期刊文献+
共找到4,094篇文章
< 1 2 205 >
每页显示 20 50 100
Introducing strong metal–oxygen bonds to suppress the Jahn-Teller effect and enhance the structural stability of Ni/Co-free Mn-based layered oxide cathodes for potassium-ion batteries 被引量:1
1
作者 Yicheng Lin Shaohua Luo +5 位作者 Pengyu Li Jun Cong Wei Zhao Lixiong Qian Qi Sun Shengxue Yan 《Journal of Energy Chemistry》 2025年第2期713-722,I0015,共11页
Mn-based layered oxides(KMO)have emerged as one of the promising low-cost cathodes for potassiumion batteries(PIBs).However,due to the multiple-phase transitions and the distortion in the MnO6structure induced by the ... Mn-based layered oxides(KMO)have emerged as one of the promising low-cost cathodes for potassiumion batteries(PIBs).However,due to the multiple-phase transitions and the distortion in the MnO6structure induced by the Jahn-Teller(JT)effect associated with Mn-ion,the cathode exhibits poor structural stability.Herein,we propose a strategy to enhance structural stability by introducing robust metal-oxygen(M-O)bonds,which can realize the pinning effect to constrain the distortion in the transition metal(TM)layer.Concurrently,all the elements employed have exceptionally high crustal abundance.As a proof of concept,the designed K_(0.5)Mn_(0.9)Mg_(0.025)Ti_(0.025)Al_(0.05)O_(2)cathode exhibited a discharge capacity of approximately 100 mA h g^(-1)at 20 mA g^(-1)with 79%capacity retention over 50 cycles,and 73%capacity retention over 200 cycles at 200 mA g^(-1),showcased much better battery performance than the designed cathode with less robust M-O bonds.The properties of the formed M-O bonds were investigated using theoretical calculations.The enhanced dynamics,mitigated JT effect,and improved structural stability were elucidated through the in-situ X-ray diffractometer(XRD),in-situ electrochemical impedance spectroscopy(EIS)(and distribution of relaxation times(DRT)method),and ex-situ X-ray absorption fine structure(XAFS)tests.This study holds substantial reference value for the future design of costeffective Mn-based layered cathodes for PIBs. 展开更多
关键词 Layered oxide cathodes Potassium-ion batteries Robust M-O bonds Low-cost Jahn-Teller effect
在线阅读 下载PDF
Two vicinal C(sp^(3))-F bonds functionalization of perfluoroalkyl halides (PFAHs)
2
作者 Jun Jiang Hui Dai Tao Tu 《Chinese Chemical Letters》 2025年第7期4-5,共2页
Organofluorines play a crucial role in medicine,agrochemicals,and materials science.Adding fluorine to molecules creates structures with specific beneficial properties or tunes properties through interactions with the... Organofluorines play a crucial role in medicine,agrochemicals,and materials science.Adding fluorine to molecules creates structures with specific beneficial properties or tunes properties through interactions with their environment.Many popular pharmaceuticals and agrochemicals contain fluorine because it enhances hydrogen bonding at protein’s active sites. 展开更多
关键词 vicinal c sp f bonds materials science organofluorines medicine fluorine functionalization tunes properties agrochemicals enhances hydrogen bonding
原文传递
Rediscovering brotherly bonds
3
作者 郝篆香 《疯狂英语(新悦读)》 2025年第4期33-35,77,共4页
1 As autumn becomes winter,I eagerly anticipate December's reunion with my older brother,Don,at SilverStar Mountain Resort.Our annual“SilverStar time”has reconnected us over the past decade,filling me with excit... 1 As autumn becomes winter,I eagerly anticipate December's reunion with my older brother,Don,at SilverStar Mountain Resort.Our annual“SilverStar time”has reconnected us over the past decade,filling me with excitement and reflection. 展开更多
关键词 December brotherly bonds older brother REUNION winter AUTUMN annual gathering Silverstar Mountain Resort
在线阅读 下载PDF
Design of Weldable and Recyclable Fluorine-containing Adhesives Utilizing Dynamic-covalent Boroxine Bonds
4
作者 Hou-Li Zhang Yu-Quan Sun +6 位作者 Yao Xu Lu Wang Ying Li Jie Zhang Bing Geng Shu-Sheng Li Chuan-Yong Zong 《Chinese Journal of Polymer Science》 2025年第8期1433-1442,共10页
