Studies on basin fills have provided significant insights into reservoir distribution and prediction in petroliferous basins, however, the effect of basin fills on source rock properties has been underexplored. This p...Studies on basin fills have provided significant insights into reservoir distribution and prediction in petroliferous basins, however, the effect of basin fills on source rock properties has been underexplored. This paper documents basin filling characteristics and their implications for depositional processes and heterogeneity of source rock in the Qingnan subsag of the Jiuquan Basin, by using subsurface geological data from recent hydrocarbon exploration efforts in this area. Drill core data reveals that the basin fill of the Qingnan subsag was dominated by fan delta-lacustrine systems, in which deposition of the fan deltas along the basin margin was mainly through gravity flows. The temporal and spatial evolution of the depositional systems indicates that the basin fill was characterized by a continuously retrogradational process, with decreasing extent of fan deltas in vertical succession. Weakening of tectonic activities and climate change from humid to semi-arid are interpreted to be the main control factors that were responsible for the retrogradational basin fill. The different depositional environments in the early stage and late stage of the retrogradational basin filling history resulted in the different depositional processes and properties of source rocks. This study suggests that source rock heterogeneity associated with basin fills in lacustrine basins should be considered in hydrocarbon exploration.展开更多
Coupled dissolution-precipitation is one of the critical processes influencing the mineralogical and geochemical evolution of pegmatites.This mechanism involves the simultaneous dissolution of primary mineral phases a...Coupled dissolution-precipitation is one of the critical processes influencing the mineralogical and geochemical evolution of pegmatites.This mechanism involves the simultaneous dissolution of primary mineral phases and the precipitation of secondary phases,driven by changes in the chemical environment,often mediated by hydrothermal fluids.The Bailongshan Li deposit,located in the West Kunlun region of northwest China,is a significant geological formation known for its rich lithium content and associated rare metals such as tantalum,niobium,and tin.This study investigates the coupled dissolution-precipitation processes that have played a crucial role in the mineralization of this deposit,focusing on key minerals,including cassiterite(Cst),columbite-group minerals(CGM),and elbaite(Elb).Using a combination of petrographic analysis,back-scattered electron(BSE)imaging,cathodoluminescence(CL)imaging,and micro X-ray fluorescence(XRF)mapping,we examined the textural and chemical characteristics of these minerals.Our findings reveal intricate patchy zoning patterns and element distributions(indicated by the Nb,Ta,W,Mn,Fe,Hf,Ti for CGM;Hf,Ti Rb,W,Nb,Ta for Cst;Ti,Zn,Fe,W,Hf,Mn,K for Elb)that indicate multiple stages of mineral alteration driven by fluid-mediated processes.The coupled dissolution-precipitation mechanisms observed in the Bailongshan deposit have resulted in significant redistribution and enrichment of economically valuable elements.The study highlights the importance of hydrothermal fluids in altering primary mineral phases and precipitating secondary phases with distinct compositions.These processes not only modified the mineralogical makeup of the pegmatite but also enhanced its economic potential by concentrating rare metals.Signatures of coupled dissolutionprecipitation processes can serve as an essential tool for mineral exploration,guiding the search for high-grade zones within similar pegmatitic formations.展开更多
Interlayer friction stir processing(FSP)has been proved to be an efective method of enhancing the mechanical properties of wire arc-directed energy deposited(WA-DED)samples.However,the original deposition structure wa...Interlayer friction stir processing(FSP)has been proved to be an efective method of enhancing the mechanical properties of wire arc-directed energy deposited(WA-DED)samples.However,the original deposition structure was still retained in the FSP-WA-DED component besides the processed zone(PZ),thus forming a composite structure.Considering the material utilization and practical service process of the deposited component,more attention should be paid on this special composite structure,but the relevant investigation has not been carried out.In this study,an Al–Mg–Sc alloy was prepared by WA-DED with interlayer FSP treatment,and the composite structure was frstly investigated.Almost all of the pores were eliminated under the pressure efect from the tool shoulder.The grains were further refned with an average size of about 1.2μm in the PZ.Though no severe plastic deformation was involved in the retained WA-DED deposition zone,comparable tensile properties with the PZ sample were obtained in the composite structure.Low ultimate tensile strength(UTS)of 289 MPa and elongation of 3.2%were achieved in the WA-DED sample.After interlayer FSP treatment,the UTS and elongation of the PZ samples were signifcantly increased to 443 MPa and 16.3%,while those in the composite structure remained at relatively high levels of 410 MPa and 13.5%,respectively.Meanwhile,a high fatigue strength of 180 and 130 MPa was obtained in the PZ and composite structure samples,which was clearly higher than that of the WA-DED sample(100 MPa).It is concluded that the defects in traditional WA-DED process can be eliminated in the composite structure after interlayer FSP treatment,resulting in enhanced tensile and fatigue properties,which provides an efective method of improving the mechanical properties of the WA-DED sample.展开更多
Coarse-grained subaqueous fans are vital oil and gas exploration targets in the Bohai Bay basin,China.The insufficient understanding of their sedimentary processes,depositional patterns,and controlling factors restric...Coarse-grained subaqueous fans are vital oil and gas exploration targets in the Bohai Bay basin,China.The insufficient understanding of their sedimentary processes,depositional patterns,and controlling factors restricts efficient exploration and development.Coarse-grained subaqueous fans in the Yong′an area,Dongying Depression,are investigated in this study.These fans include nearshore subaqueous fans,and sublacustrine fans,and their sedimentary processes,depositional patterns and distribution characteristics are mainly controlled by tectonic activity and paleogeomorphology.Nearshore subaqueous fans developed near the boundary fault during the early–middle deposition stage due to strong tectonic activity and large topographic subsidence.Early sublacustrine fans developed at the front of the nearshore subaqueous fans in the area where the topography changed from gentle to steep along the source direction.While the topography was gentle,sublacustrine fans did not develop.During the late weak tectonic activity stage,late sublacustrine fans developed with multiple stages superimposed.Frequent fault activity and related earthquakes steepened the basin margin,and the boundary fault slopes were 25.9°–34°.During the early–middle deposition stage,hyperpycnal flows triggered by outburst floods developed.During the late deposition stage,with weak tectonic activity,seasonal floods triggered hyperpycnal flows,and hybrid event beds developed distally.展开更多
