This review presents a thorough survey of the roll bonding process with a focus on the bimetallic bars/tubes as well as the bonding models and criteria.The review aims to provide insight into cold,hot and cryogenic bo...This review presents a thorough survey of the roll bonding process with a focus on the bimetallic bars/tubes as well as the bonding models and criteria.The review aims to provide insight into cold,hot and cryogenic bonding mechanisms at the micro and atomic scale and act as a guide for researchers working on roll bonding,other joining processes and bonding simulation.Mean-while,the shortcomings of roll bonding processes are presented from the aspect of formable shapes,while bonding models are shown from the aspect of calculation time,convergence,interface behav-ior of dissimilar materials as well as hot bonding status prediction.Two well-accepted numerical methodologies of bonding models,namely the contact algorithm and cohesive zone model(CZM)of bonding models and in simulations of the bonding process are highlighted.Particularly,recent advances and trends in the application of the combination of mechanical interlocking and metallurgical bonding,special energy fields,gradient structure,novel materials,green technology and soft computing method in the roll bonding process are also discussed.The challenges for advancing and prospects of the roll bonding process and bonding model are presented in an attempt to shed some light on the future research direction.展开更多
The basic force and bonding energy in wafer bonding have been revealed in this study. The basic cause for bonding contributes to the interatomic attractive forces between surfaces or the reduction of surface energies....The basic force and bonding energy in wafer bonding have been revealed in this study. The basic cause for bonding contributes to the interatomic attractive forces between surfaces or the reduction of surface energies. The amplitude of roughness component can not exceed the criterion if wafer pair is bondable. The bonding behavior and challenge during annealing have been investigated.展开更多
Anisotropic NdFeB/SmCoCuFeZr composite bonded magnets were prepared by warm compaction process. The effects of adding SmCoCuFeZr magnetic powder on the properties of anisotropic bonded NdFeB magnet were investigated i...Anisotropic NdFeB/SmCoCuFeZr composite bonded magnets were prepared by warm compaction process. The effects of adding SmCoCuFeZr magnetic powder on the properties of anisotropic bonded NdFeB magnet were investigated in this work. The results show that, both magnetic properties and temperature stability of the bonded magnet can be improved by adding fine SmCoCuFeZr magnetic powder. In the present study, the optimal content of SmCoCuFeZr magnetic powder was about 20 wt.%, in this case, the Br, Hcj, and(BH)maxof the NdFeB/SmCoCuFeZr composite magnet achieved 0.943 T, 1250 kA/m, and168 kJ/m^3, respectively.展开更多
Sealing quality strongly affects heat pipe performance, but few studies focus on the process of heat pipe sealing. Cold welding sealing technology based on a stamping process is applied for heat pipe sealing. The bond...Sealing quality strongly affects heat pipe performance, but few studies focus on the process of heat pipe sealing. Cold welding sealing technology based on a stamping process is applied for heat pipe sealing. The bonding mechanism of the cold welding sealing process (CWSP) is investigated and compared with the experimental results obtained from the bonding interface analysis. An orthogonal experiment is conducted to observe the effects of various parameters, including the sealing gap, sealing length, sealing diameter, and sealing velocity on bonding strength. A method with the utilization of saturated vapor pressure inside a copper tube is proposed to evaluate bonding strength. A corresponding finite element model is developed to investigate the effects of sealing gap and sealing velocity on plastic deformation during the cold welding process. Effects of various parameters on the bonding strength are determined and it is found that the sealing gap is the most critical factor and that the sealing velocity contributes the least effect. The best parameter combination (AIB3CID3, with a 0.5 mm sealing gap, 6 mm sealing length, 3.8 mm sealing diameter, and 50 mm/s sealing velocity) is derived within the experimental parameters. Plastic deformation results derived from the finite element model are consistent with those from the experiment. The instruction for the CWSP of heat pipes and the design of sealing dies of heat pipes are provided.展开更多
The process of the epoxy-bonded Sm_2TM_(17) magnets includes:(1)after melting,the ingots are treated by solid soluiion,and then aged and pulverized;(2)the obtained alloy powder is mixed with epoxy resin bind- er;(3)th...The process of the epoxy-bonded Sm_2TM_(17) magnets includes:(1)after melting,the ingots are treated by solid soluiion,and then aged and pulverized;(2)the obtained alloy powder is mixed with epoxy resin bind- er;(3)the mixture is pressed in a magnetic field;(4)the compacts are cured.When the SmCo_(4.9)Fe_(2.7)Cu_(0.54)Zr_(0.13) alloy is heat treated and pressed with optimum pressing parameters,the high quality bonded magnets with B_r=8250 G,_iH_c=13000 Oe,and(BH)_(max)=16MGOe can be obtained.The stability of the magnets is studied also.The irreversible loss of O.C.(open circuit)remanence B_r in the temperature range between 25 and 150℃,is less than 4%.The average temperature coefficient at temperatures between 25 and 70℃ is-0.03%/℃.The magnets obtained have heat resistance up to 130℃ even in long-term service, and have good corrosion resistance in acid,alkali and salt solutions.展开更多
