期刊文献+
共找到341,800篇文章
< 1 2 250 >
每页显示 20 50 100
Experimental and Numerical Study of Bonding Capacity of Interface between Ultra-High Performance Concrete and Steel Tube 被引量:1
1
作者 Ruikun Xu Jiu Li +1 位作者 Wenjie Li Wei Zhang 《Structural Durability & Health Monitoring》 2025年第2期285-305,共21页
This study investigates the bond performance at the interfacial region shared by Ultra-High Performance Concrete(UHPC)and steel tubes through push-out tests.This study examines how changes in steel fiber volumetric ra... This study investigates the bond performance at the interfacial region shared by Ultra-High Performance Concrete(UHPC)and steel tubes through push-out tests.This study examines how changes in steel fiber volumetric ratio and thickness of steel tube influence the bond strength characteristics.The results show that as the enhancement of the steel tube wall thickness,the ultimate bond strength at the interface improves significantly,whereas the initial bond strength exhibits only slight variations.The influence of steel fiber volumetric ratio presents a nonlinear trend,with initial bond strength decreasing at low fiber content and increasing significantly as fiber content rises.Additionally,finite element(FE)simulations were applied to replicate the experimental conditions,and the outcomes showed strong correlation with the experimental data,confirming the exactitude of the FE model in predicting the bond behavior at the UHPC-Steel interface.These findings provide valuable insights for optimizing the design of UHPC-Filled steel tubes in high-performance structure. 展开更多
关键词 Ultra-high performance concrete filled steel tube(UHPCFST) push-out test bonding capacity cohesive zone model
在线阅读 下载PDF
Hydrogen-Bonding-Crosslinked Polyzwitterionic Hydrogelswith Extreme Stretchability, Ultralow Hysteresis, Self-adhesion,and Antifreezing Performance as Flexible Self-powered ElectronicDevices 被引量:2
2
作者 Siyu Bao Hongying Wang +5 位作者 Baocheng Liu Chenhao Huang Jingguo Deng Wenjie Ren Yongmao Li Jianhai Yang 《Transactions of Tianjin University》 2025年第1期15-28,共14页
Flexible strain sensors have received tremendous attention because of their potential applications as wearable sensing devices.However, the integration of key functions into a single sensor, such as high stretchabilit... Flexible strain sensors have received tremendous attention because of their potential applications as wearable sensing devices.However, the integration of key functions into a single sensor, such as high stretchability, low hysteresis, self-adhesion, andexcellent antifreezing performance, remains an unmet challenge. In this respect, zwitterionic hydrogels have emerged asideal material candidates for breaking through the above dilemma. The mechanical properties of most reported zwitterionichydrogels, however, are relatively poor, significantly restricting their use under load-bearing conditions. Traditional improve-ment approaches often involve complex preparation processes, making large-scale production challenging. Additionally,zwitterionic hydrogels prepared with chemical crosslinkers are typically fragile and prone to irreversible deformation underlarge strains, resulting in the slow recovery of structure and function. To fundamentally enhance the mechanical properties ofpure zwitterionic hydrogels, the most effective approach is the regulation of the chemical structure of zwitterionic monomersthrough a targeted design strategy. This study employed a novel zwitterionic monomer carboxybetaine urethane acrylate(CBUTA), which contained one urethane group and one carboxybetaine group on its side chain. Through the direct polym-erization of ultrahigh concentration monomer solutions without adding any chemical crosslinker, we successfully developedpure zwitterionic supramolecular hydrogels with significantly enhanced mechanical properties, self-adhesive behavior, andantifreezing performance. Most importantly, the resultant zwitterionic hydrogels exhibited high tensile strength and tough-ness and displayed ultralow hysteresis under strain conditions up to 1100%. This outstanding performance was attributedto the unique liquid–liquid phase separation phenomenon induced by the ultrahigh concentration of CBUTA monomers inan aqueous solution, as well as the enhanced polymer chain entanglement and the strong hydrogen bonds between urethanegroups on the side chains. The potential application of hydrogels in strain sensors and high-performance triboelectric nano-generators was further explored. Overall, this work provides a promising strategy for developing pure zwitterionic hydrogelsfor flexible strain sensors and self-powered electronic devices. 展开更多
关键词 ZWITTERIONIC Hydrogen bonding Mechanical enhancement Strain sensor Triboelectric nanogenerator
在线阅读 下载PDF
Microscopic-NPR bolt slurry-anchor interface bonding performance
3
作者 TAO Zhigang XI Chuanhao +3 位作者 ZHANG Jin WANG Xiang WANG Huan WANG Jiong 《Journal of Mountain Science》 2025年第5期1832-1847,共16页