The advancement of functional adhesives featuring recyclable and repairable properties is of great significance in interfacial science and engineering.Herein,a series of high-strength,recyclable fluorine-containing ad... The advancement of functional adhesives featuring recyclable and repairable properties is of great significance in interfacial science and engineering.Herein,a series of high-strength,recyclable fluorine-containing adhesives(ESOx-FPF)were designed and synthesized by crosslinking two prepolymers,FPF-B(derived from side-chain fluorinated diol,isocyanate,and aminoboric acid)and ESO-B(synthesized from biobased epoxy soybean oil and aminoboric acid),through dynamic boro-oxygen bonds.The resulting adhesive exhibited an optimal tensile strength of 42 MPa and the shear strength on steel plates reached as high as 3.89 MPa.More importantly,benefiting from the dynamic reversibility of the boron-oxygen bonds along with the hydrogen bonds interaction,ESOx-FPF can be welded with the assistance of solvents and recycled for multiple cycles.The outstanding healing efficiency and excellent reprocessability of these functional adhesives were confirmed by mechanical testing.Moreover,the as-prepared adhesives demonstrated universal and remarkable adhesion to various substrates,such as aromatic polyamide,aluminum plates and polycarbonate,meanwhile,they could be easily disassembled and recycled using ethanol without damaging the substrates surface.This study not only provides a simple strategy for the synthesis of eco-friendly adhesives with weldable and recyclable properties,but also sheds light on the development of other functional materials utilizing dynamic covalent chemistry. 展开更多
关键词 Functional adhesive RECYCLABLE Dynamic covalent bonds Boroxines FLUORINE-CONTAINING
原文传递
Unraveling the role of dangling bonds passivation in amorphous Ga_(2)O_(3)for high-performance solar-blind UV detection
5
作者 Zhengru Li Rui Zhu +2 位作者 Huili Liang Shichen Su Zengxia Mei 《Chinese Physics B》 2025年第7期604-609,共6页
Low-cost and large-area uniform amorphous Ga_(2)O_(3)(α-Ga_(2)O_(3))solar-blind ultraviolet(UV)detectors have garnered significant attention in recent years.Oxygen vacancy(VO)defects are generally considered as the p... Low-cost and large-area uniform amorphous Ga_(2)O_(3)(α-Ga_(2)O_(3))solar-blind ultraviolet(UV)detectors have garnered significant attention in recent years.Oxygen vacancy(VO)defects are generally considered as the predominant defects affecting the detector performance.Reducing VOconcentration generally results in both low dark current and low photo current,significantly limiting further improvement of the photo-to-dark current ratio(PDCR)parameter.Herein,a delicately optimized atomic layer deposition(ALD)method is revealed having the capability to break through the trade-off in a-Ga_(2)O_(3),achieving both low dark current and high photocurrent simultaneously.For a clear demonstration,a-Ga_(2)O_(3)contrast sample is prepared by magnetron sputtering and compared as well.Combined tests are performed including xray photoelectron spectroscopy,photoluminescence,electron paramagnetic resonance and Fourier-transform infrared spectroscopy.It is found that ALDα-Ga_(2)O_(3)has a lower VOconcentration,but also a lower dangling bonds concentration which are strong non-irradiation recombination centers.Therefore,decrease of dangling bonds is suggested to compensate for the low optical gain induced by low VOconcentration and promote the PDCR to~2.06×10^(6).Our findings firstly prove that the dangling bonds also play an important role in determining the a-Ga_(2)O_(3)detection performance,offering new insights for further promotion ofα-Ga_(2)O_(3)UV detector performance via dual optimization of dangling bonds and VO. 展开更多
关键词 amorphous gallium oxide magnetron sputtering atomic layer deposition ultraviolet detectors dangling bonds
原文传递
NURTURING BONDS THROUGH TCM HERITAGE Bridging China and Southeast Asia,traditional Chinese medicine blends ancient wisdom with modern practice
6
作者 Zhu Shan 《China Report ASEAN》 2025年第10期56-59,共4页
With the support of the Belt and Road Initiative(BRI),the international reach of traditional Chinese medicine(TCM)is taking shape as a“Silk Road of Health,”opening new pathways for closer connections among peoples.T... With the support of the Belt and Road Initiative(BRI),the international reach of traditional Chinese medicine(TCM)is taking shape as a“Silk Road of Health,”opening new pathways for closer connections among peoples.The journey of TCM,in turn. 展开更多