Sedimentary process research is of great significance for understanding the distribution and characteristics of sediments.Through the detailed observation and measurement of the Sangyuan outcrop in Luanping Basin,this...Sedimentary process research is of great significance for understanding the distribution and characteristics of sediments.Through the detailed observation and measurement of the Sangyuan outcrop in Luanping Basin,this paper studies the depositional process of the hyperpycnal flow deposits,and divides their depositional process into three phases,namely,acceleration,erosion and deceleration.In the acceleration phase,hyperpycnal flow begins to enter the basin nearby,and then speeds up gradually.Deposits developed in the acceleration phase are reverse.In addition,the original deposits become unstable and are taken away by hyperpycnal flows under the eroding force.As a result,there are a lot of mixture of red mud pebbles outside the basin and gray mud pebbles within the basin.In the erosion phase,the reverse deposits are eroded and become thinner or even disappear.Therefore,no reverse grading characteristic is found in the proximal major channel that is closer to the source,but it is still preserved in the middle branch channel that is far from the source.After entering the deceleration phase,normally grading deposits appear and cover previous deposits.The final deposits in the basin are special.Some are reverse,and others are normal.They are superimposed with each other under the action of hyperpycnal flow.The analysis of the Sangyuan outcrop demonstrates the sedimentary process and distribution of hyperpycnites,and reasonably explain the sedimentary characteristics of hyperpycnites.It is helpful to the prediction of oil and gas exploration targets in gravity flow deposits.展开更多
Based on analyzing the influences of a slicing scheme on stair-stepping effect, supporting structure, efficiency and deformation, etc. , analytical hierarchical process (AHP) combining with fuzzy synthetic evaluatio...Based on analyzing the influences of a slicing scheme on stair-stepping effect, supporting structure, efficiency and deformation, etc. , analytical hierarchical process (AHP) combining with fuzzy synthetic evaluation is introduced to make decision in slicing schemes for a processing part. The application in determining the slicing scheme for a computer mouse during prototyping shows that the method increases the rationality during decision- making and improves quality and efficiency for the prototyping part.展开更多
Based on petrological studies of the wall rocks, mineralizing rocks, ores and veins from the Laowangzhai gold deposit, it is discovered that along with the development of silication, carbonation and sulfidation, a kin...Based on petrological studies of the wall rocks, mineralizing rocks, ores and veins from the Laowangzhai gold deposit, it is discovered that along with the development of silication, carbonation and sulfidation, a kind of black opaque ultra-microlite material runs through the spaces between grains, fissures and cleavages. Under observations of the electron microprobe, scanning electronic microscopy and energy spectrum, this kind of ultra-microlite material is confirmed to consist of ultra microcrystalline quartz, silicate, sulfides and carbonates, as well as rutile, scheelite and specularite (magnetite), showing characters of liquation by the analyses of SEM and energy spectrum. The coexistence of immiscibility and precipitating co-crystallization strongly suggests that the mineralizing fluid changed from the melt to the hydrothermal fluid. Combined with the element geochemical researches, it is realized that the ultra-microlite aggregate is the direct relics of the mantle fluid behaving like a melt and supercritical fluid, which goes along with the mantle-derived magma and will escape from the magma body at a proper time. During the alteration process, the nature of the mantle fluid changed and it is mixed with the crustal fluid, which are favorable for mineralization in the Loawangzhai gold deposit.展开更多
Loose deposits, rainfall and topography are three key factors that triggering debris flows.However, few studies have investigated the effects of loose deposits on the whole debris flow process.On June 28, 2012, a cata...Loose deposits, rainfall and topography are three key factors that triggering debris flows.However, few studies have investigated the effects of loose deposits on the whole debris flow process.On June 28, 2012, a catastrophic debris flow occurred in the Aizi Valley, resulting in 40 deaths.The Aizi Valley is located in the Lower Jinsha River,southwestern Sichuan Province, China. The Aizi Valley debris flow has been selected as a case for addressing loose deposits effects on the whole debris flow process through remote sensing, field investigation and field experiments. Remote sensing interpretation and laboratory experiments were used to obtain the distribution and characteristics of the loose deposits, respectively. A field experiment was conducted to explore the mechanics of slope debris flows, and another field investigation was conducted to obtain the processes of debris flow formation, movement and amplification. The results showed that loose deposits preparation, slope debris flow initiation,gully debris flow confluence and valley debris flow amplification were dominated by the loose deposits.Antecedent droughts and earthquake activities may have increased the potential for loose soil sources in the Aizi Valley, which laid the foundation for debris flow formation. Slope debris flow initiated under rainfall, and the increase in the water content as well as the pore water pressure of the loose deposits were the key factors affecting slope failure. The nine gully debris flows converged in the valley, and the peak discharge was amplified 3.3 times due to a blockage and outburst caused by a large boulder. The results may help in predicting and assessing regional debris flows in dry-hot and seismic-prone areas based on loose deposits, especially considering large boulders.展开更多
The Zhaxikang Pb-Zn-Sb polymetallic deposit is one of the most important deposits in the newly recognized southern Tibet antimony-gold metallogenic belt.Compared to the porphyry deposits in the Gangdese belt,much less...The Zhaxikang Pb-Zn-Sb polymetallic deposit is one of the most important deposits in the newly recognized southern Tibet antimony-gold metallogenic belt.Compared to the porphyry deposits in the Gangdese belt,much less researches have addressed these deposits,and the genesis of the Zhaxikang deposit is still controversial.Based on field investigation,petrographic,microthermometric,Laser Raman Microprobe(LRM) and SEM/EDS analyses of fluid,melt-fluid,melt and solid inclusions in quartz and beryl from pegmatite,this paper documents the characteristics and the evolution of primary magmatic fluid which was genetically related to greisenization,pegmatitization,and silification in the area.The results show that the primary magmatic fluids were derived from unmixing between melt and fluid and underwent a phase separation process soon after the exsolution.The primary magmatic fluids are of low salinity,high temperature,and can be approximated by the H_2O-NaCl-CO_2 system.The presence of Mn-Fe carbonate in melt-fluid inclusions and a Zn-bearing mineral(gahnite) trapped in beryl and in inclusions from pegmatite indicates high Mn,Fe,and Zn concentrations in the parent magma and magmatic fluids,and implies a genetic link between pegmatite and Pb-Zn-Sb mineralization.High B and F concentrations in the parent magma largely lower the solidus of the magma and lead to late fluid exsolution,thus the primary magmatic fluids related to pegmatite have much lower temperature than those in most porphyry systems.Boiling of the primary magmatic fluids leads to high-salinity and high-temperature fluids which have high capacity to transport Pb,Zn and Sb.The decrease in temperature and mixing with fluids from other sources may have caused the precipitation of Pb-Zn-Sn(Au) minerals in the distal fault systems surrounding the causative intrusion.展开更多