The excellent bonding performance between bolt and anchor materials is crucial for controlling the deformation of deep-buried surrounding rock and strengthening the rock and soil mass in the slope.This paper conducted... The excellent bonding performance between bolt and anchor materials is crucial for controlling the deformation of deep-buried surrounding rock and strengthening the rock and soil mass in the slope.This paper conducted an anchoring test and ABAQUS numerical simulation of an anchoring system comprising a micro-NPR(microscopic negative Poisson’s ratio)bolt and cement mortar as the anchoring material.The failure mode of this system and the distribution of average bonding strength,axial force,and shear stress along the anchoring depth were studied.We also evaluated the bonding properties at the micro-NPR(microscopic negative Poisson’s ratio)bolt-cement mortar interface.The findings indicate that the cement mortar is partially spalled from the micro-NPR bolt surface.The average bonding strength at the micro-NPR bolt-cement mortar interface is positively correlated with anchoring length and cement mortar strength.In contrast,it exhibits a negative correlation with bolt diameter.The axial force is generated at the starting point of the anchorage and decreases non-uniformly across the anchoring region.The axial force transfers or diffuses toward the deeper sections of the anchoring segment with increasing loads.The shear stress at the micro-NPR bolt-cement mortar interface exhibits a single-peak pattern,i.e.,it climbs to a peak value and decreases along the anchoring depth.The peak position varies with changes in bolt diameter and anchoring length.By comparison,it is independent of cement mortar strength.The simulated bonding properties of the micro-NPR bolt-cement mortar interface are consistent with experimental results.The findings can provide a reference for engineering applications and anchoring design of micro-NPR. 展开更多
关键词 Microscopic Negative Poisson Ratio Bolt Bond performance Bolt diameter Anchor length Cement mortar strength
原文传递
Preparation of HMX-based energetic microspheres with efficient self-healing function by microchannel technology to enhance storage performance and interface bonding effect
4
作者 Wenqing Li Mianji Qiu +5 位作者 Wangjian Cheng Qian Yang Xiaohong Yan Yousheng Qiu Chongwei An Baoyun Ye 《Defence Technology(防务技术)》 2025年第10期47-59,共13页
The self-healing function is considered one of the effective ways to address structural damage and improve interfacial bonding in Energetic composite materials(ECMs).However,the currently prepared ECMs with self-heali... The self-healing function is considered one of the effective ways to address structural damage and improve interfacial bonding in Energetic composite materials(ECMs).However,the currently prepared ECMs with self-healing function have problems such as irregular particle shape and uneven distribution of components,which affect the efficient play of self-healing function.In this paper,HMX-based energetic microspheres with self-healing function were successfully prepared by microchannel technology,which showed excellent self-healing effect in both Polymer-bonded explosives(PBXs)and Composite solid propellants(CSPs).The experimental results show that the HMX-based energetic microspheres with different binder contents prepared by microchannel technology show regular shape,HMX crystal particles are uniformly wrapped by self-healing binder(GAPU).When the content of GAPU in HMX-based energetic microspheres is 10%,PBXs show excellent self-healing effect and mechanical safety is improved by 400%(raw HMX vs S4,5 J vs 25 J).As a high-energy component,the burning rate of CSPs is increased by 359.4%,the time(burning temperature>1700℃)is prolonged by 333.3%,and the maximum impulse force is increased by 107.3%(CSP-H vs CSP-S4,0.84 mm/s vs 3.87 mm/s,0.06 s vs 0.26 s,0.82 m N vs 1.70 m N).It also has excellent storage performance.The preparation of HMX-based energetic microspheres with self-healing function by microchannel technology provides a new strategy to improve the storage performance of ECMs and the combustion performance of CSPs. 展开更多
关键词 SELF-HEALING HMX Microchannel technology Storage performance Combustion performance
在线阅读 下载PDF
Process and Bonding Performance of ZrO_(2) Thermal Barrier Coatings with Dense Vertical Cracks by High Energy Plasma Spray
5
作者 YANG Qinqian NIU Yunsong +2 位作者 HUANG Di BAO Zebin ZHU Shenglong 《China's Refractories》 2025年第3期24-29,共6页
In order to prolong the service life of ZrO_(2) thermal barrier coatings,HS188 alloy was used as the substrate,and NiCrAlY powder(base layer,d_(50)=106μm)and yttria stabilized zirconia(YSZ,d_(50)=50μm)were employed ... In order to prolong the service life of ZrO_(2) thermal barrier coatings,HS188 alloy was used as the substrate,and NiCrAlY powder(base layer,d_(50)=106μm)and yttria stabilized zirconia(YSZ,d_(50)=50μm)were employed as the sprayed feeder to prepare NiCrALY+YSZ thermal barrier coatings using high-energy plasma spraying equipment with a progressive exploration method.The microstructure of the coatings was controlled by adjusting the stand-off distance(85,95,105 and 115 mm)and air-cooling manner(rear air cooling,rear air cooling+gun cooling,front air cooling,and front air cooling+gun cooling).The bonding strength of the coatings was evaluated by the drawing method.The results indicate that under the conditions of long stand-off distance and low cooling rate,it is difficult for the coatings to form a vertical crack structure due to the low instantaneous heating temperature and insufficient quenching on the sample surface.However,when the instantaneous heating temperature reaches the critical value and the air cooling rate is excessive,un-melted spray particles exist.When the stand-off distance is 85 mm and the cooling method is front air cooling,a thermal barrier ceramic coating with vertical crack morphology was obtained on HS188 alloy.Simultaneously,it has a moderate density of vertical cracks,the highest bonding strength and the best toughness. 展开更多