关键词 TCM heritage traditional chinese medicine tcm nurturing bonds modern practice belt road initiative bri traditional Chinese medicine China ancient wisdom
暂未订购
Activation of N≡N bonds by CN_(4) tetrahedron leading to energetic carbon polynitrides under high pressure
7
作者 Guanghui Zhang Wencai Yi +2 位作者 Yiqing Cao Shengli Zhang Xiaobing Liu 《Matter and Radiation at Extremes》 2025年第5期94-101,共8页
The activation of the N≡N triple bond in N_(2) is a fascinating topic in nitrogen chemistry.The transition metals have been demonstrated to effectively modulate the reactivity of N_(2) molecules under high pressure,l... The activation of the N≡N triple bond in N_(2) is a fascinating topic in nitrogen chemistry.The transition metals have been demonstrated to effectively modulate the reactivity of N_(2) molecules under high pressure,leading to nitrogen-rich compounds.However,their use often results in a significant reduction in energy density.In this work,we propose a series of low-enthalpy nitrogen-rich phases in CN_(x)(x=3,...,7)compounds using a first-principles crystal structure search method.The results of calculations reveal that all these CN compounds are assembled from both CN_(4) tetrahedra and N_(x)(x=1,2,or 5)species.Strikingly,we find that the CN_(4) tetrahedron can effectively activate the N≡N bond through weakening of the π orbital of N_(2) under a pressure of 40 GPa,leading to stable CN polynitrides.The robust structural framework of CN polynitrides containing C-N and N-N bonds plays a crucial role in enhancing their structural stability,energy density,and hardness.Among these polynitrides,CN_(6) possesses not only a very high mass density of 3.19 g/cm^(3),but also an ultrahigh energy density of 28.94 kJ/cm^(3),which represents a significant advance in the development of energetic materials using high-pressure methods.This work provides new insights into the mechanism of N_(2) activation under high pressure,and offers a promising pathway to realize high-performance energetic materials. 展开更多
关键词 nitrogen activation high pressure transition metals n n bond modulate reactivity carbon nitrides energetic materials activation n n triple bond
在线阅读 下载PDF
How to Explore the Potential of Green Bonds?—Based on Propensity Score Matching Method
8
作者 Huilin Lu Mingxia Lyu Yirong Ying 《Open Journal of Applied Sciences》 2025年第1期374-388,共15页
Green bonds, as one of the core tools of green finance, have rapidly developed into a large-scale and far-reaching financial market since the first green bond was issued in 2007. As a direct financing channel for gree... Green bonds, as one of the core tools of green finance, have rapidly developed into a large-scale and far-reaching financial market since the first green bond was issued in 2007. As a direct financing channel for green projects, green bonds have promoted the rapid development of green finance in China, and under the background of “dual carbon”, the demand for green bonds in China has increased significantly. In fact, the Chinese green bond investment market has vast development space. However, due to its late start and immature development, there are doubts about whether green bonds can play a positive role in enhancing the company’s value. Therefore, it is urgent to conduct in-depth analysis of the impact of the company’s issuance of green bonds on its value. In this paper, we used Tobin’s Q to measure company value, and used panel data to explore the impact of issuing green bonds on company value through propensity score matching method. It explored the significant improvement effect of issuing green bonds and increasing their intensity on company value;and then, by analyzing the mediating effect on the impact mechanism of company value, efforts are made to discover that green bonds can enhance company value by alleviating financing constraints and improving information transparency. Finally, based on the conclusions drawn, reasonable suggestions are proposed, which have practical reference value for the development of the green bond market and the construction of a green financial system. 展开更多
关键词 Green bonds Corporate Value Financing Constraints Information Transparency
在线阅读 下载PDF
