期刊文献+
共找到95篇文章
< 1 2 5 >
每页显示 20 50 100
Ammonia Borane All‑In‑One Modification Strategy Enables High‑Performance Perovskite Solar Cells
1
作者 Jiaxin Ma Cong Shao +6 位作者 Yirong Wang Guosheng Niu Kaiyi Yang Yao Zhao Fuyi Wang Zongxiu Nie Jizheng Wang 《Nano-Micro Letters》 2026年第3期463-478,共16页
Perovskite solar cells have achieved remarkable progress in photovoltaic efficiency.However,interfacial defects at the buried and upper interfaces of perovskite layer remain a critical challenge,leading to charge reco... Perovskite solar cells have achieved remarkable progress in photovoltaic efficiency.However,interfacial defects at the buried and upper interfaces of perovskite layer remain a critical challenge,leading to charge recombination,ion migration,and iodine oxidation.To address this,we propose a novel all-in-one modification strategy employing ammonia borane(BNH6)as a multifunctional complex.By incorporating BNH6 at both buried and upper interfaces simultaneously,we achieve dualinterfacial defect passivation and iodide oxidation suppression through three key mechanisms:(1)hydrolysis-induced interaction with SnO_(2),(2)coordination with Pb^(2+),and(3)inhibition of I−oxidation.This approach significantly enhances device performance,yielding a champion power conversion efficiency(PCE)of 26.43%(certified 25.98%).Furthermore,the unencapsulated device demonstrates prominent enhanced operation stability,maintaining 90%of its initial PCE after 500 h under continuous illumination.Notably,our strategy eliminates the need for separate interface treatments,streamlining fabrication and offering a scalable route toward high-performance perovskite photovoltaics. 展开更多
关键词 Ammonia borane All-in-one modification Multifunctional complex Perovskite solar cells
在线阅读 下载PDF
Dehydrocoupling of boranes with amines using a scandium catalyst
2
作者 Yang Wang Pengfei Xu Xin Xu 《Chinese Chemical Letters》 SCIE CAS CSCD 2021年第12期4002-4005,共4页
The scandocene alkyl complex(C_(5)Me_(5))_(2)ScCH_(2)SiMe_(3)was found to be an efficient catalyst for the dehydrocoupling of the non-cyclic boranes, dicyclohexylborane and thexylborane, with amines under mild conditi... The scandocene alkyl complex(C_(5)Me_(5))_(2)ScCH_(2)SiMe_(3)was found to be an efficient catalyst for the dehydrocoupling of the non-cyclic boranes, dicyclohexylborane and thexylborane, with amines under mild conditions. The reactions afforded the corresponding aminoboranes in high yields with good functional group tolerance. The stoichiometric reaction of scandium alkyl with amine led to the isolation of a scandium amide complex, which was shown to be an active species during the catalysis. Although a boranecoordinated scandium hydride was also obtained from the stoichiometric experiment, it was not involved in the catalytic cycle. In addition, kinetic studies provided insight into this intermolecular dehydrogenation reaction. 展开更多
关键词 BORANE Aminoborane DEHYDROCOUPLING SCANDIUM β-H elimination
原文传递
Structures and Stability of Metal Amidoboranes (MAB): Density Functional Calculations
3
作者 李采临 吴朝铃 +4 位作者 陈云贵 周晶晶 郑欣 庞丽娟 邓刚 《Communications in Theoretical Physics》 SCIE CAS CSCD 2010年第6期1167-1171,共5页
Molecule geometry structures, frequencies, and energetic stabilities of ammonia borane (AB, NH3BH3 ) and metal amidoboranes (MAB, MNH2BH3), formed by substituting H atom in AB with one of main group metal atoms, h... Molecule geometry structures, frequencies, and energetic stabilities of ammonia borane (AB, NH3BH3 ) and metal amidoboranes (MAB, MNH2BH3), formed by substituting H atom in AB with one of main group metal atoms, have been investigated by density-functional theory and optimized at the B3LYP levels with 6-311G++ (3dr, 3pd) basic set. Their structural parameters and infrared spectrum characteristic peaks have been predicted, which should be the criterion of a successfully synthesized material. Several parameters such as binding energies, vibrational frequencies, and the energy gaps between the HOMO and the LUMO have been adopted to characterize and evaluate their structure stabilities. It is also found that the binding energies and HOMO-LUMO energy gaps of the MAB obviously change with the substitution of the atoms. MgAB has the lowest binding energy and is easier to decompose than any other substitutional structures under same conditions, while CaAB has the highest chemical activity. 展开更多
