independent of the inclusion diameter.The inertia of inclusions gradually takes over the stochastic effect of turbulent flow,and the effect of inclusion diameter on effective boundary layer thickness becomes more noticeable with the decrease in the level of turbulent kinetic energy.Besides,the effective boundary layer thickness is more susceptible to the inclusion diameter for larger inclusions due to its greater inertia under the same turbulent condition while it principally depends on the level of turbulent kinetic energy for smaller inclusions.As the characteristic velocity increases,the time for inclusions transport and interaction with steel-slag interface decreases,and thus,the effective boundary layer thickness decreases.Moreover,the graphical user interface was developed by using the cubic spline interpolation for ease of coupling the current boundary layer model with the macro-scale model of a turbulent fluid flow in the metallurgical vessel.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11404133 and 11374121)the Program of Science and Technology Development Plan of Jilin Province,China(Grant No.20140520105JH)
文摘Interface and scale effects are the two most important factors which strongly affect the structure and the properties of nano-/micro-crystals under pressure.We conduct an experiment under high pressure in situ alternating current impedance to elucidate the effects of interface on the structure and electrical transport behavior of two Zn Se samples with different sizes obtained by physical grinding.The results show that(i) two different-sized Zn Se samples undergo the same phase transitions from zinc blend to cinnabar-type phase and then to rock salt phase;(ii) the structural transition pressure of the859-nm Zn Se sample is higher than that of the sample of 478 nm,which indicates the strong scale effect.The pressure induced boundary resistance change is obtained by fitting the impedance spectrum,which shows that the boundary conduction dominates the electrical transport behavior of Zn Se in the whole experimental pressure range.By comparing the impedance spectra of two different-sized Zn Se samples at high pressure,we find that the resistance of the 478-nm Zn Se sample is lower than that of the 859-nm sample,which illustrates that the sample with smaller particle size has more defects which are due to physical grinding.