Multi-dimensional hydrogen bonds regulated emissions of single-molecule system enabling surficial hydrophobicity/hydrophilicity mapping
9
作者 Hao Gu Rui Li +6 位作者 Qiuying Li Sheng Lu Yahui Chen Xiaoning Yang Huili Ma Zhijun Xu Xiaoqiang Chen 《Chinese Chemical Letters》 2025年第5期515-520,共6页
Constructing multi-dimensional hydrogen bond(H-bond)regulated single-molecule systems with multiemission remains a challenge.Herein,we report the design of a new excited-state intramolecular proton transfer(ESIPT)feat... Constructing multi-dimensional hydrogen bond(H-bond)regulated single-molecule systems with multiemission remains a challenge.Herein,we report the design of a new excited-state intramolecular proton transfer(ESIPT)featured chromophore(HBT-DPI)that shows flexible emission tunability via the multidimensional regulation of intra-and intermolecular H-bonds.The feature of switchable intramolecular Hbonds is induced via incorporating several hydrogen bond acceptors and donors into one single HBT-DPI molecule,allowing the“turn on/off”of ESIPT process by forming isomers with distinct intramolecular Hbonds configurations.In response to different external H-bonding environments,the obtained four types of crystal/cocrystals vary in the contents of isomers and the molecular packing modes,which are mainly guided by the intermolecular H-bonds,exhibiting non-emissive features or emissions ranging from green to orange.Utilizing the feature of intermolecular H-bond guided molecular packing,we demonstrate the utility of this fluorescent material for visualizing hydrophobic/hydrophilic areas on large-scale heterogeneous surfaces of modified poly(1,1-difluoroethylene)(PVDF)membranes and quantitatively estimating the surface hydrophobicity,providing a new approach for hydrophobicity/hydrophilicity monitoring and measurement.Overall,this study represents a new design strategy for constructing multi-dimensional hydrogen bond regulated ESIPT-based fluorescent materials that enable multiple emissions and unique applications. 展开更多
关键词 Multi-dimensional hydrogen bonds Emission regulation Hydrophobicity/hydrophilicity Surficial mapping Excited-state intramolecular proton transfer
原文传递
RAILS CONNECTING HEARTS The China-Laos Railway is strengthening the bonds of friendship between the two peoples
10
作者 Zhao Shulan Li Yilin 《China Report ASEAN》 2025年第1期30-31,共2页
Launched in December 2021,the China-Laos Railway(CLR)has created ample opportunities for the development of Laos’crop production,food processing,and manufacturing.A powerful booster to infrastructure connectivity and... Launched in December 2021,the China-Laos Railway(CLR)has created ample opportunities for the development of Laos’crop production,food processing,and manufacturing.A powerful booster to infrastructure connectivity and trade relations between the two countries,the rail project has also opened a door for young people in Laos through vocational training and education cooperation,strengthening the bonds of friendship between the two peoples. 展开更多
关键词 strengthening bonds EDUCATION
在线阅读 下载PDF
Enhancing photocatalytic H_(2) evolution by weakening S–H_(ad) bonds via Co-induced asymmetric electron distribution in NiCoS cocatalysts
11
作者 Wei Zhong Aiyun Meng +3 位作者 Xudong Cai Yiyao Gan Jingtao Wang Yaorong Su 《Chinese Journal of Catalysis》 2025年第9期108-119,共12页
The intrinsic symmetrical electron distribution in crystalline metal sulfides usually causes an improper electronic configuration between catalytic S atoms and H intermediates(H_(ad))to form strong S-H_(ad) bonds,resu... The intrinsic symmetrical electron distribution in crystalline metal sulfides usually causes an improper electronic configuration between catalytic S atoms and H intermediates(H_(ad))to form strong S-H_(ad) bonds,resulting in a low photocatalytic H_(2) evolution activity.Herein,a cobalt-induced asymmetric electronic distribution is justified as an effective strategy to optimize the electronic configuration of catalytic S sites in NiCoS cocatalysts for highly active photocatalytic H_(2) evolution.To this end,Co atoms are uniformly incorporated in NiS nanoparticles to fabricate homogeneous NiCoS cocatalyst on TiO_(2) surface by a facile photosynthesis strategy.It is revealed that the incorporated