期刊文献+
共找到4,190篇文章
< 1 2 210 >
每页显示 20 50 100
Hydrogen-Bonded Interfacial Super-Assembly of Spherical Carbon Superstructures for High-Performance Zinc Hybrid Capacitors
1
作者 Yang Qin Chengmin Hu +4 位作者 Qi Huang Yaokang Lv Ziyang Song Lihua Gan Mingxian Liu 《Nano-Micro Letters》 2026年第2期88-104,共17页
Carbon superstructures with multiscale hierarchies and functional attributes represent an appealing cathode candidate for zinc hybrid capacitors,but their tailor-made design to optimize the capacitive activity remains... Carbon superstructures with multiscale hierarchies and functional attributes represent an appealing cathode candidate for zinc hybrid capacitors,but their tailor-made design to optimize the capacitive activity remains a confusing topic.Here we develop a hydrogen-bond-oriented interfacial super-assembly strategy to custom-tailor nanosheet-intertwined spherical carbon superstructures(SCSs)for Zn-ion storage with double-high capacitive activity and durability.Tetrachlorobenzoquinone(H-bond acceptor)and dimethylbenzidine(H-bond donator)can interact to form organic nanosheet modules,which are sequentially assembled,orientally compacted and densified into well-orchestrated superstructures through multiple H-bonds(N-H···O).Featured with rich surface-active heterodiatomic motifs,more exposed nanoporous channels,and successive charge migration paths,SCSs cathode promises high accessibility of built-in zincophilic sites and rapid ion diffusion with low energy barriers(3.3Ωs-0.5).Consequently,the assembled Zn||SCSs capacitor harvests all-round improvement in Zn-ion storage metrics,including high energy density(166 Wh kg-1),high-rate performance(172 m Ah g^(-1)at 20 A g^(-1)),and long-lasting cycling lifespan(95.5%capacity retention after 500,000 cycles).An opposite chargecarrier storage mechanism is rationalized for SCSs cathode to maximize spatial capacitive charge storage,involving high-kinetics physical Zn^(2+)/CF_(3)SO_(3)-adsorption and chemical Zn^(2+)redox with carbonyl/pyridine groups.This work gives insights into H-bond-guided interfacial superassembly design of superstructural carbons toward advanced energy storage. 展开更多
关键词 Hydrogen bonds Interfacial super-assembly Spherical carbon superstructures Zn hybrid capacitors Energy storage
在线阅读 下载PDF
Shear property and failure mechanism of bonded rock-cement interface:Experimental and numerical approaches
2
作者 Shu Ouyang Xiaobo Zhang +4 位作者 Chi Yao Yongli Ma Jianhua Yang Zhiwei Ye Chuangbing Zhou 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第2期1018-1036,共19页
The study of the shear behavior of bonded rock-cement interface is important for understanding the strength and stability of grouted rock masses.This research aims to reveal the failure mechanism behind the shear prop... The study of the shear behavior of bonded rock-cement interface is important for understanding the strength and stability of grouted rock masses.This research aims to reveal the failure mechanism behind the shear property of bonded rock-cement interfaces.For the study,sandstone and granite joint blocks with specific morphology were fabricated by using a three-dimensional(3D)engraving technique.Bonded rock-cement joints with asperity inclination angles of 15°,30°,and 45°were prepared.Shear tests were performed on these bonded rock-cement joints to investigate the shear response and failure modes considering the effect of applied normal stress and interface morphology.Meanwhile,the two-dimensional particle flow code(PFC2D)was utilized to model the entire shear process of bonded rock-cement interfaces.The macroscopic shear behavior and mesoscopic failure mechanism were comprehensively investigated by the laboratory test and numerical simulation.The results showed that the shear stress-displacement curves of bonded rock-cement joints exhibit two distinct peaks,and the shear stress evolution can be categorized into four stages including elastic growth,rapid stress drop,secondary stress growth,and progressive softening.Significantly,the number of acoustic emission events also exhibits two distinct peaks related to the double peak of the shear stress curves.The failure of bonded rock-cement interfaces is mainly induced by shear fractures,while the failure of rock and cement blocks is primarily caused by tensile fractures.The number of shear cracks in the bonded rock-cement interfaces reaches the peak when the shear stress reaches the primary peak;whereas as the shear stress continuously approaches the residual stage,the fracture of the bonded rock-cement joints is primarily characterized by tensile cracks in the blocks. 展开更多