关键词 high-energy plasma spraying thermal barrier coating stand-off distance air-cooling bonding strength
在线阅读 下载PDF
TA15/TaZrNb multi-element alloy prepared via diffusion bonding:Tensile-strength model and performance of a representative volume element embedded with a sphere
6
作者 Wei Chen Fenglei Huang +4 位作者 Chuanting Wang Ruijun Fan Pengjie Zhang Lida Che Aiguo Pi 《Defence Technology(防务技术)》 2025年第8期36-51,共16页
In this study, to meet the development and application requirements for high-strength and hightoughness energetic structural materials, a representative volume element of a TA15 matrix embedded with a TaZrNb sphere wa... In this study, to meet the development and application requirements for high-strength and hightoughness energetic structural materials, a representative volume element of a TA15 matrix embedded with a TaZrNb sphere was designed and fabricated via diffusion bonding. The mechanisms of the microstructural evolution of the TaZrNb/TA15 interface were investigated via SEM, EBSD, EDS, and XRD.Interface mechanical property tests and in-situ tensile tests were conducted on the sphere-containing structure, and an equivalent tensile-strength model was established for the structure. The results revealed that the TA15 titanium alloy and joint had high density and no pores or cracks. The thickness of the planar joint was approximately 50-60 μm. The average tensile and shear strengths were 767 MPa and 608 MPa, respectively. The thickness of the spherical joint was approximately 60 μm. The Zr and Nb elements in the joint diffused uniformly and formed strong bonds with Ti without forming intermetallic compounds. The interface exhibited submicron grain refinement and a concave-convex interlocking structure. The tensile fracture surface primarily exhibited intergranular fracture combined with some transgranular fracture, which constituted a quasi-brittle fracture mode. The shear fracture surface exhibited brittle fracture with regular arrangements of furrows. Internal fracture occurred along the spherical interface, as revealed by advanced in-situ X-ray microcomputed tomography. The experimental results agreed well with the theoretical predictions, indicating that the high-strength interface contributes to the overall strength and toughness of the sphere-containing structure. 展开更多
关键词 Diffusion bonding Multi-element alloy Joint microstructure In-situ mechanical test X-ray mCT Sphere-containing structure
在线阅读 下载PDF
Mechanism of enhancing NH_(3)-SCR performance of Mn-Ce/AC catalyst by the structure regulation of activated carbon with calcite in coal
7
作者 NIU Jian LI Yuhang +4 位作者 BAI Baofeng WEN Chaolu LI Linbo ZHANG Huirong GUO Shaoqing 《燃料化学学报(中英文)》 北大核心 2026年第1期69-79,共11页
To elucidate the effect of calcite-regulated activated carbon(AC)structure on low-temperature denitrification performance of SCR catalysts,this work prepared a series of Mn-Ce/De-AC-xCaCO_(3)(x is the calcite content ... To elucidate the effect of calcite-regulated activated carbon(AC)structure on low-temperature denitrification performance of SCR catalysts,this work prepared a series of Mn-Ce/De-AC-xCaCO_(3)(x is the calcite content in coal)catalysts were prepared by the incipient wetness impregnation method,followed by acid washing to remove calcium-containing minerals.Comprehensive characterization and low-temperature denitrification tests revealed that calcite-induced structural modulation of coal-derived AC significantly enhances catalytic activity.Specifically,NO conversion increased from 88.3%of Mn-Ce/De-AC to 91.7%of Mn-Ce/De-AC-1CaCO_(3)(210℃).The improved SCR denitrification activity results from the enhancement of physicochemical properties including higher Mn^(4+)content and Ce^(4+)/Ce^(3+)ratio,an abundance of chemisorbed oxygen and acidic sites,which could strengthen the SCR reaction pathways(richer NH_(3)activated species and bidentate nitrate active species).Therefore,NO removal is enhanced. 展开更多
关键词 CALCITE activated carbon structure Mn-Ce/AC catalyst NH_(3)-SCR performance
在线阅读 下载PDF
Efficient removal of diclofenac sodium from water by chitosan/microcrystalline cellulose@polyethyleneimine hydrogel beads:Adsorption performance and mechanism study
8
作者 Hongyu Wang Henglin Xiao +7 位作者 Yi Xie Xibei Tan Wenbin Guo Lu Li Rongfan Chen Bin Wang Mingfei Wang Dao Zhou 《Journal of Environmental Sciences》 2026年第1期480-489,共10页