Co atoms break the electron distribution symmetry in NiS,thus essentially increasing the electron density of S atoms to form active electron-enriched S^(2+δ)–sites.The electron-enriched S^(2+δ)–sites could interact with Had via an increased antibonding orbital occupancy,which weakens S–Had bonds for efficient H_(ad) adsorption and desorption,endowing the NiCoS cocatalysts with a highly active H_(2) evolution process.Consequently,the optimized NiCoS/TiO_(2)(1:2)photocatalyst displays the highest H_(2) production performance,outperforming the NiS/TiO_(2) and CoS/TiO_(2) samples by factors of 2.1 and 2.5,respectively.This work provides novel insights on breaking electron distribution symmetry to optimize catalytic efficiency of active sites. 展开更多
关键词 H_(2)evolution Photocatalysis Asymmetric electron distribution S-H_(ad)bonds Antibonding occupancy
在线阅读 下载PDF
Enhanced conversion of lignin into mono-cycloalkanes via C–C bonds cleavage over multifunctional Pt-Nb/MOR catalyst
12
作者 Zhiruo Guo Xiaohui Liu +1 位作者 Yong Guo Yanqin Wang 《Chinese Journal of Catalysis》 2025年第4期285-296,共12页
The efficient conversion of lignin into mono-cycloalkanes via both C–O and C–C bonds cleavage are attractive,but challenging due to the high C–C bond dissociation energy.Previous studies have demonstrated that NbO_... The efficient conversion of lignin into mono-cycloalkanes via both C–O and C–C bonds cleavage are attractive,but challenging due to the high C–C bond dissociation energy.Previous studies have demonstrated that NbO_(x)-based catalysts exhibited exceptional capabilities for C_(Ar)–C bond cleavage and broken the limitation of lignin monomers.In this work,we presented an economical multifunctional Pt-Nb/MOR catalyst that achieved an impressive monomer yield of 147%during the depolymerization and hydrodeoxygenation of lignin into mono-cycloalkanes.Reaction pathway studies showed that unlike traditional NbO_(x)-based catalytic system,bicyclohexane was an important intermediate in this system and followed the C_(sp3)–C_(sp3)cleavage pathway after complete cyclic-hydrogenation.Deep investigations demonstrated that the doping of Nb in Pt/MOR not only enhanced the activation of hydrogen by Pt,but also increased the acidity of MOR,both of these are favor for the hydrogenolytic cleavage of C_(sp3)–C_(sp3)bonds.This work provides a low-cost catalyst to obtain high-yield monomers from lignin under relatively mild conditions and would help to design catalysts with higher activity for the valorization of lignin. 展开更多
关键词 LIGNIN Mono-cycloalkanes C-C bond cleavage Pt-Nb/MOR catalyst
在线阅读 下载PDF
Interplay between the interfacial Mo–N bonds within MoC nanodot/N-doped carbon composites for efficient photocatalytic reduction of Cr(Ⅵ)and hydrogen evolution reaction
13
作者 Yufen Liu Zhi Yang +7 位作者 Yun Hau Ng Jiadong Chen Jiaxin Li Qiqi Gan Qinyou Liu Xixian Yang Yueping Fang Shengsen Zhang 《Journal of Materials Science & Technology》 2025年第12期147-156,共10页
A novel photocatalytic cocatalyst, MoC quantum dots integrated into N-doped carbon microflowers (MoC–NC), was synthesized, establishing a key Mo–N interfacial bond. The Mo–N bond's regulation was achieved by ad... A novel photocatalytic cocatalyst, MoC quantum dots integrated into N-doped carbon microflowers (MoC–NC), was synthesized, establishing a key Mo–N interfacial bond. The Mo–N bond's regulation was achieved by adjusting the pH of Mo-polydopamine precursor solutions. A composite photocatalyst, MoC–NC/CdS (MNS), was formed by in situ growth of nano-CdS on MoC–NC. The pH during synthesis, crucial for Mo–N bond formation, significantly influenced Cr(Ⅵ) reduction and H_(2) evolution performance. The optimal MNS, created at pH 9.0, demonstrated 99.2% reduction efficiency for Cr(Ⅵ) in 20 min and H_(2) evolution rate of 11.4 mmol g^(-1) h^(-1) over 3 h, outperforming Pt/CdS. Mechanistic studies and density functional theory revealed MoC–NC's role in enhancing light absorption, reaction kinetics, and electron transport, attributing to its ultra-small quantum dots and abundant Mo–N bonds. 展开更多
关键词 Photocatalysis Hydrogen evolution Cr(Ⅵ)reduction Molybdenum carbide Interfacial Mo-N chemical bond
原文传递
Cobalt-catalyzed reductive alkynylation to construct C(sp)-C(sp^(3))and C(sp)-C(sp^(2))bonds 被引量:1