Laser direct deposition (LDD) of metallic components is an advanced technology of combining CAD/CAM (computer aided design/computer aided manufacturing), high power laser, and rapid prototyping. This technology us...Laser direct deposition (LDD) of metallic components is an advanced technology of combining CAD/CAM (computer aided design/computer aided manufacturing), high power laser, and rapid prototyping. This technology uses laser beam to melt the powders fed coaxiaUy into the molten pool by the laser beam to fabricate fuUy dense metallic components. The present article mainly studies the LDD of Ti-6Al-4V alloy, which can be used to fabricate aircraft components. The mechanical properties of the Ti-6Al-4V alloy, fabricated by LDD, are obtained using the tension test, and the oxygen content of used powders and deposited specimens are measured. In the present article, it can be seen that the mechanical properties obtained using this method are higher than the ones obtained by casting, and equal to those got by wrought anneal. One aircraft part has been made using the LDD process. Because of this aircraft part, with sophisticated shape, the effect of the laser scanning track on the internal soundness of the deposited part was discussed.展开更多
In the present study,the effects of process parameters(output voltage x,nitrogen flux l and specific strengthening time s)on the microstructure and wear resistance properties of TiN coatings prepared by electrospark d...In the present study,the effects of process parameters(output voltage x,nitrogen flux l and specific strengthening time s)on the microstructure and wear resistance properties of TiN coatings prepared by electrospark deposition(ESD)were investigatedsystematically.The microstructure of the coatings was characterized for thickness(TOC),content of TiN(CON)and porosity(POC).A statistical model was developed to identify the significant factors affecting the microstructure and wear resistance of the coatings.The results show that the output voltage x and nitrogen flux l present significant effects on majority of the evaluation indexes such asTOC,friction coefficient(COF)and wear mass loss(Id),while the specific strengthening time s has a significant effect on POC and asmall effect on the other indexes.The optimal process parameters were obtained as follows:output voltage(x,60V),nitrogen flux(l,15L/min)and specific strengthening time(s,3min/cm2).The variation of wear mass loss(Id)by the variation of the outputvoltage(x)and nitrogen flux(l)is attributed to the change of wear mechanisms of TiN coatings.The main wear mechanism of TiNcoating prepared under optimal process parameters is micro-cutting wear accompanied by micro-fracture wear.展开更多
The Jiama deposit is a large copper deposit in Tibet. Mineralization occurs in three different host rocks: skarn, hornfels and porphyry. A detailed fluid inclusion study was conducted for veins in the different host ...The Jiama deposit is a large copper deposit in Tibet. Mineralization occurs in three different host rocks: skarn, hornfels and porphyry. A detailed fluid inclusion study was conducted for veins in the different host rocks to investigate the relationship between fluid evolution and ore-forming processes. Based on examination of cores from 36 drill holes, three types of veins (A, B and D) were identified in the porphyries, four types (I, II, III and IV) in the skarn, and three (a, b and c) in the hornfels. The crosscutting relationships of the veins and that of the host rocks suggest two hydrothermal stages, one early and one late stage. Fluid inclusions indicate that the Jiama hydrothermal fluid system underwent at least two episodes of fluid boiling. The first boiling event occurred during the early hydrothermal stage, as recorded by fluid inclusions hosted in type A veins in the porphyries, type a veins in the hornfels, and wollastonite in the skarns. This fluid boiling event was associated with relatively weak mineralization. The second boiling event occurred in the late hydrothermal stage, as determined from fluid inclusions hosted in type B and D veins in the porphyries, type I to IV veins in the skarns, and type b and c veins in the hornfels. This late boiling event, together with mixing with meteoric water, was responsible for more than 90% of the metal accumulation in the deposit. The first boiling only occurred in the central part of the deposit and the second boiling event took place across an entire interlayered structural zone between hornfels and marble. A spatial zoning of ore-elements is evident, and appears to be related to different migration pathways and precipitation temperatures of Cu, Mo, Pb, Zn, Au and Ag.展开更多
TiO2 nanowire arrays were successfully fabricated by liquid-phase deposition method using porous alumina templates. The obtained TiO2 nanowires were characterized using Raman spectroscopy, X-ray diffraction (XRD), s...TiO2 nanowire arrays were successfully fabricated by liquid-phase deposition method using porous alumina templates. The obtained TiO2 nanowires were characterized using Raman spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), field emission scanning electron microscopy (FE- SEM), transmission electron microscopy (TEM), and selected area electron diffraction (SAED) analysis. Results of electron microscopic observations indicated that the nanowires were smooth and uniform with a diameter of about 50-80 nm and several micrometers in length. SAED, Raman, and XRD mea- surements showed that TiO2 nanowires were single-crystalline with a pure rutile structure after heating at 800 ~C for 10 h. In this situation, the nanowire constituents grew preferentially along the 〈001〉 direction. Furthermore, the formation process and mechanistic study of the Ti02 nanowire arrays were proposed and discussed in detail. The nanowires are clearly produced by the deposition of TiO2 particles on the inner wall of the template nanochannels.展开更多
The mineralization is related closely to sedimentation, diagenesis and hydrothermal processes. In this paper, investigations are carried out on coal occurrence, maceral composition, inorganic minerals, trace elements ...The mineralization is related closely to sedimentation, diagenesis and hydrothermal processes. In this paper, investigations are carried out on coal occurrence, maceral composition, inorganic minerals, trace elements and huminite reflectance. It is concluded that the source of Lincang superlarge deposit is mainly the muscovite granite in the west edge of the basin. During sedimentation, Ge (germanium) was leached out and entered the basin. Ge was adsorbed by lower organism and humic substances in water. Lincang lignite underwent three thermal processes: peatification, early diagenesis and hydrothermal transformation. During peatification, Ge was adsorbed or complexed by humic colloids. During early diagenesis, the Ge associated with humic acids was hard to mobilize or transport. Most of Ge entered the structure of huminite while a small amount of Ge was associated with residual humic acids as complex or humate. During hydrothermal transformation, the heated natural water or deep fluid from basement encountered the coal layer within tectonic weak zone. SO 2- 4 was reduced by coal organic matter. Pyrite and calcite formed. Hydrothermal process did not contribute significantly to mineralization.展开更多
Subglacially-formed debris-rich chemical deposits were found both on bedrock surface and in bedrock crevice on the edge of Qiangyong Glacier, one of the continental glaciers in Tibet. Grain size distribution, internal...Subglacially-formed debris-rich chemical deposits were found both on bedrock surface and in bedrock crevice on the edge of Qiangyong Glacier, one of the continental glaciers in Tibet. Grain size distribution, internal structures and chemical components of the chemical deposits were analyzed. It can be inferred that the temperature of some part of the ice-bedrock interface is close to the melting point and there exists pressure melting water under Qiangyong Glacier. Debris, especially those from continental aerosols, can release Ca++ in the water. At the lee-side of obstacles on glacier bed the CO2 in the melting water might escape from the water and the melting water might refreeze due to the dramatically reduced pressure, making the enrichment and precipitation of CaCO3. The existence of subglacial melting water and the process of regelation under Qiangyong Glacier indicate that sliding could contribute some proportion to the entire movement of Qiangyong Glacier and it belongs to multiplex cold-temperate glaciers.展开更多