关键词 ammonia borane metal amidoboranes hydrogen storage density functional theory
在线阅读 下载PDF
Methanolysis of ammonia borane catalyzed by NiO-CuO heterostructured nanosheets:cooperation of visible light and oxygen vacancy 被引量:1
4
作者 You-Xiang Shao Yuan-Zhong Li +7 位作者 Xue-Qi Lian Xiao-Ting Che Qian-Yi Li Yu-Fa Feng Hui-Ze Wang Jin-Yun Liao Quan-Bing Liu Hao Li 《Rare Metals》 2025年第1期389-403,共15页
Developing cost-effective and high-activity catalysts for the methanolysis of ammonia borane(AB)has attracted great attention in the field of hydrogen energy recently.Besides the modification of the electronic structu... Developing cost-effective and high-activity catalysts for the methanolysis of ammonia borane(AB)has attracted great attention in the field of hydrogen energy recently.Besides the modification of the electronic structure of the catalysts,external factors such as visible light irradiation can improve the efficiency of hydrogen production as well.In the present study,a Z-scheme heterostructured VO-Cu_(0.5)Ni_(0.5)O catalysts were constructed by introducing a plenteous phase interface and oxygen vacancy(Vo).The catalytic activity of as-prepared VO-Cu_(0.5)Ni_(0.5)O toward AB methanolysis has been improved dramatically with the assistance of visible light irradiation.The turnover frequency(TOF)under visible light irradiation was measured to be 29_(mol)H_(2)·mol_(cat.)^(-1)·min^(-1),which is 1.4 times larger than the TOF in the absence of visible light.Systematic characterization experiments and density functional theory(DFT)calculations were conducted to unveil the causation of enhanced catalytic activity.The results demonstrated that the enhancement of the catalytic activity of VO-Cu_(0.5)Ni_(0.5)O originated from the electronic structure modification induced by the formation of heterojunctions,the introduction of oxygen vacancies,and the assistance of visible light cooperatively.The formation of heterojunction and the introduction of oxygen vacancies provoked the upshift of the d-band center;while the visible light irradiation induced the photogenerated electrons to transfer from Cu to Ni sites at the interface.Such electron structure modulation is beneficial for the construction of abundant active sites,thereby enhancing the adsorption of methanol on the Ni sites,which is considered as the rate-determine step for the methanolysis of AB.The strong interaction between Ni and O weakened the O-H bond of methanol,accelerating the methanolysis of AB.These results demonstrate the utilization of combined heterojunction,oxygen vacancy,and visible light to explore highly active AB methanolysis catalysts,which should shed light on the exploration of more effective catalysts for AB methanolysis. 展开更多
关键词 Ammonia borane METHANOLYSIS HETEROJUNCTION Oxygen vacancy Density functional theory(DFT)calculation
原文传递
Ultrafine platinum clusters achieved by metal‑organic framework derived cobalt nanoparticle/porous carbon:Remarkable catalytic performance in dehydrogenation of ammonia borane
5
作者 XIE Xinnan ZHANG Boyu +4 位作者 YANG Jianxun ZHONG Yi Osama Younis YANG Jianxiao YANG Xinchun 《无机化学学报》 北大核心 2025年第10期2095-2102,共8页
Ultrafine,highly dispersed Pt clusters were immobilized onto the Co nanoparticle surfaces by one-step pyrolysis of the precursor Pt(Ⅱ)-encapsulating Co-MOF-74.Owing to the small size effects of Pt clusters as well as... Ultrafine,highly dispersed Pt clusters were immobilized onto the Co nanoparticle surfaces by one-step pyrolysis of the precursor Pt(Ⅱ)-encapsulating Co-MOF-74.Owing to the small size effects of Pt clusters as well as the strongly enhanced synergistic interactions between Pt and Co atoms,the obtained Pt-on-Co/C400 catalysts exhib-ited excellent catalytic activity toward the hydrolysis of ammonia borane with an extremely high turnover frequency(TOF)value of 3022 min^(-1)at 303 K.Durability test indicated that the obtained Pt-on-Co/C400 catalysts possessed high catalytic stability,and there were no changes in the catalyst structures and catalytic activities after 10 cycles. 展开更多