14
作者 Lei Wan Yizhou Tong +1 位作者 Xi Lu Yao Fu 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第7期253-258,共6页
Transition-metal-catalyzed cross-electrophile coupling has emerged as a reliable method for constructing carbon–carbon bonds.Herein,we report a general method,cobalt-catalyzed reductive alkynylation,to construct C(sp... Transition-metal-catalyzed cross-electrophile coupling has emerged as a reliable method for constructing carbon–carbon bonds.Herein,we report a general method,cobalt-catalyzed reductive alkynylation,to construct C(sp)-C(sp^(3))and C(sp)-C(sp^(2))bonds.This presented reaction has a broad substrate scope,enabling the efficient cross-electrophile coupling between alkynyl bromides with alkyl halides and aryl or alkenyl(pseudo)halides.This presented reaction is conducted under mild conditions,tolerating many functional groups,thus suitable for the modification and synthesis of biologically active molecules. 展开更多
关键词 Cobalt-catalysis Cross-electrophile coupling Carbon-carbon bond formation Reductive alkynylation Alkyne synthesis
原文传递
Thermally Conductive,Healable Glass Fiber Cloth Reinforced Polymer Composite based onβ-Hydroxyester Bonds Crosslinked Epoxy with Improved Heat Resistance 被引量:1
15
作者 Fang Chen Xiao-Yan Pang +2 位作者 Ze-Ping Zhang Min-Zhi Rong Ming-Qiu Zhang 《Chinese Journal of Polymer Science》 SCIE EI CAS CSCD 2024年第5期643-654,I0009,共13页
To simultaneously endow thermal conductivity,high glass transition temperature(Tg)and healing capability to glass fiber/epoxy(GFREP)composite,dynamic crosslinked epoxy resin bearing reversibleβ-hydroxyl ester bonds w... To simultaneously endow thermal conductivity,high glass transition temperature(Tg)and healing capability to glass fiber/epoxy(GFREP)composite,dynamic crosslinked epoxy resin bearing reversibleβ-hydroxyl ester bonds was reinforced with boron nitride nanosheets modified glass fiber cloth(GFC@BNNSs).The in-plane heat conduction paths were constructed by electrostatic self-assembly of polyacrylic acid treated GFC and polyethyleneimine decorated BNNSs.Then,the GFC@BNNSs were impregnated with the mixture of lower concentration(3-glycidyloxypropyl)trimethoxysilane grafted BN micron sheets,3,4-epoxycyclohexylmethyl 3,4-epoxycyclohexanecarboxylate and hexahydro-4-methylphthalic anhydride,which accounted for establishing the through-plane heat transport pathways and avoiding serious deterioration of mechanical performances.The resultant GFREP composite containing less boron nitride particles(17.6 wt%)exhibited superior in-plane(3.29 W·m^(-1)·K^(-1))and through-plane(1.16 W·m^(-1)·K^(-1))thermal conductivities,as well as high Tg of 204℃(Tg of the unfilled epoxy=177℃).The reversible transesterification reaction enabled closure of interlaminar cracks within the composite,achieving decent healing efficiencies estimated by means of tensile strength(71.2%),electrical breakdown strength(83.6%)and thermal conductivity(69.1%).The present work overcame the disadvantages of conventional thermally conductive composites,and provided an efficient approach to prolong the life span of thermally conductive GFREP laminate for high-temperature resistant integrated circuit application. 展开更多
关键词 Thermally conductive composites Boron nitride High-temperature resistance β-Hydroxyl ester bond HEALING
原文传递
Configuring single-layer MXene nanosheet onto natural wood fiber via C-Ti-C covalent bonds for high-stability Li-S batteries
16
作者 Yangyang Chen Yu Liao +5 位作者 Ying Wu Lei Li Zhen Zhang Sha Luo Yiqiang Wu Yan Qing 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期701-711,I0016,共12页