Analysis on the deposition behavior of spray on deposition surface was made and an optimization method for the movement parameters (u, ω) of substrate was obtained. Simultaneously, a mathematical model of growth of...Analysis on the deposition behavior of spray on deposition surface was made and an optimization method for the movement parameters (u, ω) of substrate was obtained. Simultaneously, a mathematical model of growth of tubular preform, specifically aimed at the kind of atomizer that is fixed and with a tilt angle was established. By in- tegrating the optimization method and the mathematical model, the growth process and shape of preform were simu- lated. The results show that the tilt angle of atomizer plays an important role on the dimensions and shapes of tubular preforms and it can provide a guidance for the development of spray forming equipment.展开更多
Ge2Sb2Te5 gap filling is one of the key processes for phase-change random access memory manufacture. Physical vapor deposition is the mainstream method of Ge2Sb2Te5 film deposition due to its advantages of film qualit...Ge2Sb2Te5 gap filling is one of the key processes for phase-change random access memory manufacture. Physical vapor deposition is the mainstream method of Ge2Sb2Te5 film deposition due to its advantages of film quality, purity, and accurate composition control. However,the conventional physical vapor deposition process cannot meet the gap- filling requirement with the critical device dimension scaling down to 90 nm or below. In this study, we find that the deposit-etch-deposit process shows better gap-filling capability and scalability than the single-step deposition process, especially at the nano-scale critical dimension. The gap-filling mechanism of the deposit-etch-deposit process was briefly discussed. We also find that re-deposition of phase-change material from via the sidewall to via the bottom by argon ion bombardment during the etch step was a key ingredient for the final good gap filling. We achieve void-free gap filling of phase-change material on the 45-nm via the two-cycle deposit-etch-deposit process. We gain a rather comprehensive insight into the mechanism of deposit-etch-deposit process and propose a potential gap-filling solution for over 45-nm technology nodes for phase-change random access memory.展开更多
The skarn and ore bodies of the stratabound skarn copper deposits of Tongling, Anhui Province, are both controlled by definite stratigraphic horizons, and they are concordant with the strata. They occur as layers and ...The skarn and ore bodies of the stratabound skarn copper deposits of Tongling, Anhui Province, are both controlled by definite stratigraphic horizons, and they are concordant with the strata. They occur as layers and layer-like bodies in permeable carbonate rocks of the Middle-Upper Carboniferous Huanglong and Chuanshan Formations which are underlain by impermeable shale or siliceous rocks of the Upper Devonian Wutong Formation. The authors study the dynamics of ore-forming processes of the ore deposits with the dynamic model of coupled transport and reaction, and the following results are obtained: The salinity gradient and flow rate of the ore-forming fluids can both promote the mixing and reaction of juvenile water and formation water, and the permeable strata are favourable sites for the intense transport-reaction of mixing and the formation of deposits. (2) As isothermal transport-reaction took place along the bedding of strata, the moving transport-reaction front formed at the contact between the ore-forming fluids and the rocks advanced slowly along the permeable strata, and then stratiform skarn and ore bodies concordant with the strata were formed. (3) The gradient transport-reaction taking place across the isotherms in the cross-bedding direction caused the mineralogical composition to alter gradually from magnesian skarn to sulphide ore bodies.展开更多
The macro mechanical properties of materials with characteristics of large scale and complicated structural composition can be analyzed through its reconstructed meso-structures.In this work,the meso-structures of tal...The macro mechanical properties of materials with characteristics of large scale and complicated structural composition can be analyzed through its reconstructed meso-structures.In this work,the meso-structures of talus deposits that widely exist in the hydro-power engineering in the southwest of China were first reconstructed by small particles according to the in-situ photographs based on the self-adaptive PCNN digital image processing,and then numerical direct shear tests were carried out for studying the mechanical properties of talus deposits.Results indicate that the reconstructed meso-structures of talus deposits are more consistent with the actual situation because the self-adaptive PCNN digital image processing has a higher discrimination in the details of soil-rock segmentation.The existence and random distribution of rock blocks make the initial shear stiffness,the peak strength and the residual strength higher than those of the "pure soil" with particle size less than 1.25 cm apparently,but reduce the displacements required for the talus deposits reaching its peak shear strength.The increase of rock proportion causes a significant improvement in the internal friction angle of talus deposit,which to a certain degree leads to the characteristics of shear stress-displacement curves having a changing trend from the plastic strain softening deformation to the nonlinear strain hardening deformation,while an unconspicuous increase in cohesion.The uncertainty and heterogeneity of rock distributions cause the differences of rock proportion within shear zone,leading to a relatively strong fluctuation in peak strengths during the shear process,while movement features of rock blocks,such as translation,rotation and crossing,expand the scope of shear zone,increase the required shear force,and also directly lead to the misjudgment that the lower shear strength is obtained from the samples with high rock proportion.That,however,just explains the reason why the shear strength gained from a small amount of indoor test data is not consistent with engineering practice.展开更多
基金supported by the National Natural Science Foundation of China (NSFC) Program (No. 41472084)the Major National Petroleum Program in the ‘Thirteenth Five-Year’ Plan (No. 2016ZX05006-006-002)+2 种基金the Comprehensive Geological Survey Project of Ningde Coastal Zone (No. DD20189505)the Open Fund of Evaluation and Detection Technology Laboratory of Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology (No. KC201701)the Natural Science Foundation of Shandong Province (No. ZR2016DB29)
文摘Studies on basin fills have provided significant insights into reservoir distribution and prediction in petroliferous basins, however, the effect of basin fills on source rock properties has been underexplored. This paper documents basin filling characteristics and their implications for depositional processes and heterogeneity of source rock in the Qingnan subsag of the Jiuquan Basin, by using subsurface geological data from recent hydrocarbon exploration efforts in this area. Drill core data reveals that the basin fill of the Qingnan subsag was dominated by fan delta-lacustrine systems, in which deposition of the fan deltas along the basin margin was mainly through gravity flows. The temporal and spatial evolution of the depositional systems indicates that the basin fill was characterized by a continuously retrogradational process, with decreasing extent of fan deltas in vertical succession. Weakening of tectonic activities and climate change from humid to semi-arid are interpreted to be the main control factors that were responsible for the retrogradational basin fill. The different depositional environments in the early stage and late stage of the retrogradational basin filling history resulted in the different depositional processes and properties of source rocks. This study suggests that source rock heterogeneity associated with basin fills in lacustrine basins should be considered in hydrocarbon exploration.