关键词 bonded rock-cement joints INTERFACE Shear strength Failure mechanism PFC2D Crack
在线阅读 下载PDF
Effects of deformation states on evolution of microstructures and mechanical properties in diffusion bonded TC4 alloys by hot bending
3
作者 Can LI Yong LI +3 位作者 De-xin ZHANG Yan-qiang XU Xiao-xing LI Guang-lu MA 《Transactions of Nonferrous Metals Society of China》 2025年第12期4137-4148,共12页
The effects of various hot deformation states on the evolution of microstructures and mechanical properties in diffusion bonded TC4 alloys were investigated using the hot bending of thick plates.Finite element simulat... The effects of various hot deformation states on the evolution of microstructures and mechanical properties in diffusion bonded TC4 alloys were investigated using the hot bending of thick plates.Finite element simulations were conducted to characterize the deformation states during bending at 750℃ with angles of 17°and 32°.The microstructures and mechanical properties of the bonding interface were then analyzed.The joint subjected to uniaxial stress exhibited the highest ultimate tensile strength,which was attributed to the significant accumulation of dislocation density and the low-angle grain boundaries within the grains.The texture strengthening in the basal{0001}plane was also observed,along with a relatively low Schmid factor corresponding to the primary slip systems aligned with the deformation direction.In contrast,the joint under stress-free conditions showed a slip direction that was less favorable for deformation,resulting in an ultimate tensile strength higher than that of the joint under biaxial stress conditions. 展开更多
关键词 diffusion bonded joint thick plate hot bending stress state tensile strength
在线阅读 下载PDF
A leakage rate prediction method of wet-assembly hybrid bonded/bolted joints based on porous media theory available for different environment conditions
4
作者 Di ZHAO Renzi BAI +5 位作者 Biao LIANG Hui CHENG Yue SHI Zhenyi FANG Hang YAO Chao YANG 《Chinese Journal of Aeronautics》 2025年第11期572-582,共11页
The wet-assembly hybrid bonded/bolted(WHBB)joint is increasingly employed in aircraft fuel tank structures owing to its advantageous mechanical strength and sealing performance.However,the integral tank is susceptible... The wet-assembly hybrid bonded/bolted(WHBB)joint is increasingly employed in aircraft fuel tank structures owing to its advantageous mechanical strength and sealing performance.However,the integral tank is susceptible to leakage during service,particularly at the joint,which seriously endangers the flight safety of the aircraft.In this paper,a leakage prediction method of WHBB joint based on porous media theory is proposed,in which the shape and characteristic length of the sealant layer are taken into consideration.The model parameters are determined by the analysis and treatment of the defect state of the WHBB joint section.The prediction results agree well with the experimental data,which were acquired by self-designed sealing leakage rate measurement system,and the deviation between the predicted results and the average value of the experimental data is less than 20%.Furthermore,in order to verify the environmental adaptability,the prediction results based on 2D cutting sections of the joints and experimental results under three different loading conditions are compared.The comparison results not only prove the accuracy of the prediction model,but also reveal the important influence of tensile fatigue load on the sealing performance of the structure.The tensile fatigue loads lead to two orders of magnitude increase in leakage rate,and the reason is that the repeated stretching and compression process lead to an increase in interfacial cracks between the adhesive layer and the hole wall,thereby accentuating the defects within the adhesive layer. 展开更多
