Two-dimensional(2D)transition metal borides(MBenes)have emerged as a rising star and hold great potential promise for catalysis and metal ion batteries owing to a well-defined layered structure and ex-cellent electric...Two-dimensional(2D)transition metal borides(MBenes)have emerged as a rising star and hold great potential promise for catalysis and metal ion batteries owing to a well-defined layered structure and ex-cellent electrical conductivity.Unlike well-studied graphene,perovskite and MXene materials in various fields,the research about MBene is still in its infancy.The inadequate exploration of efficient etching methods impedes their further study.Herein,we put forward an efficient microwave-assisted hydrother-mal alkaline solution etching strategy for exfoliating MoAlB MAB phase into 2D MoB MBenes with a well accordion-like structure,which displays a remarkable electrochemical performance in sodium ion batter-ies(SIBs)with a reversible specific capacity of 196.5 mAh g^(-1)at the current density of 50 mA g^(-1),and 138.6 mAh g^(-1)after 500 cycles at the current density of 0.5 A g^(-1).The underlying mechanism toward excellent electrochemical performance are revealed by comprehensive theoretical simulations.This work proves that MBene is a competitive candidate as the next generation anode of sodium ion batteries.展开更多
Recognition of heterospecific mobbing calls can occur through both innate and learned mechanisms,with the former often explained by two main hypotheses:the acoustic similarity hypothesis,which emphasizes shared acoust...Recognition of heterospecific mobbing calls can occur through both innate and learned mechanisms,with the former often explained by two main hypotheses:the acoustic similarity hypothesis,which emphasizes shared acoustic features,and the phylogenetic conservatism hypothesis,which posits that closely related species may share innate decoding templates.However,it remains unclear whether phylogenetic relatedness alone can drive the recognition of unfamiliar mobbing calls,a question with important implications for understanding the evolution of interspecific communication and anti-predator strategies.We examined the recognition of unfamiliar mobbing calls in Masked Laughingthrushes(Pterorhinus perspicillatus) using playback experiments with three allopatric species' mobbing calls of Leiothrichidae family.Results revealed two key findings:(1) Masked Laughingthrushes exhibited mobbing responses to unfamiliar mobbing calls,though at significantly lower intensity compared to conspecific playbacks.(2) Phylogenetic relatedness significantly predicted mobbing intensity,independent of overall acoustic similarity.These findings improve our understanding of how birds like Masked Laughingthrush instinctively recognize mobbing calls from other species.We show phylogenetic relatedness rather than overall acoustic similarity may be a key to this innate ability.Species that share a common ancestor may possess similar built-in neural systems for decoding alarm signals.We suggest that future research needs to combine neurobiological techniques to determine how inherited biases and feature decoding system together guide variable bird communities to perceive heterospecific mobbing calls.展开更多
Transition metal borides(TMBs)are a new class of promising electrocatalysts for hydrogen generation by water splitting.However,the synthesis of robust all-in-one electrodes is challenging for practical applications.He...Transition metal borides(TMBs)are a new class of promising electrocatalysts for hydrogen generation by water splitting.However,the synthesis of robust all-in-one electrodes is challenging for practical applications.Herein,a facile solid-state boronization strategy is reported to synthesize a series of self-supported TMBs thin films(TMB-TFs)with large area and high catalytic activity.Among them,MoB thin film(MoB-TF)exhibits the highest activity toward electrocatalytic hydrogen evolution reaction(HER),displaying a low overpotential(η10=191 and 219 mV at 10 mA cm^(−2))and a small Tafel slope(60.25 and 61.91 mV dec^(−1))in 0.5M H_(2)SO_(4)and 1.0M KOH,respectively.Moreover,it outperforms the commercial Pt/C at the high current density region,demonstrating potential applications in industrially electrochemical water splitting.Theoretical study reveals that both surfaces terminated by TM and B atoms can serve as the active sites and the H*binding strength of TMBs is correlated with the p band center of B atoms.This work provides a new pathway for the potential application of TMBs in largescale hydrogen production.展开更多