In this study,chitosan(CS)was combined with microcrystalline cellulose(MCC)to fabricate composite hydrogel beads.These beads were further modified through blending and grafting with polyethyleneimine(PEI)to develop ch... In this study,chitosan(CS)was combined with microcrystalline cellulose(MCC)to fabricate composite hydrogel beads.These beads were further modified through blending and grafting with polyethyleneimine(PEI)to develop chitosan/microcrystalline cellulose@polyethyleneimine(CS/MCC@PEI)composite gel spheres for the efficient adsorption of diclofenac sodium(DS)from aqueous solutions.The adsorbent was characterized using scanning electron microscopy(SEM),X-ray diffraction(XRD),Fourier-transform infrared spectroscopy(FTIR),X-ray pho-toelectron spectroscopy(XPS),and thermogravimetric analysis(TGA).The CS/MCC@PEI composite exhibited a spherical morphology with a porous structure,abundant surface functional groups,and a high adsorption capac-ity of 274.84 mg/g for DS.Kinetic studies revealed that the adsorption process followed the pseudo-second-order model,dominated by physical adsorption,with both surface and internal diffusion influencing the adsorption rate.The Freundlich isotherm model best described the adsorption behavior,indicating multilayer adsorption on heterogeneous surfaces.Environmental adaptability tests demonstrated minimal interference from co-existing anions and humic acid,while regeneration experiments confirmed excellent reusability(>77%removal after five cycles).The adsorption mechanism involved electrostatic interactions and hydrogen bonding between the hydroxyl/amino groups of the composite and DS.These findings highlight the potential of CS/MCC@PEI as a cost-effective and sustainable adsorbent for DS removal from water. 展开更多
关键词 ADSORPTION CHITOSAN Microcrystalline cellulose Diclofenac sodium Hdrogen bonding
原文传递
From microstructure to performance optimization:Innovative applications of computer vision in materials science
9
作者 Chunyu Guo Xiangyu Tang +10 位作者 Yu’e Chen Changyou Gao Qinglin Shan Heyi Wei Xusheng Liu Chuncheng Lu Meixia Fu Enhui Wang Xinhong Liu Xinmei Hou Yanglong Hou 《International Journal of Minerals,Metallurgy and Materials》 2026年第1期94-115,共22页
The rapid advancements in computer vision(CV)technology have transformed the traditional approaches to material microstructure analysis.This review outlines the history of CV and explores the applications of deep-lear... The rapid advancements in computer vision(CV)technology have transformed the traditional approaches to material microstructure analysis.This review outlines the history of CV and explores the applications of deep-learning(DL)-driven CV in four key areas of materials science:microstructure-based performance prediction,microstructure information generation,microstructure defect detection,and crystal structure-based property prediction.The CV has significantly reduced the cost of traditional experimental methods used in material performance prediction.Moreover,recent progress made in generating microstructure images and detecting microstructural defects using CV has led to increased efficiency and reliability in material performance assessments.The DL-driven CV models can accelerate the design of new materials with optimized performance by integrating predictions based on both crystal and microstructural data,thereby allowing for the discovery and innovation of next-generation materials.Finally,the review provides insights into the rapid interdisciplinary developments in the field of materials science and future prospects. 展开更多
关键词 MICROSTRUCTURE deep learning computer vision performance prediction image generation
在线阅读 下载PDF
Effect of Al-Li alloy with various Li content on the energy and combustion performance of HTPB propellant
10
作者 Weiqiang Xiong Yunjie Liu +3 位作者 Tianfu Zhang Dawen Zeng Xiang Guo Aimin Pang 《Defence Technology(防务技术)》 2026年第1期30-39,共10页
In composite solid propellants with high aluminum(Al)content and low burning rate,incomplete combustion of the Al powder may occur.In this study,varying lithium(Li)content in Al-Li alloy powder was utilized instead of... In composite solid propellants with high aluminum(Al)content and low burning rate,incomplete combustion of the Al powder may occur.In this study,varying lithium(Li)content in Al-Li alloy powder was utilized instead of pure aluminum particles to mitigate agglomeration and enhance the combustion efficiency of solid propellants(Combustion efficiency herein refers to the completeness of metallic fuel oxidation,quantified as the ratio of actual-to-theoretical energy released during combustion)with high Al content and low burning rates.The impact of Al-Li alloy with different Li contents on combustion and agglomeration of solid propellant was investigated using explosion heat,combustion heat,differential thermal analysis(DTA),thermos-gravimetric analysis(TG),dynamic high-pressure combustion test,ignition experiment of small solid rocket motor(SRM)tests,condensation combustion product collection,and X-ray diffraction techniques(XRD).Compared with pure Al,Al-Li alloys exhibit higher combustion heat,which contributes to improved combustion efficiency in Al-Li alloy-containing propellants.DTA and TG analyses demonstrated higher reactivity and lower ignition temperatures for Al-Li alloys.High-pressure combustion experiments at 5 MPa showed that Al-Li alloy fuel significantly decreases combustion agglomeration.The results from theφ75 mm andφ165 mm SRM and XRD tests further support this finding.This study provides novel insights into the combustion and agglomeration behaviors of high-Al,low-burning-rate composite solid propellants and supports the potential application of Al-Li alloys in advanced propellant formulations. 展开更多