基金jointly supported by the National Natural Science Foundation of China(Nos.42250202,92162323,42272075)the Fundamental Research Funds for the Central Universities,Sun Yat-sen University(No.24lgqb001)+1 种基金the Natural Science Foundation Project of Guangdong Province(No.2022A1515010003)the Guangdong Province Introduced Innovative R&D Team of Big Data—Mathematical Earth Sciences and Extreme Geological Events Team(No.2021ZT09H399)。
文摘Coupled dissolution-precipitation is one of the critical processes influencing the mineralogical and geochemical evolution of pegmatites.This mechanism involves the simultaneous dissolution of primary mineral phases and the precipitation of secondary phases,driven by changes in the chemical environment,often mediated by hydrothermal fluids.The Bailongshan Li deposit,located in the West Kunlun region of northwest China,is a significant geological formation known for its rich lithium content and associated rare metals such as tantalum,niobium,and tin.This study investigates the coupled dissolution-precipitation processes that have played a crucial role in the mineralization of this deposit,focusing on key minerals,including cassiterite(Cst),columbite-group minerals(CGM),and elbaite(Elb).Using a combination of petrographic analysis,back-scattered electron(BSE)imaging,cathodoluminescence(CL)imaging,and micro X-ray fluorescence(XRF)mapping,we examined the textural and chemical characteristics of these minerals.Our findings reveal intricate patchy zoning patterns and element distributions(indicated by the Nb,Ta,W,Mn,Fe,Hf,Ti for CGM;Hf,Ti Rb,W,Nb,Ta for Cst;Ti,Zn,Fe,W,Hf,Mn,K for Elb)that indicate multiple stages of mineral alteration driven by fluid-mediated processes.The coupled dissolution-precipitation mechanisms observed in the Bailongshan deposit have resulted in significant redistribution and enrichment of economically valuable elements.The study highlights the importance of hydrothermal fluids in altering primary mineral phases and precipitating secondary phases with distinct compositions.These processes not only modified the mineralogical makeup of the pegmatite but also enhanced its economic potential by concentrating rare metals.Signatures of coupled dissolutionprecipitation processes can serve as an essential tool for mineral exploration,guiding the search for high-grade zones within similar pegmatitic formations.
基金supported by the National Natural Science Foundation of China(No.U23A20538)the Fundamental Research Funds for the Universities of Liaoning Province,Shenyang U40 Outstanding Youth Foundation(No.RC230864)+1 种基金the Foundation of CAS Henan Industrial Technology Innovation&Incubation Center(No.2024110)the Natural Science Foundation of Liaoning Province(No.2023-BS-016)。
文摘Interlayer friction stir processing(FSP)has been proved to be an efective method of enhancing the mechanical properties of wire arc-directed energy deposited(WA-DED)samples.However,the original deposition structure was still retained in the FSP-WA-DED component besides the processed zone(PZ),thus forming a composite structure.Considering the material utilization and practical service process of the deposited component,more attention should be paid on this special composite structure,but the relevant investigation has not been carried out.In this study,an Al–Mg–Sc alloy was prepared by WA-DED with interlayer FSP treatment,and the composite structure was frstly investigated.Almost all of the pores were eliminated under the pressure efect from the tool shoulder.The grains were further refned with an average size of about 1.2μm in the PZ.Though no severe plastic deformation was involved in the retained WA-DED deposition zone,comparable tensile properties with the PZ sample were obtained in the composite structure.Low ultimate tensile strength(UTS)of 289 MPa and elongation of 3.2%were achieved in the WA-DED sample.After interlayer FSP treatment,the UTS and elongation of the PZ samples were signifcantly increased to 443 MPa and 16.3%,while those in the composite structure remained at relatively high levels of 410 MPa and 13.5%,respectively.Meanwhile,a high fatigue strength of 180 and 130 MPa was obtained in the PZ and composite structure samples,which was clearly higher than that of the WA-DED sample(100 MPa).It is concluded that the defects in traditional WA-DED process can be eliminated in the composite structure after interlayer FSP treatment,resulting in enhanced tensile and fatigue properties,which provides an efective method of improving the mechanical properties of the WA-DED sample.
基金supported by the National Science Foundation of China(Grant Nos.41972099,4217020246)the National Science and Technology Major of China(Grant Nos.2017ZX05009-002,2017ZX05072-002)。
文摘Coarse-grained subaqueous fans are vital oil and gas exploration targets in the Bohai Bay basin,China.The insufficient understanding of their sedimentary processes,depositional patterns,and controlling factors restricts efficient exploration and development.Coarse-grained subaqueous fans in the Yong′an area,Dongying Depression,are investigated in this study.These fans include nearshore subaqueous fans,and sublacustrine fans,and their sedimentary processes,depositional patterns and distribution characteristics are mainly controlled by tectonic activity and paleogeomorphology.Nearshore subaqueous fans developed near the boundary fault during the early–middle deposition stage due to strong tectonic activity and large topographic subsidence.Early sublacustrine fans developed at the front of the nearshore subaqueous fans in the area where the topography changed from gentle to steep along the source direction.While the topography was gentle,sublacustrine fans did not develop.During the late weak tectonic activity stage,late sublacustrine fans developed with multiple stages superimposed.Frequent fault activity and related earthquakes steepened the basin margin,and the boundary fault slopes were 25.9°–34°.During the early–middle deposition stage,hyperpycnal flows triggered by outburst floods developed.During the late deposition stage,with weak tectonic activity,seasonal floods triggered hyperpycnal flows,and hybrid event beds developed distally.