The demagnetization process and the coercivity mechanism for amsotropic HDDR Nd(Fe,Co)B bonded magnets were studied by comparing the dependence of coercivity on the alignment field applied while the powders were press...The demagnetization process and the coercivity mechanism for amsotropic HDDR Nd(Fe,Co)B bonded magnets were studied by comparing the dependence of coercivity on the alignment field applied while the powders were pressed. The results showed that both the remanence and the coercivity of magnet increased with increasing alignment field. The demagnetization process of the magnet can be classified as the nucleation process inside the grains and the domain-wall motion between the grains. The combined effect of two processes determines the coercivity of HDDR NdFeB bonded magnets.展开更多
An air parametric array can generate a highly directional beam of audible sound in air,which has a wide range of applications in targeted audio delivery.Capacitive micromachined ultrasonic transducer(CMUTs)have great ...An air parametric array can generate a highly directional beam of audible sound in air,which has a wide range of applications in targeted audio delivery.Capacitive micromachined ultrasonic transducer(CMUTs)have great potential for air-coupled applications,mainly because of their low acoustic impedance.In this study,an air-coupled CMUT array is designed as an air parametric array.A hexagonal array is proposed to improve the directivity of the sound generated.A finite element model of the CMUT is established in COMSOL software to facilitate the choice of appropriate structural parameters of the CMUT cell.The CMUT array is then fabricated by a wafer bonding process with high consistency.The performances of the CMUT are tested to verify the accuracy of the finite element analysis.By optimizing the component parameters of the bias-T circuit used for driving the CMUT,DC and AC voltages can be effectively applied to the top and bottom electrodes of the CMUT to provide efficient ultrasound transmission.Finally,the prepared hexagonal array is successfully used to conduct preliminary experiments on its application as an air parametric array.展开更多
A reliability of flip-chip bonded die as a function of anisotropic conductive paste (ACP) hybrid materials, bonding conditions, and antenna pattern materials was investigated during the assembly of radio frequency ide...A reliability of flip-chip bonded die as a function of anisotropic conductive paste (ACP) hybrid materials, bonding conditions, and antenna pattern materials was investigated during the assembly of radio frequency identification(RFID) inlay. The optimization condition for flip-chip bonding was determined from the behavior of bonding strength. Under the optimized condition, the shear strength for the antenna printed with paste-type Ag ink was larger than that for Cu antenna. Furthermore, an identification distance was varied from the antenna materials. Comparing with the Ag antenna pattern, the as-bonded die on Cu antenna showed a larger distance of identification. However, the long-term reliability of inlay using the Cu antenna was decreased significantly as a function of aging time at room temperature because of the bended shape of Cu antenna formed during the flip-chip bonding process.展开更多
基金supported by the National Key R&D Program of China(No.:2018YFA0707300)National Natural Science Foundation of China(No.:51905372)+1 种基金Major Program of National Natural Science Foundation of China(No.:U1710254)Fundamental Research Program of Shanxi Province(No.:20210302124115).
文摘This review presents a thorough survey of the roll bonding process with a focus on the bimetallic bars/tubes as well as the bonding models and criteria.The review aims to provide insight into cold,hot and cryogenic bonding mechanisms at the micro and atomic scale and act as a guide for researchers working on roll bonding,other joining processes and bonding simulation.Mean-while,the shortcomings of roll bonding processes are presented from the aspect of formable shapes,while bonding models are shown from the aspect of calculation time,convergence,interface behav-ior of dissimilar materials as well as hot bonding status prediction.Two well-accepted numerical methodologies of bonding models,namely the contact algorithm and cohesive zone model(CZM)of bonding models and in simulations of the bonding process are highlighted.Particularly,recent advances and trends in the application of the combination of mechanical interlocking and metallurgical bonding,special energy fields,gradient structure,novel materials,green technology and soft computing method in the roll bonding process are also discussed.The challenges for advancing and prospects of the roll bonding process and bonding model are presented in an attempt to shed some light on the future research direction.
文摘The basic force and bonding energy in wafer bonding have been revealed in this study. The basic cause for bonding contributes to the interatomic attractive forces between surfaces or the reduction of surface energies. The amplitude of roughness component can not exceed the criterion if wafer pair is bondable. The bonding behavior and challenge during annealing have been investigated.
基金Project supported by the Natural Science Foundation of Jiangsu Province,China(BK20171408)the Graduate Student Innovation Foundation of Jiangsu Province(201711276005Z)Scientific Foundation of Nanjing Institute of Technology(CKJB201402,and YKJ201506)
文摘Anisotropic NdFeB/SmCoCuFeZr composite bonded magnets were prepared by warm compaction process. The effects of adding SmCoCuFeZr magnetic powder on the properties of anisotropic bonded NdFeB magnet were investigated in this work. The results show that, both magnetic properties and temperature stability of the bonded magnet can be improved by adding fine SmCoCuFeZr magnetic powder. In the present study, the optimal content of SmCoCuFeZr magnetic powder was about 20 wt.%, in this case, the Br, Hcj, and(BH)maxof the NdFeB/SmCoCuFeZr composite magnet achieved 0.943 T, 1250 kA/m, and168 kJ/m^3, respectively.