关键词 Wet-assembly hybrid bonded/bolted joint Fractal model Porous media theory Sealing performance Fatigue load
原文传递
Formation mechanism of bonded slag pellets in vertical-pot Pidgeon process of magnesium production
5
作者 Ji-lei XU Jin-hui LIU +6 位作者 Yu-ming ZHAO Zhi-ping MAO Wei-neng TANG Xiao-feng LI Pei-xu YANG Wei-dong ZHANG Shao-jun ZHANG 《Transactions of Nonferrous Metals Society of China》 2025年第2期625-639,共15页
In the Pidgeon process involving a vertical pot,bonded slag pellets occasionally emerge at the bottom of the reduction pot,impeding smooth slag discharge.To reveal the formation mechanism of the bonded slag pellets,th... In the Pidgeon process involving a vertical pot,bonded slag pellets occasionally emerge at the bottom of the reduction pot,impeding smooth slag discharge.To reveal the formation mechanism of the bonded slag pellets,thermodynamic calculations,X-ray diffraction(XRD),X-ray fluorescence spectrometry(XRF),electron probe microanalyzer(EPMA),X-ray photoelectron spectroscopy(XPS),and differential scanning calorimetry(DSC)were employed.The bonded slag pellets mainly comprise MgO,CaSi_(2),CaO,and Ca2SiO_(4).CaSi_(2) in the bonded slag pellets is attributed to the reduction reaction between Si and CaO,yielding liquid CaSi_(2).Simultaneously,the reaction between CaSi_(2) and MgO,which will typically produce Mg vapor,is inhibited,resulting in the accumulation of CaSi_(2).Owing to the solid-liquid transition of CaSi_(2),this process culminates in the bonding of slag pellets.This study can guide the Pidgeon process optimization,enabling mitigation of the“dead pot”issue,thereby enhancing efficiency and reducing costs. 展开更多
关键词 vertical-pot Pidgeon process slag discharge bonded slag pellets CaSi_(2) solid−liquid transition
在线阅读 下载PDF
Construction of supramolecular metal-halogen bonded organic frameworks for efficient solar energy conversion
6
作者 Hongqiang Dong Jiahao Zhao +7 位作者 Ya Lu Zhennan Tian Shumeng Wang Xuguan Bai Guanfei Gong Jike Wang Lu Wang Shigui Chen 《Journal of Energy Chemistry》 2025年第9期527-535,I0014,共10页
Efficient conversion and synergistic solar energy utilization are critical for advancing low-carbon and sustainable development.In this study,two Pt(Ⅱ)-based metal/halogen-bonded organic frameworks(MXOFBen and MXOF-A... Efficient conversion and synergistic solar energy utilization are critical for advancing low-carbon and sustainable development.In this study,two Pt(Ⅱ)-based metal/halogen-bonded organic frameworks(MXOFBen and MXOF-Anth)were designed to enhance photoconversion efficiency and enable multifunctional integration.The ligand L-terpyr is formed by coupling tripyridine with diphenylamine dipyridine,in which the tripyridine effectively acts as a metal-ligand to lower the band gap and promote nonradiative leaps,thereby enhancing the photoconversion ability.Meanwhile,diphenylamine dipyridine serves as a[N…I^(+)…N]halogen-bonding acceptor,imparting superhydrophilicity to the materials and increasing carrier density,further improving photocatalytic performance.Experimental results demonstrate that these two MXOFs achieve impressive interfacial water evaporation efficiencies of up to87.8%and 94.0%,respectively.Additionally,the materials exhibit excellent performance in photothermal power generation and photocatalysis of H_(2)O_(2).Notably,the MXOFs also deliver strong overall performance in integrated systems combining interfacial water evaporation with photothermal power generation or photocatalysis,underscoring their exceptional photoconversion efficiency and multifunctional potential.This work introduces a novel strategy by incorporating metal-ligand and halogen bonds,offering a pathway to enhance photoconversion efficiency and develop versatile materials for advanced solar energy applications,thereby fostering the progress of high-efficiency solar energy conversion and multifunctional organic materials. 展开更多
关键词 Solar energy conversion Light-conversion material [N…I^(+)…N]Halogen bond Metal-halogen bonded organic framework
在线阅读 下载PDF
