Inorganic semiconductors are widely used in many fields such as information,energy,and electronics due to their rich functionalities.The chemical bonds in inorganic semiconductors are usually directional covalent bond...Inorganic semiconductors are widely used in many fields such as information,energy,and electronics due to their rich functionalities.The chemical bonds in inorganic semiconductors are usually directional covalent bonds,which inhibit the movement of dislocations.Thus,being different with metals and alloys,inorganic semiconductors are usually brittle at room temperature,with very small strain below 1%and poor machinability[1].Many metalworking techniques,such as the cold-forming processing,which is a crucial means for the cost-effective production of metal and alloy parts,cannot be applied to most inorganic semiconductors,greatly limiting their low-cost fabrication and applications in flexible electronics.展开更多
文摘Inorganic semiconductors are widely used in many fields such as information,energy,and electronics due to their rich functionalities.The chemical bonds in inorganic semiconductors are usually directional covalent bonds,which inhibit the movement of dislocations.Thus,being different with metals and alloys,inorganic semiconductors are usually brittle at room temperature,with very small strain below 1%and poor machinability[1].Many metalworking techniques,such as the cold-forming processing,which is a crucial means for the cost-effective production of metal and alloy parts,cannot be applied to most inorganic semiconductors,greatly limiting their low-cost fabrication and applications in flexible electronics.