关键词 Al-Li alloy Combustion and energy performance AGGLOMERATION
在线阅读 下载PDF
Hydrogen-Bonded Interfacial Super-Assembly of Spherical Carbon Superstructures for High-Performance Zinc Hybrid Capacitors
11
作者 Yang Qin Chengmin Hu +4 位作者 Qi Huang Yaokang Lv Ziyang Song Lihua Gan Mingxian Liu 《Nano-Micro Letters》 2026年第2期88-104,共17页
Carbon superstructures with multiscale hierarchies and functional attributes represent an appealing cathode candidate for zinc hybrid capacitors,but their tailor-made design to optimize the capacitive activity remains... Carbon superstructures with multiscale hierarchies and functional attributes represent an appealing cathode candidate for zinc hybrid capacitors,but their tailor-made design to optimize the capacitive activity remains a confusing topic.Here we develop a hydrogen-bond-oriented interfacial super-assembly strategy to custom-tailor nanosheet-intertwined spherical carbon superstructures(SCSs)for Zn-ion storage with double-high capacitive activity and durability.Tetrachlorobenzoquinone(H-bond acceptor)and dimethylbenzidine(H-bond donator)can interact to form organic nanosheet modules,which are sequentially assembled,orientally compacted and densified into well-orchestrated superstructures through multiple H-bonds(N-H···O).Featured with rich surface-active heterodiatomic motifs,more exposed nanoporous channels,and successive charge migration paths,SCSs cathode promises high accessibility of built-in zincophilic sites and rapid ion diffusion with low energy barriers(3.3Ωs-0.5).Consequently,the assembled Zn||SCSs capacitor harvests all-round improvement in Zn-ion storage metrics,including high energy density(166 Wh kg-1),high-rate performance(172 m Ah g^(-1)at 20 A g^(-1)),and long-lasting cycling lifespan(95.5%capacity retention after 500,000 cycles).An opposite chargecarrier storage mechanism is rationalized for SCSs cathode to maximize spatial capacitive charge storage,involving high-kinetics physical Zn^(2+)/CF_(3)SO_(3)-adsorption and chemical Zn^(2+)redox with carbonyl/pyridine groups.This work gives insights into H-bond-guided interfacial superassembly design of superstructural carbons toward advanced energy storage. 展开更多
关键词 Hydrogen bonds Interfacial super-assembly Spherical carbon superstructures Zn hybrid capacitors Energy storage
在线阅读 下载PDF
Interfacial engineering of Al-NH_(4)CoF_(3)@P(VDF-HFP)core-shell energetic composites via electrostatic spraying:Enhanced stability and combustion performance
12
作者 Xiandie Zhang Zhijie Fan +4 位作者 Heng Xu Jinbin Zou Chongqing Deng Xiang Zhou Xiaode Guo 《Defence Technology(防务技术)》 2026年第1期210-223,共14页
Al/NH_(4)CoF_(3)-Φ(Φ=0.5,1.0,1.5,2.0,and 3.0)binary composites and Al-NH_(4)CoF_(3)@P(VDF-HFP)ternary composites are fabricated via ultrasonication-assisted blending and electrostatic spraying.The effect of equivale... Al/NH_(4)CoF_(3)-Φ(Φ=0.5,1.0,1.5,2.0,and 3.0)binary composites and Al-NH_(4)CoF_(3)@P(VDF-HFP)ternary composites are fabricated via ultrasonication-assisted blending and electrostatic spraying.The effect of equivalence ratio(Φ)on the reaction properties is systematically investigated in the binary Al/NH_(4)CoF_(3)system.For ternary systems,electrostatic spraying allows both components to be efficiently encapsulated by P(VDF-HFP)and to achieve structural stabilization and enhanced reactivity through synergistic interfacial interactions.Morphological analysis using SEM/TEM revealed that P(VDF-HFP)formed a protective layer on Al and NH_(4)CoF_(3)particles,improving dispersion,hydrophobicity(water contact angle increased by 80.5%compared to physically mixed composites),and corrosion resistance.Thermal decomposition of NH_(4)CoF_(3)occurred at 265℃,releasing NH_(3)and HF,which triggered exothermic reactions with Al.The ternary composites exhibited a narrowed main reaction temperature range and concentrated heat release,attributed to improved interfacial contact and polymer decomposition.Combustion tests demonstrated that Al-NH_(4)CoF_(3)@P(VDF-HFP)achieved self-sustaining combustion.In addition,a simple validation was done by replacing the Al component in the aluminium-containing propellant,demonstrating its potential application in the propellant field.This work establishes a novel strategy for designing stable,high-energy composites with potential applications in advanced propulsion systems. 展开更多
关键词 Anti-aging properties Low-temperature reaction Electrostatic spraying Gas generation Combustion performance
在线阅读 下载PDF
Influences of muzzle jets of aircraft guns on aerodynamic performance of wings
13
作者 Zijie Li Hao Wang 《Defence Technology(防务技术)》 2026年第1期52-63,共12页