Seismic fragility of unreinforced masonry buildings with bonded scrap tire rubber isolators under far-field and near-field earthquakes
7
作者 WANG Mingyang GAO Wenjun +1 位作者 LU Xilin SHI Weixing 《Journal of Southeast University(English Edition)》 2025年第2期127-139,共13页
To improve the seismic performance of unrein-forced masonry(URM)buildings in the Himalayan re-gions,including Western China,India,Nepal,and Paki-stan,a low-cost bonded scrap tire rubber isolator(BSTRI)is proposed,and ... To improve the seismic performance of unrein-forced masonry(URM)buildings in the Himalayan re-gions,including Western China,India,Nepal,and Paki-stan,a low-cost bonded scrap tire rubber isolator(BSTRI)is proposed,and a series of vertical compression and horizontal shear tests are conducted.Incremental dynamic analyses are conducted for five types of BSTRI-supported URM buildings subjected to 22 far-field and 28 near-field earthquake ground motions.The resulting fragility curves and probability of damage curves are presented and utilized to evaluate the damage states of these buildings.The results show that in the base-isolated(BI)URM buildings under seismic ground motion at a peak ground acceleration(PGA)of 1.102g,the probability of exceeding the collapse prevention threshold is less than 25%under far-field earthquake ground motions and 31%under near-field earthquake ground motions.Furthermore,the maximum average vulnerability index for the BI-URM buildings,which are designed to withstand rare earthquakes with 9°(PGA=0.632g),is 40.87%for far-field earthquake ground motions and 41.83%for near-field earthquake ground motions.Therefore,the adoption of BSTRIs can significantly reduce the collapse probability of URM buildings. 展开更多
关键词 unreinforced masonry(URM)buildings bonded scrap tire rubber isolator(BSTRI) seismic fragility damage evaluation far-field earthquake near-field earthquake
在线阅读 下载PDF
Effect of Ti-Si-Fe Alloy Addition on Structure and Properties of Si_(3)N_(4) Bonded SiC Refractories
8
作者 YAO Luyan QIN Xin +2 位作者 HAN Bingqiang ZHANG Jinhua KE Changming 《China's Refractories》 2025年第3期17-23,共7页
In order to improve the densification of Si_(3)N_(4) bonded SiC refractories and reduce the nitriding temperature of Si powder,Si_(3)N_(4) bonded SiC refractories were produced by reaction sintering at 1350℃ for 5 h ... In order to improve the densification of Si_(3)N_(4) bonded SiC refractories and reduce the nitriding temperature of Si powder,Si_(3)N_(4) bonded SiC refractories were produced by reaction sintering at 1350℃ for 5 h under a carbon embedded atmosphere,using SiC particles and fine powder,and Si powder as the main raw materials,and introducing Ti-Si-Fe alloy extracted from high-titanium blast furnace slag to partially replace the Si powder.The effects of the Ti-Si-Fe alloy addition(0,1.8%,3.6%,5.4%,and 7.2%,by mass)on the nitriding behavior of Si powder,as well as on the mechanical properties and microstructure of the material were investigated,and the nitriding reaction sintering mechanism was also explored.The results show that:(1)with the increase of the Ti-Si-Fe alloy addition,the cold mechanical properties and the hot modulus of rupture of the refractories are obviously improved,and the refractoriness under load exceeds 1700℃;the property enhancement slows down with Ti-Si-Fe alloys addition above 3.6%;(2)Ti-Si-Fe alloy promotes the complete nitridation of Si powder and the reaction sintering of the material at a lower temperature;the volume growth during the nitridation process of the Ti-Si-Fe alloys and Si powder can effectively fill pores,nitriding products improve the bonding state between aggregates and matrix,and that inside matrix,thereby increasing the densification and improving the mechanical properties of the material;(3)after the introduction of Ti-Si-Fe alloys,the liquid phase rich in Ti,Si,N,and Fe components is formed in the reaction system;besides the traditional VS and VLS mechanisms,the dissolution-precipitation mechanism plays a leading role in the formation of short columnar β-Si_(3)N_(4) and granular TiN;and the cross-linked α-Si_(3)N_(4) whisker,short columnar β-Si_(3)N_(4) and granular TiN enhance the mechanical properties of the material. 展开更多