Owing to the orbital hybridization between the transition metal and the B element and the electron-trapping effect of the B ele-ment,transition metal borides are considered very promising materials for energy catalysi...Owing to the orbital hybridization between the transition metal and the B element and the electron-trapping effect of the B ele-ment,transition metal borides are considered very promising materials for energy catalysis.In this work,an amorphous scaly high-entropy boride(HEB)with electron traps was designed and fabricated via a facile reduction method to improve the hydrogen storage properties of magnesium hydride(MgH_(2)).For dehydrogenation,the onset temperature of MgH_(2)+10wt%HEB was dropped to 187.4℃;be-sides,the composite exhibited superior isothermal kinetics and the activation energy of the composite was reduced from(212.78±3.93)to(65.04±2.81)kJ/mol.In addition,MgH_(2)+10wt%HEB could absorb hydrogen at 21.5℃,and 5.02wt%H_(2) was charged in 50 min at 75℃.For reversible hydrogen storage capacity tests,the composite maintained a retention rate of 97%with 6.47wt%hydrogen capacity after 30 cycles.Combining microstructure evidence with hydrogen storage performance,the catalytic mechanism was proposed.During ball milling,scaly high-entropy borides riveted a large number of heterogeneous active sites on the surface of MgH_(2).Driven by the cocktail effect as well as the orbital hybridization of metal borides,numerous active sites steadily enhanced the hydrogen storage reactions in MgH_(2).展开更多
The first-principle calculations are performed to investigate the structural,mechanical and electronic properties of titanium borides (Ti2B,TiB and TiB2).Those calculated lattice parameters are in good agreement wit...The first-principle calculations are performed to investigate the structural,mechanical and electronic properties of titanium borides (Ti2B,TiB and TiB2).Those calculated lattice parameters are in good agreement with the experimental data and previous theoretical values.All these borides are found to be mechanically stable at ambient pressure.Compared with parent metal Ti (120 GPa),the larger bulk modulus of these borides increase successively with the increase of the boron content in three borides,which may be due to direction bonding introduced by the boron atoms in the lattice and the strong covalent Ti-B bonds.Additionally,TiB can be regarded as a candidate of incompressible and hard material besides TiB2.Furthermore,the elastic anisotropy and Debye temperatures are also discussed by investigating the elastic constants and moduli.Electronic density of states and atomic Mulliken charges analysis show that chemical bonding in these titanium borides is a complex mixture of covalent,ionic,and metallic characters.展开更多
基金supported by the National Key Re-search and Development Program of China(No.2020YFC1909604)SZIIT Startup Fund(No.SZIIT2022KJ072)+1 种基金Shenzhen Peacock Project Startup Fund(No.RC2023-002)Shenzhen Steady General Projects(No.KJ2024C010).
文摘Two-dimensional(2D)transition metal borides(MBenes)have emerged as a rising star and hold great potential promise for catalysis and metal ion batteries owing to a well-defined layered structure and ex-cellent electrical conductivity.Unlike well-studied graphene,perovskite and MXene materials in various fields,the research about MBene is still in its infancy.The inadequate exploration of efficient etching methods impedes their further study.Herein,we put forward an efficient microwave-assisted hydrother-mal alkaline solution etching strategy for exfoliating MoAlB MAB phase into 2D MoB MBenes with a well accordion-like structure,which displays a remarkable electrochemical performance in sodium ion batter-ies(SIBs)with a reversible specific capacity of 196.5 mAh g^(-1)at the current density of 50 mA g^(-1),and 138.6 mAh g^(-1)after 500 cycles at the current density of 0.5 A g^(-1).The underlying mechanism toward excellent electrochemical performance are revealed by comprehensive theoretical simulations.This work proves that MBene is a competitive candidate as the next generation anode of sodium ion batteries.
文摘Recognition of heterospecific mobbing calls can occur through both innate and learned mechanisms,with the former often explained by two main hypotheses:the acoustic similarity hypothesis,which emphasizes shared acoustic features,and the phylogenetic conservatism hypothesis,which posits that closely related species may share innate decoding templates.However,it remains unclear whether phylogenetic relatedness alone can drive the recognition of unfamiliar mobbing calls,a question with important implications for understanding the evolution of interspecific communication and anti-predator strategies.We examined the recognition of unfamiliar mobbing calls in Masked Laughingthrushes(Pterorhinus perspicillatus) using playback experiments with three allopatric species' mobbing calls of Leiothrichidae family.Results revealed two key findings:(1) Masked Laughingthrushes exhibited mobbing responses to unfamiliar mobbing calls,though at significantly lower intensity compared to conspecific playbacks.(2) Phylogenetic relatedness significantly predicted mobbing intensity,independent of overall acoustic similarity.These findings improve our understanding of how birds like Masked Laughingthrush instinctively recognize mobbing calls from other species.We show phylogenetic relatedness rather than overall acoustic similarity may be a key to this innate ability.Species that share a common ancestor may possess similar built-in neural systems for decoding alarm signals.We suggest that future research needs to combine neurobiological techniques to determine how inherited biases and feature decoding system together guide variable bird communities to perceive heterospecific mobbing calls.