关键词 ammonia borane hydrogen generation Pt cluster porous carbon metal-organic framework
在线阅读 下载PDF
Raney Ni as a high-performance catalyst for the hydrolysis of ammonia borane to produce hydrogen
6
作者 YANG Tianxuan WU Meixia +6 位作者 WANG Junli CHEN Ning TANG Changqiang LI Jiang SHANG Jianpeng GUO Yong LI Zuopeng 《燃料化学学报(中英文)》 北大核心 2025年第4期555-564,共10页
Ammonia borane(AB)has received much attention as an environmentally friendly,non-toxic,room temperature stable hydrogen storage material with high hydrogen content of 19.6%.However,its hydrolysis for hydrogen producti... Ammonia borane(AB)has received much attention as an environmentally friendly,non-toxic,room temperature stable hydrogen storage material with high hydrogen content of 19.6%.However,its hydrolysis for hydrogen production at room-temperature is kinetically slow and requires precious metal catalysts.In this work,it is found that the prepared Raney Ni W-r treated with high concentration of NaOH(6.25 mol/L)at 110℃exhibited excellent catalytic performance for AB hydrolysis at room temperature.The Raney Ni W-r can promote the AB complete hydrolysis within 60 s under basic condition at small sized trials,even higher than that of the 20%Pt/C catalyst.Its apparent activation energy at room temperature is only 26.6 kJ/mol and the turnover frequency(TOF)value is as high as 51.42 min-1.Owing to its high density and magnetic properties,the catalyst is very easy for magnetic separation.Furthermore,possible mechanism of the hydrolytic reaction of AB based on experimental results is proposed.As a well-established industrial catalyst,Raney Ni has been prepared on a large scale at low cost.This study provides a promising pathway for the large-scale preparation of low-cost and recyclable catalysts for AB hydrolysis. 展开更多
关键词 ammonia borane HYDROLYSIS Raney Ni hydrogen production
在线阅读 下载PDF
Efficient hydrogen evolution from Amberlyst-15 mediated hydrolysis of ammonia borane under mild conditions
7
作者 Yilun Dong Kang Xue +7 位作者 Zexing He Chongjun Li Ruijie Gao Zhenfeng Huang Chengxiang Shi Xiangwen Zhang Lun Pan Jijun Zou 《Chinese Journal of Chemical Engineering》 2025年第7期217-228,共12页
The efficient and cost-effective implementation of ammonia borane(AB)hydrolysis dehydrogenation for hydrogen storage is crucial.This study investigated the role of solid acid Amberlyst-15(A-15)for hydrogen evolution f... The efficient and cost-effective implementation of ammonia borane(AB)hydrolysis dehydrogenation for hydrogen storage is crucial.This study investigated the role of solid acid Amberlyst-15(A-15)for hydrogen evolution from AB hydrolysis.Notably,AB hydrogen evolution rate can reach 194.15 ml·min^(-1)at 30℃,with a low apparent activation energy of 8.20 kJ·mol^(-1).After five cycles of reuse,the reaction involving A-15 could keep a conversion rate of about 93%.The AB hydrolysis follows quasi first-order kinetics with respect to the AB concentration and quasi zero-order kinetics with respect to the A-15 mass.According to the characterization results of XRD,ATR-FTIR,and in-situ MS,the boric acid was the dominant hydrolyzate,while water as a hydrogen donor in this reaction.Furthermore,based on the reasoning that hydrogen bonds between A-15 and AB(aq)promotes the diffusion of AB,release of H2 and the cleavage of O-H bond of H2O,a possible mechanism was proposed. 展开更多
关键词 Ammonia borane HYDROLYSIS Hydrogen production Amberlyst-15 KINETICS
在线阅读 下载PDF
Symmetry-broken atomic ensemble induced by mandated charge for efficient water dissociation in hydrogen generation
8
作者 Ruofan Shen Yanyan Liu +6 位作者 Shuling Liu Jianchun Jiang Tao Liu Sehrish Mehdi Ting-Hui Xiao Erjun Liang Baojun Li 《Journal of Energy Chemistry》 2025年第4期274-281,共8页