Lithium-sulfur batteries(LSBs)are considered promising candidates for next-generation battery technologies owing to their outstanding theoretical energy density and cost-effectiveness.However,the low conductivity and ... Lithium-sulfur batteries(LSBs)are considered promising candidates for next-generation battery technologies owing to their outstanding theoretical energy density and cost-effectiveness.However,the low conductivity and polysulfide shuttling effect of S cathodes severely hamper the practical performance of LSBs.Herein,in situ-generated single layer MXene nanosheet/hierarchical porous carbonized wood fiber(MX/PCWF)composites are prepared via a nonhazardous eutectic activation strategy coupled with pyrolysis-induced gas diffusion.The unique architecture,wherein single layer MXene nanosheets are constructed on carbonized wood fiber walls,ensures rapid polysulfide conversion and continuous electron transfer for redox reactions.The C-Ti-C bonds formed between MXene and PCWF can considerably expedite the conversion of polysulfides,effectively suppressing the shuttle effect.An impressive capacity of 1301.1 m A h g^(-1)at 0.5 C accompanied by remarkable stability is attained with the MX/PCWF host,as evidenced by the capacity maintenance of 722.6 m A h g^(-1)after 500 cycles.Notably,the MX/PCWF/S cathode can still deliver a high capacity of 886.8 m A h g^(-1)at a high S loading of 5.6 mg cm^(-2).The construction of two-dimensional MXenes on natural wood fiber walls offers a competitive edge over S-based cathode materials and demonstrates a novel strategy for developing high-performance batteries. 展开更多
关键词 Lithium-sulfur batteries S cathodes MXene nanosheets Wood fiber C-Ti-C bonds
在线阅读 下载PDF
Design method of extractant for liquid-liquid extraction based on elements and chemical bonds
17
作者 Yuwen Wei Chunling Zhang +4 位作者 Yue Zhang Lili Wang Li Xia Xiaoyan Sun Shuguang Xiang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第4期193-202,共10页
In the petrochemical industry process, the relative volatility between the components to be separated is close to one or the azeotrope that systems are difficult to separate. Liquid-liquid extraction is a common and e... In the petrochemical industry process, the relative volatility between the components to be separated is close to one or the azeotrope that systems are difficult to separate. Liquid-liquid extraction is a common and effective separation method, and selecting an extraction agent is the key to extraction technology research. In this paper, a design method of extractants based on elements and chemical bonds was proposed. A knowledge-based molecular design method was adopted to pre-select elements and chemical bond groups. The molecules were automatically synthesized according to specific combination rules to avoid the problem of “combination explosion” of molecules. The target properties of the extractant were set, and the extractant meeting the requirements was selected by predicting the correlation physical properties of the generated molecules. Based on the separation performance of the extractant in liquid-liquid extraction and the relative importance of each index, the fuzzy comprehensive evaluation membership function was established, the analytic hierarchy process determined the mass ratio of each index, and the consistency test results were passed. The results of case study based on quantum chemical analysis demonstrated that effective determination of extractants for the analysis of benzene-cyclohexane systems. The results unanimously prove that the method has important theoretical significance and application value. 展开更多
关键词 Molecular design Element and chemical bonds Molecular simulation THERMODYNAMICS Solvent extraction
在线阅读 下载PDF
Unlocking the Potential of Poly(butylene succinate)through Incorporation of Vitrimeric Network Based on Dynamic Imine Bonds
18
作者 Shan-Song Wu Hui-Juan Lu +2 位作者 Yi-Dong Li Shui-Dong Zhang Jian-Bing Zeng 《Chinese Journal of Polymer Science》 SCIE EI CAS CSCD 2024年第10期1414-1424,I0006,共12页
Poly(butylene succinate)(PBS)exhibits many advantages,such as renewability,biodegradability,and impressive thermal and mechanical properties,but is limited by the low melt viscosity and strength resulted from the line... Poly(butylene succinate)(PBS)exhibits many advantages,such as renewability,biodegradability,and impressive thermal and mechanical properties,but is limited by the low melt viscosity and strength resulted from the linear structure.To address this,vitrimeric network was introduced to synthesize PBS vitrimers(PBSVs)based on dynamic imine bonds through melt polymerization of hydroxyl-terminated PBS with vanillin derived imine containing compound and hexamethylene diisocyanate using trimethylolpropane as a crosslinking monomer.PBSVs with different crosslinking degrees were synthesized through changing the content of