基金National Natural Science Foundation of China,Grant/Award Number:52172058Outstanding Youth Fund of Natural Science Foundation of Inner Mongolia Autonomous Region,Grant/Award Number:2023JQ15+4 种基金Fundamental Research Funds for the Inner Mongolia Normal University,Grant/Award Numbers:2022JBBJ010,2022JBTD008Major Project Cultivation Fund for the Inner Mongolia Normal University,Grant/Award Number:2020ZD01Funds for Reform and Development of Local Universities Supported by The Central Government(Cultivation of First-Class Disciplines in Physics)Postdoctoral Fellowship Program of CPSF,Grant/Award Number:GZB20240101China Postdoctoral Science Foundation,Grant/Award Number:2024M750304.
文摘Transition metal borides(TMBs)are a new class of promising electrocatalysts for hydrogen generation by water splitting.However,the synthesis of robust all-in-one electrodes is challenging for practical applications.Herein,a facile solid-state boronization strategy is reported to synthesize a series of self-supported TMBs thin films(TMB-TFs)with large area and high catalytic activity.Among them,MoB thin film(MoB-TF)exhibits the highest activity toward electrocatalytic hydrogen evolution reaction(HER),displaying a low overpotential(η10=191 and 219 mV at 10 mA cm^(−2))and a small Tafel slope(60.25 and 61.91 mV dec^(−1))in 0.5M H_(2)SO_(4)and 1.0M KOH,respectively.Moreover,it outperforms the commercial Pt/C at the high current density region,demonstrating potential applications in industrially electrochemical water splitting.Theoretical study reveals that both surfaces terminated by TM and B atoms can serve as the active sites and the H*binding strength of TMBs is correlated with the p band center of B atoms.This work provides a new pathway for the potential application of TMBs in largescale hydrogen production.
基金supported by the National Natural Science Foundation of China(No.22179054)the Jiangsu Province Innovation Support Project,China(No.BZ2023010)+1 种基金the Project of Jiangsu University High-Tech Ship Collaborative Innovation Center(No.1174871801-11)the Ministry of Science and Technology of the People’s Republic of China(No.G2023014022L).
文摘Owing to the orbital hybridization between the transition metal and the B element and the electron-trapping effect of the B ele-ment,transition metal borides are considered very promising materials for energy catalysis.In this work,an amorphous scaly high-entropy boride(HEB)with electron traps was designed and fabricated via a facile reduction method to improve the hydrogen storage properties of magnesium hydride(MgH_(2)).For dehydrogenation,the onset temperature of MgH_(2)+10wt%HEB was dropped to 187.4℃;be-sides,the composite exhibited superior isothermal kinetics and the activation energy of the composite was reduced from(212.78±3.93)to(65.04±2.81)kJ/mol.In addition,MgH_(2)+10wt%HEB could absorb hydrogen at 21.5℃,and 5.02wt%H_(2) was charged in 50 min at 75℃.For reversible hydrogen storage capacity tests,the composite maintained a retention rate of 97%with 6.47wt%hydrogen capacity after 30 cycles.Combining microstructure evidence with hydrogen storage performance,the catalytic mechanism was proposed.During ball milling,scaly high-entropy borides riveted a large number of heterogeneous active sites on the surface of MgH_(2).Driven by the cocktail effect as well as the orbital hybridization of metal borides,numerous active sites steadily enhanced the hydrogen storage reactions in MgH_(2).
基金Project(2010JK404) supported by the Education Committee Natural Science Foundation of Shaanxi Province,ChinaProjects(ZK0918,ZK0915) supported by the Baoji University of Arts and Sciences Key Research,China
文摘The first-principle calculations are performed to investigate the structural,mechanical and electronic properties of titanium borides (Ti2B,TiB and TiB2).Those calculated lattice parameters are in good agreement with the experimental data and previous theoretical values.All these borides are found to be mechanically stable at ambient pressure.Compared with parent metal Ti (120 GPa),the larger bulk modulus of these borides increase successively with the increase of the boron content in three borides,which may be due to direction bonding introduced by the boron atoms in the lattice and the strong covalent Ti-B bonds.Additionally,TiB can be regarded as a candidate of incompressible and hard material besides TiB2.Furthermore,the elastic anisotropy and Debye temperatures are also discussed by investigating the elastic constants and moduli.Electronic density of states and atomic Mulliken charges analysis show that chemical bonding in these titanium borides is a complex mixture of covalent,ionic,and metallic characters.