Efficient water dissociation catalysts are important for reducing the activation energy barrier of water molecules in the field of energy conversio n.Herein,symmetry-bro ken Rh ensemble induced by mandated charge was ... Efficient water dissociation catalysts are important for reducing the activation energy barrier of water molecules in the field of energy conversio n.Herein,symmetry-bro ken Rh ensemble induced by mandated charge was established to boost the catalytic activity toward water dissociation.As an experimental verification,the turnover frequency of 1.0-RTO_(V4)in hydrogen generation from ammonia borane hydrolysis reaches up to 2838 min-1(24828 min^(-1)depend on Rh dispersion),exceeding the benchmark set up by state-of-the-art catalysts.The transfer of mandated charge from O_(V)to Rh near O_(V)breaks the local symmetry of Rh nanoparticle and forms Rh^(γ-)(electron-aggregation Rh)-Rh interfacial atomic ensemble.This symmetry-broken Rh ensemble is the reason for the high activity of the catalyst.This work provides an effective electronic regulation strategy based on symmetry-broken atomic ensemble induced by mandated charge,designed to stimulate the limiting activity of metal catalyst in the field of next generation energy chemistry. 展开更多
关键词 Ammonia borane Hydrogen generation Interfacial atomic ensemble Mandated charge Symmetry-broken
在线阅读 下载PDF
Carbothermal shock fabrication of CoO-Cu_(2)O nanocomposites on N-doped porous carbon for enhanced hydrolysis of ammonia borane
9
作者 Jun-Rui Zhang Yun-Qi Jia +9 位作者 Fei Chu Nuo Lei Jia-Peng Bi Hai-Ying Qin Mi-Li Liu Yu-Xiao Jia Lan Zhang Lin Jiang Liu-Zhang Ouyang Xue-Zhang Xiao 《Rare Metals》 2025年第8期5486-5497,共12页
The high hydrogen desorption density(19.6 wt%)of ammonia borane(AB)makes it one of the most promising chemical hydrogen storage materials.Developing cost-effective catalysts is the key for accelerating the hydrolysis ... The high hydrogen desorption density(19.6 wt%)of ammonia borane(AB)makes it one of the most promising chemical hydrogen storage materials.Developing cost-effective catalysts is the key for accelerating the hydrolysis of AB.Herein,we present a straightforward synthesis method for the Cu_(2)O decorated CoO catalyst derived from ZIF-67 precursors using carbothermal shock(~1 s)in air.The obtained results demonstrate that a small amount of Cu_(2)O doping into CoO synergistically enhances AB hydrolysis,resulting in an almost fivefold increase in turnover frequency(TOF=97 molH_(2)molCoO-1min-1at 298 K).Further studies indicated that the incorporation of Cu_(2)O alters the electronic distribution of the surface of catalysts,introducing more oxygen vacancies and increasing the pyridinic nitrogen content.The increased oxygen vacancies effectively enhanced the adsorption and activation ability of active sites for reactants(H_(2)O and AB),while the targeting effect of pyridinic nitrogen enhances the dispersion of the catalyst.Theoretical analysis reveals that CoO plays a key role in the dissociation of H_(2)O,while minor doping with Cu_(2)O substantially reduces the dissociation energy barrier of AB.This research provides a novel strategy for the design and efficient preparation of AB hydrolysis catalysts for efficient hydrogen production. 展开更多
关键词 HYDROLYSIS Ammonia borane Hydrogen generation Copper doping Cobalt monoxide
原文传递
Dynamic oxidation synthesis of medium/high-entropy oxide catalysts with ultrahigh coordination disorder:Efficient ammonia borane hydrolysis
10
作者 Nuo Lei Panpan Zhou +5 位作者 Junrui Zhang Fei Chu Changjun Cheng Lixin Chen Liuzhang Ouyang Xuezhang Xiao 《Journal of Energy Chemistry》 2025年第11期920-931,I0021,共13页
Ammonia borane(AB)is a promising hydrogen storage medium widely used for hydrogen generation,but its slow hydrolysis kinetics limits its applications.Medium/high-entropy materials(M/HEMs)have emerged as efficient cata... Ammonia borane(AB)is a promising hydrogen storage medium widely used for hydrogen generation,but its slow hydrolysis kinetics limits its applications.Medium/high-entropy materials(M/HEMs)have emerged as efficient catalysts due to their complementary elemental and structural properties.We developed a deposition in-situ reduction(D-ISR)approach for the rapid synthesis of single-phase medium/high-entropy oxides(M/HEOs)at room temperature,along with establishing general criteria for M/HEOs synthesis based on component properties.Deposition facilitates the incorporation of active elements(Ti/Zr/V/Cr/Nb),which significantly enhance the enthalpy-driven force of the dynamic oxidation(DO)process via an“active element coordination”strategy,thereby overcoming low-temperature