基金the Scientific research and technology development project of Petro China(2021DJ5303)。
文摘Sedimentary process research is of great significance for understanding the distribution and characteristics of sediments.Through the detailed observation and measurement of the Sangyuan outcrop in Luanping Basin,this paper studies the depositional process of the hyperpycnal flow deposits,and divides their depositional process into three phases,namely,acceleration,erosion and deceleration.In the acceleration phase,hyperpycnal flow begins to enter the basin nearby,and then speeds up gradually.Deposits developed in the acceleration phase are reverse.In addition,the original deposits become unstable and are taken away by hyperpycnal flows under the eroding force.As a result,there are a lot of mixture of red mud pebbles outside the basin and gray mud pebbles within the basin.In the erosion phase,the reverse deposits are eroded and become thinner or even disappear.Therefore,no reverse grading characteristic is found in the proximal major channel that is closer to the source,but it is still preserved in the middle branch channel that is far from the source.After entering the deceleration phase,normally grading deposits appear and cover previous deposits.The final deposits in the basin are special.Some are reverse,and others are normal.They are superimposed with each other under the action of hyperpycnal flow.The analysis of the Sangyuan outcrop demonstrates the sedimentary process and distribution of hyperpycnites,and reasonably explain the sedimentary characteristics of hyperpycnites.It is helpful to the prediction of oil and gas exploration targets in gravity flow deposits.
基金Supported by the Science and Technology Support Key Project of Jiangsu Province (DE2008365)~~
文摘Based on analyzing the influences of a slicing scheme on stair-stepping effect, supporting structure, efficiency and deformation, etc. , analytical hierarchical process (AHP) combining with fuzzy synthetic evaluation is introduced to make decision in slicing schemes for a processing part. The application in determining the slicing scheme for a computer mouse during prototyping shows that the method increases the rationality during decision- making and improves quality and efficiency for the prototyping part.
基金supported by the National Natural Science Foundation of China (Grants No. 40473027 and 40773031)the Foundation of Doctoral Supported by the Ministry of Education (20105122110010 and 20115122110005)+1 种基金the Foundation of Open Subjects of State Key Laboratory for Mineral Deposits Research,Nanjing University (14-08-3)the Project of the State Key(Preparation Support) Disciplines of Mineralogy,Petrology and Mineral Deposit Geology of Sichuan Province (SZD0407)
文摘Based on petrological studies of the wall rocks, mineralizing rocks, ores and veins from the Laowangzhai gold deposit, it is discovered that along with the development of silication, carbonation and sulfidation, a kind of black opaque ultra-microlite material runs through the spaces between grains, fissures and cleavages. Under observations of the electron microprobe, scanning electronic microscopy and energy spectrum, this kind of ultra-microlite material is confirmed to consist of ultra microcrystalline quartz, silicate, sulfides and carbonates, as well as rutile, scheelite and specularite (magnetite), showing characters of liquation by the analyses of SEM and energy spectrum. The coexistence of immiscibility and precipitating co-crystallization strongly suggests that the mineralizing fluid changed from the melt to the hydrothermal fluid. Combined with the element geochemical researches, it is realized that the ultra-microlite aggregate is the direct relics of the mantle fluid behaving like a melt and supercritical fluid, which goes along with the mantle-derived magma and will escape from the magma body at a proper time. During the alteration process, the nature of the mantle fluid changed and it is mixed with the crustal fluid, which are favorable for mineralization in the Loawangzhai gold deposit.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41861134008 and 41601476)the National Key Research and Development Program of China (Grant No. 2018YFC1505202)the 135 Strategic Program of the IMHE, CAS (Grant No. SDS-1351705)
文摘Loose deposits, rainfall and topography are three key factors that triggering debris flows.However, few studies have investigated the effects of loose deposits on the whole debris flow process.On June 28, 2012, a catastrophic debris flow occurred in the Aizi Valley, resulting in 40 deaths.The Aizi Valley is located in the Lower Jinsha River,southwestern Sichuan Province, China. The Aizi Valley debris flow has been selected as a case for addressing loose deposits effects on the whole debris flow process through remote sensing, field investigation and field experiments. Remote sensing interpretation and laboratory experiments were used to obtain the distribution and characteristics of the loose deposits, respectively. A field experiment was conducted to explore the mechanics of slope debris flows, and another field investigation was conducted to obtain the processes of debris flow formation, movement and amplification. The results showed that loose deposits preparation, slope debris flow initiation,gully debris flow confluence and valley debris flow amplification were dominated by the loose deposits.Antecedent droughts and earthquake activities may have increased the potential for loose soil sources in the Aizi Valley, which laid the foundation for debris flow formation. Slope debris flow initiated under rainfall, and the increase in the water content as well as the pore water pressure of the loose deposits were the key factors affecting slope failure. The nine gully debris flows converged in the valley, and the peak discharge was amplified 3.3 times due to a blockage and outburst caused by a large boulder. The results may help in predicting and assessing regional debris flows in dry-hot and seismic-prone areas based on loose deposits, especially considering large boulders.