The core components of an aircraft and the source of its lift are its wings,but lift generation is disrupted by the high temperature and pressure generated on the wing surface when an aircraft gun is fired.Here,to inv... The core components of an aircraft and the source of its lift are its wings,but lift generation is disrupted by the high temperature and pressure generated on the wing surface when an aircraft gun is fired.Here,to investigate how this process influences the aerodynamic parameters of aircraft wings,the k-ωshearstress-transport turbulence model and the nested dynamic grid technique are used to analyze numerically the transient process of the muzzle jet of a 30-mm small-caliber aircraft gun in highaltitude(10 km)flight with an incoming Mach number of Ma=0.8.For comparison,two other models are established,one with no projectile and the other with no wing.The results indicate that when the aircraft gun is fired,the muzzle jet acts on the wing,creating a pressure field thereon.The uneven distribution of high pressure greatly reduces the lift of the aircraft,causing oscillations in its drag and disrupting its dynamic balance,thereby affecting its flight speed and attitude.Meanwhile,the muzzle jet is obstructed by the wing,and its flow field is distorted and deformed,developing upward toward the wing.Because of the influence of the incoming flow,the shockwave front of the projectile changes from a smooth spherical shape to an irregular one,and the motion parameters of the projectile are also greatly affected by oscillations.The present results provide an important theoretical basis for how the guns of fighter aircraft influence the aerodynamic performance of the wings. 展开更多
关键词 Aircraft gun WING Muzzle jet Aerodynamic performance Nested moving mesh
在线阅读 下载PDF
A high-energy powder with excellent combustion reaction performance:Surface modification strategy of boron powder based on non-thermal plasma
14
作者 Kangkang Li Jianyong Xu +9 位作者 Xiaoting Lei Mengzhe Yang Jing Liu Luqi Guo Pengfei Cui Dihua Ouyang Chunpei Yu He Cheng Jiahai Ye Wenchao Zhang 《Defence Technology(防务技术)》 2026年第1期289-300,共12页
The presence of a surface oxide film(B_(2)O_(3))on boron(B)particles significantly compromises their combustion efficiency and kinetic performance in fuel-rich solid propellants.This study proposes an innovative conti... The presence of a surface oxide film(B_(2)O_(3))on boron(B)particles significantly compromises their combustion efficiency and kinetic performance in fuel-rich solid propellants.This study proposes an innovative continuous modification strategy combining non-thermal plasma(NTP)etching with fluorocarbon passivation.Characterization and kinetic analysis revealed that reactive plasma species—including atomic hydrogen(H),electronically excited molecular hydrogen(H_(2)^(*)),vibrationally excited molecular hydrogen(H_(2)v),and hydrogen ions(H^(+))—dominate the reduction of B_(2)O_(3)through lowering the transition energy barrier and shifting the reaction spontaneity.Subsequent argon plasma fragmentation of C_(8)F_(18)generates fluorocarbon radicals that form conformal passivation coatings(thickness:7 nm)on purified boron surfaces.The modified boron particles exhibit 37.5℃lower exothermic peak temperature and 27.2%higher heat release(14.8 kJ/g vs.11.6 kJ/g)compared to untreated counterparts.Combustion diagnostics reveal 194%increase in maximum flame height(135.10 mm vs.46.03 mm)and 134%enhancement in flame propagation rate(4.44 cm/s vs.1.90 cm/s).This NTP-based surface engineering approach establishes a scalable pathway for developing highperformance boron-based energetic composites. 展开更多
关键词 Oxide film materials Surface modification Boron powder Non-thermal plasma Combustion performance
在线阅读 下载PDF
Effect of Thermoelectric Cooler Arrangements on Thermal Performance and Energy Saving in Electronic Applications:An Experimental Study
15
作者 M.N.Abd-Al Ameer Iman S.Kareem Ali A.Ismaeel 《Energy Engineering》 2026年第1期511-526,共16页
Electrical and electronic devices face significant challenges in heatmanagement due to their compact size and high heat flux,which negatively impact performance and reliability.Conventional coolingmethods,such as forc... Electrical and electronic devices face significant challenges in heatmanagement due to their compact size and high heat flux,which negatively impact performance and reliability.Conventional coolingmethods,such as forced air cooling,often struggle to transfer heat efficiently.In contrast,thermoelectric coolers(TECs)provide an innovative active cooling solution to meet growing thermal management demands.In this research,a refrigerant based on mono ethylene glycol and distilled water was used instead of using gases,in addition to using thermoelectric cooling units instead of using a compressor in traditional refrigeration systems.This study evaluates the performance of a Peltierbased thermalmanagement systemby analyzing the effects of using two,three,and four Peltiermodules on cooling rates,power consumption,temperature reduction,and system efficiency.Experimental results indicate that increasing the number of Peltier modules significantly enhances cooling performance.The four-module system achieved an optimal balance between cooling speed and energy efficiency,reducing the temperature of a liquidmixture(30% mono ethylene glycol+70% distilled water plus laser dyes)to 8℃ in just 17 min.It demonstrated a cooling rate of 0.794℃/min and a high coefficient of performance(COP)of 1.2 while consuming less energy than the two-and three-module systems.Furthermore,the study revealed that increasing the number of modules led to faster air cooling and improved temperature reduction.These findings highlight the importance of selecting the optimal number of Peltier modules to enhance efficiency and cooling speed whileminimizing energy consumption.This makes TEC technology a sustainable and effective solution for applications requiring rapid and reliable thermal management. 展开更多