solid solubility limitations.Nine-component HEOs and large-scale experiments confirm the universality and mass-production potential of the D-ISR approach.CoCuNiTi-O/AC synthesized via this strategy exhibits pronounced crystal distortion and disorder(Co–O coordination number=10.2),enhancing the Co–O coordination environment and mitigating Ostwald ripening.This leads to high activity and significantly enhanced structural stability,achieving a turnover frequency of 236.6 min^(-1)for ammonia borane hydrolysis,15 times higher than Co-O/AC and surpassing the most non-noble catalysts.These observations highlight an efficient M/HEOs synthesis methodology that advances M/HEMs applications in nanoenergy. 展开更多
关键词 Medium/high-entropy oxides Dynamic oxidation Room-temperature rapid synthesis Ammonia borane hydrolysis Ostwald ripening
在线阅读 下载PDF
Gold-containing metal nanoparticles for catalytic hydrogen generation from liquid chemical hydrides 被引量:5
11
作者 杨新春 徐强 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第10期1594-1599,共6页
Liquid chemical hydrides, which store hydrogen in the form of chemical bonds, are considered one of the most promising classes of hydrogen storage materials. Their application depends heavily on the development of eff... Liquid chemical hydrides, which store hydrogen in the form of chemical bonds, are considered one of the most promising classes of hydrogen storage materials. Their application depends heavily on the development of efficient catalytic systems. Gold‐containing metal nanoparticles have exhibited excellent catalytic performance for hydrogen generation from liquid chemical hydrides. The present mini‐review focuses on recent developments in hydrogen generation from liquid chemical hydrides using gold‐nanoparticle and gold‐containing heterometallic nanoparticle catalysts. 展开更多
关键词 Gold catalysts Hydrogen generation Formic acid Ammonia borane Heterogeneous catalysis
在线阅读 下载PDF
Bimetallic RuM(M=Co,Ni)Alloy NPs Supported on MIL-110(AI):Synergetic Catalysis in Hydrolytic Dehydrogenation of Ammonia Borane 被引量:2
12
作者 宁红辉 鲁迪 +5 位作者 周立群 陈锰寰 李悦 周高建 彭薇薇 王峥 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2018年第1期99-110,I0002,共13页
By adjusting various Ru/M (M=Co, Ni) molar ratios, a series of highly dispersed bimetallic RuM alloy nanoparticles (NPs) anchored on MIL-110(Al) have been successfully prepared via a conventional impregnation-re... By adjusting various Ru/M (M=Co, Ni) molar ratios, a series of highly dispersed bimetallic RuM alloy nanoparticles (NPs) anchored on MIL-110(Al) have been successfully prepared via a conventional impregnation-reduction method. And they are first used as heterogeneous catalysts for the dehydrogenation reaction of AB at room temperature. The results reveal that the as-prepared RulCo1@MIL-110 and RulNi1@MIL-110 exhibit the highest catalytic activities in different RuCo and RuNi molar ratios, respectively. It is worthy of note that the turnover frequency (TOF) values of Ru1Co1@MIL-110 and Ru1Ni1@MIL-110 catalysts reached 488.1 and 417.1 mol H2 min-1 (mol Ru)-1 and the activation energies (Ea) are 31.7 and 36.0 k J/tool, respectively. The superior catalytic performance is attributed to the bimetallic synergistic action between Ru and M, uniform distribution of metal NPs as well as bi-functional effect between RuM alloy NPs and MIL-110. Moreover, these catalysts exhibit favorable stability after 5 consecutive cycles for the hydrolysis of AB. 展开更多
关键词 RuCo@MIL-110 RuNi@MIL-110 Ammonia borane Hydrogen production
在线阅读 下载PDF
Interface electron collaborative migration of Co–Co3O4/carbon dots:Boosting the hydrolytic dehydrogenation of ammonia borane 被引量:11
13
作者 Han Wu Min Wu +5 位作者 Boyang Wang Xue Yong Yushan Liu Baojun Li Baozhong Liu Siyu Lu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第9期43-53,I0002,共12页