基金financially supported by the State Basic Research Plan(973 project)(No.2011CB403100)IGCP/SIDA-600 project
文摘The Zhaxikang Pb-Zn-Sb polymetallic deposit is one of the most important deposits in the newly recognized southern Tibet antimony-gold metallogenic belt.Compared to the porphyry deposits in the Gangdese belt,much less researches have addressed these deposits,and the genesis of the Zhaxikang deposit is still controversial.Based on field investigation,petrographic,microthermometric,Laser Raman Microprobe(LRM) and SEM/EDS analyses of fluid,melt-fluid,melt and solid inclusions in quartz and beryl from pegmatite,this paper documents the characteristics and the evolution of primary magmatic fluid which was genetically related to greisenization,pegmatitization,and silification in the area.The results show that the primary magmatic fluids were derived from unmixing between melt and fluid and underwent a phase separation process soon after the exsolution.The primary magmatic fluids are of low salinity,high temperature,and can be approximated by the H_2O-NaCl-CO_2 system.The presence of Mn-Fe carbonate in melt-fluid inclusions and a Zn-bearing mineral(gahnite) trapped in beryl and in inclusions from pegmatite indicates high Mn,Fe,and Zn concentrations in the parent magma and magmatic fluids,and implies a genetic link between pegmatite and Pb-Zn-Sb mineralization.High B and F concentrations in the parent magma largely lower the solidus of the magma and lead to late fluid exsolution,thus the primary magmatic fluids related to pegmatite have much lower temperature than those in most porphyry systems.Boiling of the primary magmatic fluids leads to high-salinity and high-temperature fluids which have high capacity to transport Pb,Zn and Sb.The decrease in temperature and mixing with fluids from other sources may have caused the precipitation of Pb-Zn-Sn(Au) minerals in the distal fault systems surrounding the causative intrusion.
基金This work was supported by the National Natural Science Foundation of China (No. 50331010)
文摘Laser direct deposition (LDD) of metallic components is an advanced technology of combining CAD/CAM (computer aided design/computer aided manufacturing), high power laser, and rapid prototyping. This technology uses laser beam to melt the powders fed coaxiaUy into the molten pool by the laser beam to fabricate fuUy dense metallic components. The present article mainly studies the LDD of Ti-6Al-4V alloy, which can be used to fabricate aircraft components. The mechanical properties of the Ti-6Al-4V alloy, fabricated by LDD, are obtained using the tension test, and the oxygen content of used powders and deposited specimens are measured. In the present article, it can be seen that the mechanical properties obtained using this method are higher than the ones obtained by casting, and equal to those got by wrought anneal. One aircraft part has been made using the LDD process. Because of this aircraft part, with sophisticated shape, the effect of the laser scanning track on the internal soundness of the deposited part was discussed.
文摘In the present study,the effects of process parameters(output voltage x,nitrogen flux l and specific strengthening time s)on the microstructure and wear resistance properties of TiN coatings prepared by electrospark deposition(ESD)were investigatedsystematically.The microstructure of the coatings was characterized for thickness(TOC),content of TiN(CON)and porosity(POC).A statistical model was developed to identify the significant factors affecting the microstructure and wear resistance of the coatings.The results show that the output voltage x and nitrogen flux l present significant effects on majority of the evaluation indexes such asTOC,friction coefficient(COF)and wear mass loss(Id),while the specific strengthening time s has a significant effect on POC and asmall effect on the other indexes.The optimal process parameters were obtained as follows:output voltage(x,60V),nitrogen flux(l,15L/min)and specific strengthening time(s,3min/cm2).The variation of wear mass loss(Id)by the variation of the outputvoltage(x)and nitrogen flux(l)is attributed to the change of wear mechanisms of TiN coatings.The main wear mechanism of TiNcoating prepared under optimal process parameters is micro-cutting wear accompanied by micro-fracture wear.
基金funded by the third subject of National Natural Science Foundation of China(41302060)Geological Survey Project(12120114001304,121201004000150012)
文摘The Jiama deposit is a large copper deposit in Tibet. Mineralization occurs in three different host rocks: skarn, hornfels and porphyry. A detailed fluid inclusion study was conducted for veins in the different host rocks to investigate the relationship between fluid evolution and ore-forming processes. Based on examination of cores from 36 drill holes, three types of veins (A, B and D) were identified in the porphyries, four types (I, II, III and IV) in the skarn, and three (a, b and c) in the hornfels. The crosscutting relationships of the veins and that of the host rocks suggest two hydrothermal stages, one early and one late stage. Fluid inclusions indicate that the Jiama hydrothermal fluid system underwent at least two episodes of fluid boiling. The first boiling event occurred during the early hydrothermal stage, as recorded by fluid inclusions hosted in type A veins in the porphyries, type a veins in the hornfels, and wollastonite in the skarns. This fluid boiling event was associated with relatively weak mineralization. The second boiling event occurred in the late hydrothermal stage, as determined from fluid inclusions hosted in type B and D veins in the porphyries, type I to IV veins in the skarns, and type b and c veins in the hornfels. This late boiling event, together with mixing with meteoric water, was responsible for more than 90% of the metal accumulation in the deposit. The first boiling only occurred in the central part of the deposit and the second boiling event took place across an entire interlayered structural zone between hornfels and marble. A spatial zoning of ore-elements is evident, and appears to be related to different migration pathways and precipitation temperatures of Cu, Mo, Pb, Zn, Au and Ag.
基金supported by the Institute of Science and High Technology and Environmental Sciences(No.1/1859)
文摘TiO2 nanowire arrays were successfully fabricated by liquid-phase deposition method using porous alumina templates. The obtained TiO2 nanowires were characterized using Raman spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), field emission scanning electron microscopy (FE- SEM), transmission electron microscopy (TEM), and selected area electron diffraction (SAED) analysis. Results of electron microscopic observations indicated that the nanowires were smooth and uniform with a diameter of about 50-80 nm and several micrometers in length. SAED, Raman, and XRD mea- surements showed that TiO2 nanowires were single-crystalline with a pure rutile structure after heating at 800 ~C for 10 h. In this situation, the nanowire constituents grew preferentially along the 〈001〉 direction. Furthermore, the formation process and mechanistic study of the Ti02 nanowire arrays were proposed and discussed in detail. The nanowires are clearly produced by the deposition of TiO2 particles on the inner wall of the template nanochannels.
文摘The mineralization is related closely to sedimentation, diagenesis and hydrothermal processes. In this paper, investigations are carried out on coal occurrence, maceral composition, inorganic minerals, trace elements and huminite reflectance. It is concluded that the source of Lincang superlarge deposit is mainly the muscovite granite in the west edge of the basin. During sedimentation, Ge (germanium) was leached out and entered the basin. Ge was adsorbed by lower organism and humic substances in water. Lincang lignite underwent three thermal processes: peatification, early diagenesis and hydrothermal transformation. During peatification, Ge was adsorbed or complexed by humic colloids. During early diagenesis, the Ge associated with humic acids was hard to mobilize or transport. Most of Ge entered the structure of huminite while a small amount of Ge was associated with residual humic acids as complex or humate. During hydrothermal transformation, the heated natural water or deep fluid from basement encountered the coal layer within tectonic weak zone. SO 2- 4 was reduced by coal organic matter. Pyrite and calcite formed. Hydrothermal process did not contribute significantly to mineralization.