关键词 Energy consumption mono ethylene glycol Peltier effect performance factor(COP)
在线阅读 下载PDF
Electron-Deficient Type Electride Li_(4)Al under High Pressure:Bonding Properties and Superconductivity
16
作者 Daoyuan Zhang Yanliang Wei +3 位作者 Chenlong Xie Yilong Pan Zhao Liu Tian Cui 《Chinese Physics Letters》 2026年第1期142-155,共14页
High-pressure electrides,characterized by the presence of interstitial quasi-atoms(ISQs),possess unique electronic structures and physical properties,such as diverse dimensions of electride states exhibiting different... High-pressure electrides,characterized by the presence of interstitial quasi-atoms(ISQs),possess unique electronic structures and physical properties,such as diverse dimensions of electride states exhibiting different superconductivity,which has attracted significant attention.Here,we report a new electron-deficient type of electride Li_(4)Al and identify its phase transition progress with pressurization,where the internal driving force behind phase transitions,bonding characteristics,and superconducting behaviors have been revealed based on first-principles density functional theory.Through analysis of the bonding properties of electride Li_(4)Al,we demonstrate that the ISQs exhibiting increasingly covalent characteristics between Al ions play a critical role in driving the phase transition.Our electron–phonon coupling calculations indicate that all phases exhibit superconducting behaviors.Importantly,we prove that the ISQs behave as free electrons and demonstrate that the factor governing T_(c) is primarily derived from Li-p-hybridized electronic states with ISQ compositions.These electronic states are scattered by low-frequency phonons arising from mixed vibrations of Li and Al affected by ISQs to enhance electron–phonon coupling.Our study largely expands the research scope of electrides,provides new insight for understanding phase transitions,and elucidates the effects of ISQs on superconducting behavior. 展开更多
关键词 low frequency phonons bonding properties Li Al phase transition electride interstitial quasi atoms SUPERCONDUCTIVITY electron phonon coupling
原文传递
An effective strategy to enhance the cathodic performance of low-temperature solid oxide fuel cells through Mo-doping
17
作者 Juanjuan Tu Shanshan Jiang +7 位作者 Yujia Wang Weitao Hu Lingyan Cheng Jingjing Jiang Huangang Shi Beibei Xiao Chao Su Daifen Chen 《International Journal of Minerals,Metallurgy and Materials》 2026年第1期322-334,共13页
This study focused on improving the cathode performance of Ba_(0.6)Sr_(0.4)Co_(0.85)Nb_(0.15)O_(3-δ)(BSCN)-based perovskite materials through molybdenum(Mo)doping.Pure BSCN and Mo-modified-BSCN—Ea_(0.6)Sr_(0.4)Co_(0... This study focused on improving the cathode performance of Ba_(0.6)Sr_(0.4)Co_(0.85)Nb_(0.15)O_(3-δ)(BSCN)-based perovskite materials through molybdenum(Mo)doping.Pure BSCN and Mo-modified-BSCN—Ea_(0.6)Sr_(0.4)Co_(0.85)Nb_(0.1)Mo_(0.05)O_(3-δ)(B S CNM_(0.05)),Ba_(0.6)Sr_(0.4)Co_(0.85)Nb_(0.05)Mo_(0.1)O_(3-δ)(BSCNM_(0.1)),and Ba_(0.6)Sr_(0.4)Co_(0.85)Mo_(0.15)O_(3-δ)(BSCM)—with Mo doping contents of 5mol%,10mol%,and15mol%,respectively,were successfully prepared using the sol-gel method.The effects of Mo doping on the crystal structure,conductivity,thermal expansion coefficient,oxygen reduction reaction(ORR)activity,and electrochemical performance were systematically evaluated using X-ray diffraction analysis,thermally induced characterization,electrochemical impedance spectroscopy,and single-cell performance tests.The results revealed that Mo doping could improve the conductivity of the materials,suppress their thermal expansion effects,and significantly improve the electrochemical performance.Surface chemical state analysis using X-ray photoelectron spectroscopy revealed that 5mol%Mo doping could facilitate a high adsorbed oxygen concentration leading to enhanced ORR activity in the materials.Density functional theory calculations confirmed that Mo doping promoted the ORR activity in the materials.At an operating temperature of 600℃,the BSCNM_(0.05)cathode material exhibited significantly enhanced electrochemical impedance characteristics,with a reduced area specific resistance of 0.048Ω·cm~2,which was lower than that of the undoped BSCN matrix material by 32.39%.At the same operating temperature,an anode-supported single cell using a BSCNM_(0.05)cathode achieved a peak power density of 1477 mW·cm^(-2),which was 30.71%,56.30%,and 171.50%higher than those of BSCN,BSCNM_(0.1),and B SCM,respectively.The improved ORR activity and electrochemical performance of BSCNM_(0.05)indicate that it can be used as a cathode material in low-temperature solid oxide fuel cells. 展开更多