Ammonia borane(AB)is an excellent candidate for the chemical storage of hydrogen.However,its practical utilization for hydrogen production is hindered by the need for expensive noble-metal-based catalysts.Herein,we re... Ammonia borane(AB)is an excellent candidate for the chemical storage of hydrogen.However,its practical utilization for hydrogen production is hindered by the need for expensive noble-metal-based catalysts.Herein,we report Co-Co3O4 nanoparticles(NPs)facilely deposited on carbon dots(CDs)as a highly efficient,robust,and noble-metal-free catalyst for the hydrolysis of AB.The incorporation of the multiinterfaces between Co,Co3O4 NPs,and CDs endows this hybrid material with excellent catalytic activity(rB=6816 mLH2 min^-1 gCo^-1)exceeding that of previous non-noble-metal NP systems and even that of some noble-metal NP systems.A further mechanistic study suggests that these interfacial interactions can affect the electronic structures of interfacial atoms and provide abundant adsorption sites for AB and water molecules,resulting in a low energy barrier for the activation of reactive molecules and thus substantial improvement of the catalytic rate. 展开更多
关键词 Ammonia borane Hydrogen evolution Co-Co3O4 interface Carbon dots Nanoparticles
在线阅读 下载PDF
Integration of morphology and electronic structure modulation on cobalt phosphide nanosheets to boost photocatalytic hydrogen evolution from ammonia borane hydrolysis 被引量:7
14
作者 Chao Wan Yu Liang +5 位作者 Liu Zhou Jindou Huang Jiapei Wang Fengqiu Chen Xiaoli Zhan Dang-guo Cheng 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第2期333-343,共11页
The controllable and safe hydrogen storage technologies are widely recognized as the main bottleneck for the accomplishment of sustainable hydrogen energy.Ammonia borane(AB)has regarded as a competitive candidate for ... The controllable and safe hydrogen storage technologies are widely recognized as the main bottleneck for the accomplishment of sustainable hydrogen energy.Ammonia borane(AB)has regarded as a competitive candidate for chemical hydrogen storage.However,developing efficient yet high-performance catalysts towards hydrogen evolution from AB hydrolysis remains an enormous challenge.Herein,cobalt phosphide nanosheets are synthesized by a facile salt-assisted along with low-temperature phosphidation strategy for simultaneously modulating its morphology and electronic structure,and function as hydrogen evolution photocatalysts.Impressively,the Co_(2)P nanosheets display extraordinary performance with a record high turnover frequency of 44.9 min^(-1),outperforming most of the noble-metal-free catalysts reported to date.This remarkable performance is attributed to its desired nanosheets structure,featuring with high specific surface area,abundant exposed active sites,and short charge diffusion paths.Our findings provide a novel strategy for regulating metal phosphides with desired phase structure and morphology for energy-related applications and beyond. 展开更多
关键词 Ammonia borane Hydrogen generation HYDROLYSIS Cobalt phosphide nanosheets PHOTOCATALYSIS
在线阅读 下载PDF
Ultrafine Ru nanoparticles anchored on core-shell structured zeolite-carbon for efficient catalysis of hydrogen generation 被引量:5
15
作者 Yue-Wei Wei Guang Yang +5 位作者 Xi-Xi Xu Yan-Yan Liu Nai-Xin Kang Bao-Jun Li Yong-Zhao Wang Yong-Xiang Zhao 《Rare Metals》 SCIE EI CAS CSCD 2023年第7期2324-2334,共11页
As a promising route to hydrogen production,hydrolysis of ammonia borane(AB)aqueous solution requires efficient and stable catalysts.In this paper,a carbon-coated zeolite is prepared by high temperature calcination us... As a promising route to hydrogen production,hydrolysis of ammonia borane(AB)aqueous solution requires efficient and stable catalysts.In this paper,a carbon-coated zeolite is prepared by high temperature calcination using glucose as carbon source.Ultrafine Ru nanoparticles are anchored on the composite support with core-shell structure using a simple in situ reduction method.The prepared catalyst expressed outstanding catalytic activity in the hydrolytic dehydrogenation of AB.The effects of support prepared by different synthesis parameters on the performance of catalyst are investigated.The Ru/S-1@C(RSC-2)catalyst exhibited the highest catalytic activity for hydrolytic dehydrogenation of AB with a turnover frequency of 892 min^(-1)at room temperature.This performance is superior to that of many catalysts previously reported.The excellent catalytic activity is attributed to the carbon layer on catalyst surface effectively limiting the aggregation of Ru nanoparticles in the hydrolysis reaction.The zeolite also plays a role in preactivation of water.This pre-activation accelerates the ratelimiting step of water dissociation in the reaction.The kinetic studies for determining the activation energy(E_(a)=36.8 kJ·mol^(-1))were based on reaction temperature.The effects of catalyst concentration,AB concentration and NaOH concentration on hydrolysis rate of AB were further investigated.The high-performance catalysts and the preparation method in this study have wide application prospects in the field of clean energy. 展开更多