基金National Natural Science Foundation of China,No.40271014No.90102016
文摘Subglacially-formed debris-rich chemical deposits were found both on bedrock surface and in bedrock crevice on the edge of Qiangyong Glacier, one of the continental glaciers in Tibet. Grain size distribution, internal structures and chemical components of the chemical deposits were analyzed. It can be inferred that the temperature of some part of the ice-bedrock interface is close to the melting point and there exists pressure melting water under Qiangyong Glacier. Debris, especially those from continental aerosols, can release Ca++ in the water. At the lee-side of obstacles on glacier bed the CO2 in the melting water might escape from the water and the melting water might refreeze due to the dramatically reduced pressure, making the enrichment and precipitation of CaCO3. The existence of subglacial melting water and the process of regelation under Qiangyong Glacier indicate that sliding could contribute some proportion to the entire movement of Qiangyong Glacier and it belongs to multiplex cold-temperate glaciers.
基金Sponsored by National Natural Science Foundation of China (50474082)
文摘Analysis on the deposition behavior of spray on deposition surface was made and an optimization method for the movement parameters (u, ω) of substrate was obtained. Simultaneously, a mathematical model of growth of tubular preform, specifically aimed at the kind of atomizer that is fixed and with a tilt angle was established. By in- tegrating the optimization method and the mathematical model, the growth process and shape of preform were simu- lated. The results show that the tilt angle of atomizer plays an important role on the dimensions and shapes of tubular preforms and it can provide a guidance for the development of spray forming equipment.
基金Project supported by the National Basic Research Program of China (Grant Nos.2010CB934300,2011CBA00607,and 2011CB932800)the National Integrate Circuit Research Program of China (Grant No. 2009ZX02023-003)+1 种基金the National Natural Science Foundation of China (Grant Nos. 60906004,60906003,61006087,and 61076121)the Science and Technology Council of Shanghai,China (Grant No. 1052nm07000)
文摘Ge2Sb2Te5 gap filling is one of the key processes for phase-change random access memory manufacture. Physical vapor deposition is the mainstream method of Ge2Sb2Te5 film deposition due to its advantages of film quality, purity, and accurate composition control. However,the conventional physical vapor deposition process cannot meet the gap- filling requirement with the critical device dimension scaling down to 90 nm or below. In this study, we find that the deposit-etch-deposit process shows better gap-filling capability and scalability than the single-step deposition process, especially at the nano-scale critical dimension. The gap-filling mechanism of the deposit-etch-deposit process was briefly discussed. We also find that re-deposition of phase-change material from via the sidewall to via the bottom by argon ion bombardment during the etch step was a key ingredient for the final good gap filling. We achieve void-free gap filling of phase-change material on the 45-nm via the two-cycle deposit-etch-deposit process. We gain a rather comprehensive insight into the mechanism of deposit-etch-deposit process and propose a potential gap-filling solution for over 45-nm technology nodes for phase-change random access memory.
基金MGMR Eighth Five- Year Plan Basic Geology Research Foundation Grant 8502216China National Natural Science Foundation Grant 49173169
文摘The skarn and ore bodies of the stratabound skarn copper deposits of Tongling, Anhui Province, are both controlled by definite stratigraphic horizons, and they are concordant with the strata. They occur as layers and layer-like bodies in permeable carbonate rocks of the Middle-Upper Carboniferous Huanglong and Chuanshan Formations which are underlain by impermeable shale or siliceous rocks of the Upper Devonian Wutong Formation. The authors study the dynamics of ore-forming processes of the ore deposits with the dynamic model of coupled transport and reaction, and the following results are obtained: The salinity gradient and flow rate of the ore-forming fluids can both promote the mixing and reaction of juvenile water and formation water, and the permeable strata are favourable sites for the intense transport-reaction of mixing and the formation of deposits. (2) As isothermal transport-reaction took place along the bedding of strata, the moving transport-reaction front formed at the contact between the ore-forming fluids and the rocks advanced slowly along the permeable strata, and then stratiform skarn and ore bodies concordant with the strata were formed. (3) The gradient transport-reaction taking place across the isotherms in the cross-bedding direction caused the mineralogical composition to alter gradually from magnesian skarn to sulphide ore bodies.
基金Project(2013BAB06B00) supported by the National Key Technology R&D Programof ChinaProject(2011CB013504) supported by the National Basic Research Program of ChinaProject(50911130366) supported by the National Natural Science Foundation of China
文摘The macro mechanical properties of materials with characteristics of large scale and complicated structural composition can be analyzed through its reconstructed meso-structures.In this work,the meso-structures of talus deposits that widely exist in the hydro-power engineering in the southwest of China were first reconstructed by small particles according to the in-situ photographs based on the self-adaptive PCNN digital image processing,and then numerical direct shear tests were carried out for studying the mechanical properties of talus deposits.Results indicate that the reconstructed meso-structures of talus deposits are more consistent with the actual situation because the self-adaptive PCNN digital image processing has a higher discrimination in the details of soil-rock segmentation.The existence and random distribution of rock blocks make the initial shear stiffness,the peak strength and the residual strength higher than those of the "pure soil" with particle size less than 1.25 cm apparently,but reduce the displacements required for the talus deposits reaching its peak shear strength.The increase of rock proportion causes a significant improvement in the internal friction angle of talus deposit,which to a certain degree leads to the characteristics of shear stress-displacement curves having a changing trend from the plastic strain softening deformation to the nonlinear strain hardening deformation,while an unconspicuous increase in cohesion.The uncertainty and heterogeneity of rock distributions cause the differences of rock proportion within shear zone,leading to a relatively strong fluctuation in peak strengths during the shear process,while movement features of rock blocks,such as translation,rotation and crossing,expand the scope of shear zone,increase the required shear force,and also directly lead to the misjudgment that the lower shear strength is obtained from the samples with high rock proportion.That,however,just explains the reason why the shear strength gained from a small amount of indoor test data is not consistent with engineering practice.