关键词 Ti-Si-Fe alloy reaction sintering Si_(3)N_(4)bonded SiC refractories densification dissolution-precipitation
在线阅读 下载PDF
A shape-memory hydrogen-bonded organic framework for flue gas desulfurization
9
作者 Wenlei Yang Lingyao Wang Yuanbin Zhang 《Chinese Journal of Structural Chemistry》 2025年第6期8-10,共3页
With the acceleration of industrialization,the pollution problem of sulfur dioxide(SO_(2))emitted from coal-fired power plants has become increasingly severe.Although wet flue gas desulfurization(FGD)technology can re... With the acceleration of industrialization,the pollution problem of sulfur dioxide(SO_(2))emitted from coal-fired power plants has become increasingly severe.Although wet flue gas desulfurization(FGD)technology can remove about 95%of SO_(2),its high energy consumption and the corrosion risk of downstream equipment caused by residual SO_(2)(500–3000 ppm)still need to be addressed[1].Previous porous materials(such as MOFs)achieve selective adsorption of SO_(2) through open metal sites,M–OH sites or functional organic groups,but the problem of CO_(2) co-adsorption limits their practical application[2].In recent years,hydrogen-bonded organic frameworks(HOFs)have emerged as a research hotspot due to their reversible hydrogen-bonding networks and flexible structures[3],but their stability under extreme conditions and efficient separation performance still need to be improved[4]. 展开更多
关键词 shape memory open metal sitesm oh sites downstream equipment sulfur dioxide emitted hydrogen bonded organic frameworks sulfur dioxide flue gas desulfurization wet flue gas desulfurization fgd technology
原文传递
Implementation of an AI-based predictive structural health monitoring strategy for bonded insulated rail joints using digital twins under varied bolt conditions
10
作者 G.Bianchi F.Freddi +1 位作者 F.Giuliani A.La Placa 《Railway Engineering Science》 2025年第4期703-720,共18页
Predictive maintenance is essential for the implementation of an innovative and efficient structural health monitoring strategy.Models capable of accurately interpreting new data automatically collected by suitably pl... Predictive maintenance is essential for the implementation of an innovative and efficient structural health monitoring strategy.Models capable of accurately interpreting new data automatically collected by suitably placed sensors to assess the state of the infrastructure represent a fundamental step,particularly for the railway sector,whose safe and continuous operation plays a strategic role in the well-being and development of nations.In this scenario,the benefits of a digital twin of a bonded insu-lated rail joint(IRJ)with the predictive capabilities of advanced classification algorithms based on artificial intelligence have been explored.The digital model provides an accurate mechanical response of the infrastructure as a pair of wheels passes over the joint.As bolt preload conditions vary,four structural health classes were identified for the joint.Two parameters,i.e.gap value and vertical displacement,which are strongly correlated with bolt preload,are used in different combinations to train and test five predictive classifiers.Their classification effectiveness was assessed using several performance indica-tors.Finally,we compared the IRJ condition predictions of two trained classifiers with the available data,confirming their high accuracy.The approach presented provides an interesting solution for future predictive tools in SHM especially in the case of complex systems such as railways where the vehicle-infrastructure interaction is complex and always time varying. 展开更多
关键词 Predictive maintenance Digital twin of bonded insulated rail joints Finite element analysis Artificial intelligence classifier Machine learning data analysis Structural health monitoring strategy Railway track monitoring
在线阅读 下载PDF
Mechanistic insights into acidic water oxidation by Mn(2,2'-bipyridine-6,6'-dicarboxylate)-based hydrogen-bonded organic frameworks
11
作者 Shuai Liu Wen Wu +5 位作者 Peili Zhang Yunxuan Ding Chang Liu Yu Shan Ke Fan Fusheng Li 《Chinese Journal of Structural Chemistry》 2025年第3期42-48,共7页