关键词 Ammonia borane RUTHENIUM Hydrogen generation CARBON ZEOLITE
原文传递
Activation and Deactivation of Chain-transfer Agent in Controlled Radical Polymerization by Oxygen Initiation and Regulation 被引量:4
16
作者 Chun-Na Lv Ning Li +2 位作者 Yu-Xuan Du Jia-Hua Li Xiang-Cheng Pan 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2020年第11期1178-1184,I0006,共8页
The activation and deactivation of the chain-transfer agent were achieved by oxygen initiation and regulation with triethylborane under ambient temperature and atmosphere.The autoxidation of triethylborane overcame th... The activation and deactivation of the chain-transfer agent were achieved by oxygen initiation and regulation with triethylborane under ambient temperature and atmosphere.The autoxidation of triethylborane overcame the oxygen inhilbition and produced initiating radicals that selectively activate the chain-transfer agent for the chain growth or deactivate the active chain-end of polymer in controlled radical polymerization.Both activation and deactivation were highly efficient with broad scope for various polymers with different chain-transfer agents in both organic and aqueous systems.Oxygen molecule was particularly used as an external regulator to initiate and achieve the temporal control of both activation and deactivation by simply feeding the air. 展开更多
关键词 RAFT OXYGEN BORANE
原文传递
A review on hydrogen production from ammonia borane:Experimental and theoretical studies 被引量:3
17
作者 Jinrong Huo Kai Zhang +4 位作者 Haocong Wei Ling Fu Chenxu Zhao Chaozheng He Xincheng Hu 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第12期13-28,共16页
Ammonia borane(NHsBH3,AB)is an ideal raw material of hydrogen production with higher hydrogen storage capacity.In this paper,the catalytic processes of AB dehydrogenation were described from different ways,including t... Ammonia borane(NHsBH3,AB)is an ideal raw material of hydrogen production with higher hydrogen storage capacity.In this paper,the catalytic processes of AB dehydrogenation were described from different ways,including thermal dehydrogenation,hydrolysis,methanolysis,photocatalysis and photopiezoelectric synergy catalysis with experimental research and theoretical calculations.Catalyst models include bulk materials,two-dimensional materials,nanocluster particles and single/diatomic structures.Among them,the proportion of H2 released is different,and the reaction conditions are also different,which are suitable for different application scenarios.Through this review,we could have a preliminary comprehensive understanding of AB dehydrogenation reaction. 展开更多
关键词 Ammonia borane Hydrogen production Dehydrogenation catalyst HYDROLYSIS METHANOLYSIS Photo-piezoelectric synergy
原文传递
Three-dimensional nitrogen-doped graphene hydrogel supported Co-CeOx nanoclusters as efficient catalysts for hydrogen generation from hydrolysis of ammonia borane 被引量:3
18
作者 Yana Men Jun Su +4 位作者 Chaozhang Huang Lijing Liang Ping Cai Gongzhen Cheng Wei Luo 《Chinese Chemical Letters》 SCIE CAS CSCD 2018年第11期1671-1674,共4页
The development of highly active noble-metal-flee catalysts for catalytic hydrolysis of ammonia borane is mandatory for its application in hydrogen storage. Herein, Co-CeOx nanoclusters have been successfully anchored... The development of highly active noble-metal-flee catalysts for catalytic hydrolysis of ammonia borane is mandatory for its application in hydrogen storage. Herein, Co-CeOx nanoclusters have been successfully anchored on a three-dimensional nitrogen-doped graphene hydrogel (NGH) by a simple coreduction method and further used as efficient catalysts to catalytic hydrolysis of ammonia borane at room temperature. Thanks to the strong synergistic electronic effect between Co and CeOx, as well as the strong metal-support interaction between Co-CeOx and 3D NGH, the as-synthesized Co-(CeOx)0.91/NGH catalyst exhibits superior catalytic activity toward hydrolysis of ammonia borane, with the turnover frequency (TOF) value of 79.5 min 1, which is almost 13 times higher than that of Co]NGH, and higher than most of the reported noble-metal-free catalysts. 展开更多