基金Supported by National Natural Science Foundation of China(Grant Nos.51175186,51675185)Guangdong Provincial Natural Science Foundation of China(Grant No.S2013020012757)EU project PIIF-GA-2012-332304(Grant No.ESR332304)
文摘Sealing quality strongly affects heat pipe performance, but few studies focus on the process of heat pipe sealing. Cold welding sealing technology based on a stamping process is applied for heat pipe sealing. The bonding mechanism of the cold welding sealing process (CWSP) is investigated and compared with the experimental results obtained from the bonding interface analysis. An orthogonal experiment is conducted to observe the effects of various parameters, including the sealing gap, sealing length, sealing diameter, and sealing velocity on bonding strength. A method with the utilization of saturated vapor pressure inside a copper tube is proposed to evaluate bonding strength. A corresponding finite element model is developed to investigate the effects of sealing gap and sealing velocity on plastic deformation during the cold welding process. Effects of various parameters on the bonding strength are determined and it is found that the sealing gap is the most critical factor and that the sealing velocity contributes the least effect. The best parameter combination (AIB3CID3, with a 0.5 mm sealing gap, 6 mm sealing length, 3.8 mm sealing diameter, and 50 mm/s sealing velocity) is derived within the experimental parameters. Plastic deformation results derived from the finite element model are consistent with those from the experiment. The instruction for the CWSP of heat pipes and the design of sealing dies of heat pipes are provided.
文摘The process of the epoxy-bonded Sm_2TM_(17) magnets includes:(1)after melting,the ingots are treated by solid soluiion,and then aged and pulverized;(2)the obtained alloy powder is mixed with epoxy resin bind- er;(3)the mixture is pressed in a magnetic field;(4)the compacts are cured.When the SmCo_(4.9)Fe_(2.7)Cu_(0.54)Zr_(0.13) alloy is heat treated and pressed with optimum pressing parameters,the high quality bonded magnets with B_r=8250 G,_iH_c=13000 Oe,and(BH)_(max)=16MGOe can be obtained.The stability of the magnets is studied also.The irreversible loss of O.C.(open circuit)remanence B_r in the temperature range between 25 and 150℃,is less than 4%.The average temperature coefficient at temperatures between 25 and 70℃ is-0.03%/℃.The magnets obtained have heat resistance up to 130℃ even in long-term service, and have good corrosion resistance in acid,alkali and salt solutions.
文摘The demagnetization process and the coercivity mechanism for amsotropic HDDR Nd(Fe,Co)B bonded magnets were studied by comparing the dependence of coercivity on the alignment field applied while the powders were pressed. The results showed that both the remanence and the coercivity of magnet increased with increasing alignment field. The demagnetization process of the magnet can be classified as the nucleation process inside the grains and the domain-wall motion between the grains. The combined effect of two processes determines the coercivity of HDDR NdFeB bonded magnets.
基金the National Key R&D Program of China(Nos.2017YFA0205103 and 2018YFE020505)the National Natural Science Foundation of China(Nos.81571766 and 61771337)+1 种基金the Natural Science Foundation of Tianjin,China(No.17JCYBJC24400)the“111”Project of China(No.B07014).
文摘An air parametric array can generate a highly directional beam of audible sound in air,which has a wide range of applications in targeted audio delivery.Capacitive micromachined ultrasonic transducer(CMUTs)have great potential for air-coupled applications,mainly because of their low acoustic impedance.In this study,an air-coupled CMUT array is designed as an air parametric array.A hexagonal array is proposed to improve the directivity of the sound generated.A finite element model of the CMUT is established in COMSOL software to facilitate the choice of appropriate structural parameters of the CMUT cell.The CMUT array is then fabricated by a wafer bonding process with high consistency.The performances of the CMUT are tested to verify the accuracy of the finite element analysis.By optimizing the component parameters of the bias-T circuit used for driving the CMUT,DC and AC voltages can be effectively applied to the top and bottom electrodes of the CMUT to provide efficient ultrasound transmission.Finally,the prepared hexagonal array is successfully used to conduct preliminary experiments on its application as an air parametric array.
基金supported by the Ministry of Commerce, Industry and Energy (MOCIE) of Korea (10031777)
文摘A reliability of flip-chip bonded die as a function of anisotropic conductive paste (ACP) hybrid materials, bonding conditions, and antenna pattern materials was investigated during the assembly of radio frequency identification(RFID) inlay. The optimization condition for flip-chip bonding was determined from the behavior of bonding strength. Under the optimized condition, the shear strength for the antenna printed with paste-type Ag ink was larger than that for Cu antenna. Furthermore, an identification distance was varied from the antenna materials. Comparing with the Ag antenna pattern, the as-bonded die on Cu antenna showed a larger distance of identification. However, the long-term reliability of inlay using the Cu antenna was decreased significantly as a function of aging time at room temperature because of the bended shape of Cu antenna formed during the flip-chip bonding process.