Acidic-stable oxygen evolution reaction(OER)catalysts based on earth-abundant materials are important but rare for the proton exchange membrane-based water electrolysis.In this study,a metal-containing hydrogen-bonded... Acidic-stable oxygen evolution reaction(OER)catalysts based on earth-abundant materials are important but rare for the proton exchange membrane-based water electrolysis.In this study,a metal-containing hydrogen-bonded organic framework(HOF)of manganese coordinated with 2,2'-bipyridine-6,6'-dicarboxylate ligands,Mn(bda),interconnected through hydrogen bonding and π-π stacking is used as a heterogeneous OER catalyst(Mn(bda)-HOF)for acidic water oxidation and exhibits a considerable OER performance.Electrochemical results show that Mn(bda)-HOF displays a turn of frequency of 1 s^(-1) at an overpotential of 870 mV.Meanwhile,this Mn(bda)-HOF shows an unusual pH dependence on performance,where the reaction rate increases with the decrease of pH.A comprehensive mechanistic study reveals that the charge transfer triggered coupling of two metal-oxo species Mn^(5+)(O)is the rate-determining step,which leads to this unusual pH dependence on the OER performance. 展开更多
关键词 Oxygen evolution reaction Hydrogen-bonded organic framework Rate-determining step O–O bond formation O–O radical coupling
原文传递
Microstructure and Mechanical Properties of Transient Liquid-Phase Diffusion Bonded GH5188 Joint Added with BNi-5 Interlayer
12
作者 Guo Zilong Li Zhaoxi +3 位作者 Guo Wei Liu Pengkun Li Jinglong Xiong Jiangtao 《稀有金属材料与工程》 北大核心 2025年第9期2177-2188,共12页
The transient liquid-phase(TLP)diffusion bonding of GH5188 with a BNi-5 interlayer was focused on.Parameters were chosen and optimized for GH5188 alloy according to the TLP joining mechanism.The microstructure evoluti... The transient liquid-phase(TLP)diffusion bonding of GH5188 with a BNi-5 interlayer was focused on.Parameters were chosen and optimized for GH5188 alloy according to the TLP joining mechanism.The microstructure evolution and mechanical properties of the joints were studied.Results show that the relatively complete isothermal solidification zone(ISZ)ensures a reliable connection of the base metal(BM).Within the temperature range of 1110–1190°C,higher bonding temperatures can widen ISZ and promote joint composition homogenization,thus improving mechanical properties.However,the increase in precipitated phase has an adverse effect on the mechanical properties of the joint.The maximum shear strength,reaching 482 MPa,is achieved at 1130°C,representing 84.6%of BM strength.Within the pressure range of 5–15 MPa,both precipitated phases in adiabatic solidification zone(ASZ)and voids generated by partial melting increase.On the contrary,their sizes decrease significantly under higher bonding pressure,resulting in an upward trend in alloy mechanical properties.The maximum shear strength of 490 MPa is attained at a bonding pressure of 15 MPa.The joint exhibits a typical mixed fracture pattern,with the small brittle M_(23)C_(6) phase and voids significantly impacting mechanical properties.Nano-indentation tests indicate that ASZ is a potential source of cracks. 展开更多
关键词 TLP diffusion bonding GH5188 cobalt-based superalloy BNi-5 interlayer microstructure evolution mechanical property
原文传递
Effect of 5.25% Sodium Hypochlorite on Shear Bond Strength of Orthodontic Brackets Bonded with OBA-MCP
13
作者 Nhi Le Hoda Rahimi +1 位作者 Richard D. Bloomstein Thomas J. Cangialosi 《Open Journal of Orthopedics》 2025年第1期1-14,共14页
Introduction: Bracket debonding is a frequent issue that clinicians encounter, leading to increased chair time, lost revenue, and material usage. In addition to patient compliance with their diet recommendations, the ... Introduction: Bracket debonding is a frequent issue that clinicians encounter, leading to increased chair time, lost revenue, and material usage. In addition to patient compliance with their diet recommendations, the preparation and conditioning of teeth for bonding significantly influence bond strength and consequently impact orthodontic treatment success and efficiency. Because of OBA-MCP’s (orthodontic bonding adhesive with modified calcium phosphate) decreased shear bond strength (SBS), the purpose of this study was