the crosslinking monomer.The effect of crosslinking degree on the thermal,theological,mechanical properties,and stress relaxation behavior of the PBSVs was studied in detail.The results demonstrated that the melt viscosity,melt strength,and heat resistance were enhanced substantially without obvious depression in crystallizability,thermal stability,and mechanical properties through increasing crosslinking degree.In addition,the PBSVs exhibit thermal reprocessability with mechanical properties recovered by more than 90%even after processing for three times.Furthermore,PBSV with improved melt properties shows significantly improved foamability compared to commercial PBS.This research contributes to the advancement of polymer technology by successfully developing PBS vitrimers with improved properties,showcasing their potential applications in sustainable and biodegradable materials. 展开更多
关键词 Poly(butylene succinate) Vitrimer Imine bonds FOAMABILITY
原文传递
Electricity-driven enantioselective cross-dehydrogenative coupling of two C(sp^(3))-H bonds enabled by organocatalysis
19
作者 Yuemin Chen Yunqi Wu +3 位作者 Guoao Wang Feihu Cui Haitao Tang Yingming Pan 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第9期130-134,共5页
An efficient and scalable electrochemical asymmetric protocol with metal-free catalysts and even without additional oxidants for the cross-dehydrogenative coupling reaction(CDC)of two C(sp^(3))-H bonds is reported.A s... An efficient and scalable electrochemical asymmetric protocol with metal-free catalysts and even without additional oxidants for the cross-dehydrogenative coupling reaction(CDC)of two C(sp^(3))-H bonds is reported.A series of aldehydes including natural products and various substrates containing C(sp^(3))-H bonds including xanthenes,acridines,cycloheptatrienes and even diarylmethane have been shown to undergo asymmetric CDC to afford a series of carbon-carbon bond coupling products with up to 94%yield and 98%ee.Mechanistic studies such as radical clock experiment suggest that the reaction proceeds via nucleophilic attack by enamine under electrochemical conditions. 展开更多
关键词 AMINOCATALYSIS ELECTROCHEMISTRY Asymmetric catalysis CDC of C(sp^(3))-H bonds
原文传递
Investigation on UV-curing Reprocessable Thermosets Bearing Hindered Urea Bonds and Their Composites with Modified Zinc Oxide Nanoparticles
20
作者 Jun-Hao Zhou Li-Ming Tang 《Chinese Journal of Polymer Science》 SCIE EI CAS CSCD 2024年第6期751-765,共15页
In this study,a series of hindered urea bond(HUB)containing polyurethane-urea methacrylate prepolymers and a none HUB containing polyurethane methacrylate prepolymer were prepared using isobornyl methacrylate as the r... In this study,a series of hindered urea bond(HUB)containing polyurethane-urea methacrylate prepolymers and a none HUB containing polyurethane methacrylate prepolymer were prepared using isobornyl methacrylate as the reactive diluent via one-pot procedure.The prepolymers were characterized fully by various techniques.Then,their thermosets were fabricated via UV curing in presence of a photo initiator,and their mechanical property and thermal behavior were investigated and compared.Different from the none HUB containing thermoset,the HUB containing thermosets(defined as PUT)could be recycled and reprocessed by hot press under relatively mild conditions with high recovery ratio of mechanical property.Furthermore,zinc oxide(ZnO)nanoparticles were modified with 3-(trimethoxysilyl)propyl methacrylate and the modified ZnO(defined as ZnO-TPM)was dispersed and polymerized into PUT matrix to prepare their nanocomposites.The influence of ZnO-TPM on the mechanical performance of the composites was evaluated,which indicated that the Young’s modulus and tensile strength increased gradually to the maximum values at ZnO-TPM content of 1 wt%and then decreased.The composites also displayed good reprocessability with improved recovery ratio compared to the pure PUT sample.In addition,the composite materials exhibited strong UV absorption capacity,implying their potential application in the circumstance where UV-shielding was required. 展开更多
关键词 Polyurethane-urea methacrylate Hindered urea bond ZnO nanoparticles REPROCESSING UV curing
原文传递
上一页 1 2 205 下一页 到第
使用帮助 返回顶部