关键词 Nitrogen-doped graphene hydrogel Co-CeOx Hydrogen storage Ammonia borane Noble-metal-free
原文传递
Carbon dots-confined CoP-CoO nanoheterostructure with strong interfacial synergy triggered the robust hydrogen evolution from ammonia borane 被引量:3
19
作者 Han Wu Yaojia Cheng +5 位作者 Boyang Wang Yao Wang Min Wu Weidong Li Baozhong Liu Siyu Lu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第6期198-205,I0006,共9页
Ammonia borane(NH_(3)BH_(3),AB) is promising for chemical hydrogen sto rage;however,current systems for rapid hydrogen production are limited by the expensive noble metal catalysts required for AB hydrolysis.Here we r... Ammonia borane(NH_(3)BH_(3),AB) is promising for chemical hydrogen sto rage;however,current systems for rapid hydrogen production are limited by the expensive noble metal catalysts required for AB hydrolysis.Here we report the design and synthesis of a highly efficient and robust non-noble-metal catalyst for the hydrolysis of AB at 298 K(TOF=89.56 molH_(2) min^(-1) molCo^(-1)).Experiments and density functional theory calculations were performed to explore the catalyst’s hybrid nanoparticle heterostructure and its catalytic mechanism.The catalyst comprised nitrogen-doped carbon dots confining CoO and CoP,and exhibited strong interface-induced synergistic catalysis for AB hydrolysis that effectively decreased the energy barriers for the dissociation of both AB and water molecules.The co-doping of N and P introduced numerous defects,and further regulated the reactivity of the carbon layers.The heterogeneous interface design technique presented here provides a new strategy for developing efficient and inexpensive non-noblemetal catalysts that may be applicable in other fields related to energy catalysis. 展开更多
关键词 Nano-heterostructure Interface engineering Ammonia borane Hydrolysis mechanism Hydrogen
在线阅读 下载PDF
Co-CoO_x supported onto TiO_(2) coated with carbon as a catalyst for efficient and stable hydrogen generation from ammonia borane 被引量:3
20
作者 Guang Yang Shuyan Guan +3 位作者 Sehrish Mehdi Yanping Fan Baozhong Liu Baojun Li 《Green Energy & Environment》 SCIE CSCD 2021年第2期236-243,共8页
Ammonia borane(AB) can be catalytically hydrolyzed to provide hydrogen at room temperature due to its high potentaial for hydrogen storage. Non-precious metal heterogeneous catalysts have broad application in the fiel... Ammonia borane(AB) can be catalytically hydrolyzed to provide hydrogen at room temperature due to its high potentaial for hydrogen storage. Non-precious metal heterogeneous catalysts have broad application in the field of energy catalysis. In this article, catalysts precursor is obtained from Co-Ti-resorcinol-formaldehyde resin by sol–gel method. Co/TiO_(2)@N-C(CTC) catalyst is prepared by calcining the precursor under high temperature conditions in nitrogen atmosphere. Co-CoO_x/TiO_(2)@N-C(COTC) is generated by the controllable oxidation reaction of CTC. The catalyst can effectively promote the release of hydrogen during the hydrolytic dehydrogenation of AB. High hydrogen generation at a specific rate of 5905 m L min^(-1) g_(Co)^(-1) is achieved at room temperature. The catalyst retains its 85% initial catalytic activity even for its fifth time use in AB hydrolysis. The synergistic effect among Co, Co_(3)O_(4) and TiO_(2) promotes the rate limiting step with dissociation and activation of water molecules by reducing its activation energy. The applied method in this study promotes the development of non-precious metals in catalysis for utilization in clean energy sources. 展开更多
关键词 Ammonia borane COBALT Hydrogen generation N-doped carbon Titanium dioxide
在线阅读 下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部