to evaluate the effects of conditioning with 5.25% sodium hypochlorite (NaOCl) before etching in the bonding protocol. Materials and Methods: 90 extracted teeth were divided into 3 groups to be bonded with orthodontic brackets with different bonding protocols: 1) Transbond XT with regular bonding protocol (etch + prime + adhesive);2) OBA-MCP with regular bonding protocol;and 3) OBA-MCP with NaOCl prior to acid etching in the regular bonding protocol. SBS (in Newtons) were measured using an MTS universal testing machine with a custom jig to apply a vertical force onto the bracket and ARI (adhesive remnant index) scores were recorded for each sample after de-bond to rate the amount of adhesive remaining. Results: The addition of NaOCl to the bonding protocol statistically significantly increased the SBS of OBA-MCP to comparable levels to Transbond XT. The ARI scores showed that when NaOCl was added, more adhesive remained. Conclusion: The addition of NaOCl to the bonding protocol can increase the SBS of adhesives with historically weaker bond strengths. However, the increased amount of adhesive remaining and the increased time spent during bonding must be considered. Further testing can be done in vivo to demonstrate the practicality of this new procedure. 展开更多
关键词 Shear Bond Strength Sodium Hypochlorite Orthodontic Brackets
暂未订购
Strength Optimization of Diffusion-Bonded Ti_(2)AlNb Alloy by Post-Heat Treatment
14
作者 Haijian Liu Tianle Li +3 位作者 Xifeng Li Huiping Wu Zhiqiang Wang Jun Chen 《Acta Metallurgica Sinica(English Letters)》 2025年第4期614-626,共13页
Diffusion-bonded Ti_(2)AlNb-based alloys commonly present a low strength compared with the deformed or aged ones. In this study, the post heat treatment including solution and aging treatments is proposed to optimize ... Diffusion-bonded Ti_(2)AlNb-based alloys commonly present a low strength compared with the deformed or aged ones. In this study, the post heat treatment including solution and aging treatments is proposed to optimize the microstructure, contributing to strength improvement and appropriate ductility sacrifice. An available method by the introduction of fine size (both 20-100 nm) and a high fraction (59.7% and 13.7%) of O and α_(2) phases using both solution at 1000℃ for 1 h and aging at 750℃ for 5 h can result in excellent tensile strength (992 MPa and 858 MPa) at room temperature and 650℃, respectively, which increases 5.3% and 44.5% than that of as-received sample. The aging treatment can contribute to lamellar O and α2 grains precipitated from the B_(2) parent, which results in limited dislocation slip systems and slip spaces to resist plastic deformation. Moreover, the crack propagation and fracture surfaces are also comparatively analyzed to reveal the fracture behaviors in the samples with high and low strength. This study can provide a new method for the mechanical property optimization of the welded Ti_(2)AlNb alloys. 展开更多
关键词 Ti_(2)AlNb alloy Diffusion bonding Post heat treatment Phase transformation Mechanical properties
原文传递
Synergistic intermolecular hydrogen-bonded cross-linking and steric hindrance effects enabling pomegranate-type LMFP@C for Li^(+)storage
15
作者 Hui Li Yun Luo +7 位作者 Shu-Zhe Yang Sheng Guo Zhe Gao Jian-Ming Zheng Ning Ren Yu-Jin Tong Hao Luo Mi Lu 《Rare Metals》 2025年第1期147-157,共11页
LiMnxFe1-xPO_(4) is a promising cathode candidate due to its high security and the availability of a high 4.1 V operating voltage and high energy density.However,the poor electrochemical kinetics and structural instab... LiMnxFe1-xPO_(4) is a promising cathode candidate due to its high security and the availability of a high 4.1 V operating voltage and high energy density.However,the poor electrochemical kinetics and structural instability currently hinder its broader application.Herein,inspired by the hydrogen-bonded cross-linking and steric hindrance effect between short-chain polymer molecules(polyethylene glycol-400,PEG-400),the pomegranate-type LiMn_(0.5)Fe_(0.5)PO_(4)-0.5@C(P-LMFP@C)cathode materials with 3D ion/electron dual-conductive network structure were constructed through ball mill-assisted spray-drying method.The intermolecular