关键词 molybdenum doping cathodic performance oxygen reduction reaction low-temperature solid oxide fuel cells
在线阅读 下载PDF
Effect and mechanism of Ti−O solid solution layer on interfacial bonding strength of cold roll bonded titanium/stainless steel laminated composite plate
18
作者 Zhi-yan YANG Xue-feng LIU +1 位作者 Hong-ting CHEN Xin MA 《Transactions of Nonferrous Metals Society of China》 2026年第1期171-182,共12页
Titanium plates with a Ti−O solid solution surface-hardened layer were cold roll-bonded with 304 stainless steel plates with high work hardening rates.The evolution and mechanisms affecting the interfacial bonding str... Titanium plates with a Ti−O solid solution surface-hardened layer were cold roll-bonded with 304 stainless steel plates with high work hardening rates.The evolution and mechanisms affecting the interfacial bonding strength in titanium/stainless steel laminated composites were investigated.Results indicate that the hardened layer reduces the interfacial bonding strength from over 261 MPa to less than 204 MPa.During the cold roll-bonding process,the hardened layer fractures,leading to the formation of multi-scale cracks that are difficult for the stainless steel to fill.This not only hinders the development of an interlocking interface but also leads to the presence of numerous microcracks and hardened blocks along the nearly straight interface,consequently weakening the interfacial bonding strength.In metals with high work hardening rates,the conventional approach of enhancing interface interlocking and improving interfacial bonding strength by using a surface-hardened layer becomes less effective. 展开更多
关键词 titanium/stainless steel laminated composite plate Ti−O solid solution hardened layer interlocking interface formation mechanism interfacial bonding strength
在线阅读 下载PDF
“Proton‑Iodine” Regulation of Protonated Polyaniline Catalyst for High‑Performance Electrolytic Zn‑I_(2) Batteries
19
作者 Mengyao Liu Kovan Khasraw Abdalla +8 位作者 Meng Xu Xueqian Li Runze Wang Qi Li Xiaoru Zhang Yanan Lv Yueyang Wang Xiaoming Sun Yi Zhao 《Nano-Micro Letters》 2026年第3期196-209,共14页
Low-cost and high-safety aqueous Zn-I_(2) batteries attract extensive attention for large-scale energy storage systems.However,polyiodide shuttling and sluggish iodine conversion reactions lead to inferior rate capabi... Low-cost and high-safety aqueous Zn-I_(2) batteries attract extensive attention for large-scale energy storage systems.However,polyiodide shuttling and sluggish iodine conversion reactions lead to inferior rate capability and severe capacity decay.Herein,a three-dimensional polyaniline is wrapped by carboxylcarbon nanotubes(denoted as C-PANI)which is designed as a catalytic cathode to effectively boost iodine conversion with suppressed polyiodide shuttling,thereby improving Zn-I_(2) batteries.Specifically,carboxyl-carbon nanotubes serve as a proton reservoir for more protonated-NH+=sites in PANI chains,achieving a direct I0/I−reaction for suppressed polyiodide generation and Zn corrosion.Attributing to this“proton-iodine”regulation,catalytic protonated C-PANI strongly fixes electrolytic iodine species and stores proton ions simultaneously through reversible-N=/-NH^(+)-reaction.Therefore,the electrolytic Zn-I_(2) battery with C-PANI cathode exhibits an impressive capacity of 420 mAh g^(−1) and ultra-long lifespan over 40,000 cycles.Additionally,a 60 mAh pouch cell was assembled with excellent cycling stability after 100 cycles,providing new insights into exploring effective organocatalysts for superb Zn-halogen batteries. 展开更多
关键词 Electrolytic Zn-I_(2)battery Proton-iodine regulation Direct I0/I−reaction conversion Limited polyiodide shuttling High performance
在线阅读 下载PDF
Bonding Performance of Wood Treatment by Oxygen and Nitrogen Cold Plasma 被引量:2
20
作者 王洪艳 杜官本 +2 位作者 郑荣波 王辉 李琴 《Agricultural Science & Technology》 CAS 2014年第3期392-394,443,共4页
In the test, woods were treated by N2, O2 cold plasma with the processing power 300 W, which last for 5 min; subsequently, the treated woods were bonded with MUF to valve the bonding performance, the contact angles of... In the test, woods were treated by N2, O2 cold plasma with the processing power 300 W, which last for 5 min; subsequently, the treated woods were bonded with MUF to valve the bonding performance, the contact angles of the treated/un- treated wood were tested. The chemical composition on the surface of wood with or without N2 cold plasma treatment was also studied by X-ray photoelectron spec- troscopy (XPS). The results showed: the contact angles of the surface decreased; the surface free energy increased evidently that treated by N2 or O2 cold plasma; the average bonding performance of wood that treated by cold plasma (whether N2 or O2) increased obviously and more than 50% was proved compared with that un- treated by cold plasma. The XPS analysis showed the atomic ratio O/C has in- creased, and more groups were oxidized or more peroxides were formed on the surface of wood; N element was introduced to the wood surface after nitrogen cold plasma treatment and it was estimated to the group of -NH2. 展开更多
关键词 Cold plasma bonding performance Contact angle Surface energy
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部