effects of PEG-400 promote the spheroidization and uniform PEG coating of LMFP precursor,which prevents agglomeration during sintering.The 3D ion/electron dual-conductive network structure in P-LMFP@C accelerates the Li^(+)transport kinetics,improving the rate performance and cycling stability.As a result,the designed P-LMFP@C has remarkable electrochemical behavior,boasting excellent capacity retention(98%after 100 cycles at the 1C rate)and rate capability(91 mAh·g^(-1)at 20C).Such strategy introduces a novel window for designing high-performance olivine cathodes and offers compatibility with a range of energy storage materials for diverse applications. 展开更多
关键词 Pomegranate-type LiMn_(0.5)Fe_(0.5)PO_(4)-0.5@C Intermolecular hydrogen bonds cross-linking Steric hindrance effect Ion/electron dual-conductive network Spray-drying method
原文传递
Bonding interface characteristic and shear strength of diffusion bonded Ti-17 titanium alloy 被引量:13
16
作者 李宏 张超 +1 位作者 刘宏彬 李淼泉 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第1期80-87,共8页
The bonding interface characteristic and shear strength of diffusion bonded Ti-17 titanium alloy at different bonding time were investigated. The results show that the average size of voids decreases while the amount ... The bonding interface characteristic and shear strength of diffusion bonded Ti-17 titanium alloy at different bonding time were investigated. The results show that the average size of voids decreases while the amount of voids decreases after increasing to the maximum value with the increasing bonding time. The irregular void with a scraggly edge tends to an ellipse void with smooth surface and then changes to a tiny void with round shape. The grains across bonding interface occur at bonding time of 60 min. The shear strength of bond increases with increasing bonding time, and the highest shear strength of bond is 887.4 MPa at 60 min. The contribution of plastic deformation on the void closure and the increase of shear strength is significant even though the action time of plastic deformation is short. 展开更多
关键词 Ti-17 titanium alloy diffusion bonding bonding interface VOID shear strength
在线阅读 下载PDF
Interfacial structure and mechanical properties of hot-roll bonded joints between titanium alloy and stainless steel using niobium interlayer 被引量:10
17
作者 赵东升 闫久春 +1 位作者 刘玉君 纪卓尚 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第9期2839-2844,共6页
The hot-roll bonding was carried out in vacuum between titanium alloy and stainless steel using niobium interlayer. The interfacial structure and mechanical properties were analyzed. The results show that the plastici... The hot-roll bonding was carried out in vacuum between titanium alloy and stainless steel using niobium interlayer. The interfacial structure and mechanical properties were analyzed. The results show that the plasticity of bonded joint is improved significantly. When the bonding temperature is 800 °C or 900 °C, there is not intermetallic layer at the interface between stainless steel and niobium. When the bonding temperature is 1000 °C or 1050 °C, Fe-Nb intermetallic layer forms at the interface. When the bonding temperature is 1050 °C, cracking occurs between stainless steel and intermetallic layer. The maximum strength of -417.5 MPa is obtained at the bonding temperature of 900 °C, the reduction of 25% and the rolling speed of 38 mm/s, and the tensile specimen fractures in the niobium interlayer with plastic fracture characteristics. When the hot-roll bonded transition joints were TIG welded with titanium alloy and stainless steel respectively, the tensile strength of the transition joints after TIG welding is -410.3 MPa, and the specimen fractures in the niobium interlayer. 展开更多
关键词 hot roll bonding titanium alloy stainless steel NIOBIUM
在线阅读 下载PDF
Effect of grain size of primary α phase on bonding interface characteristic and mechanical property of press bonded Ti-6Al-4V alloy 被引量:3
18
作者 李宏 李淼泉 +1 位作者 刘宏彬 张超 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第1期93-99,共7页
The effect of grain size of primary α phase on the bonding interface characteristic and shear strength of bond was investigated in the press bonding of Ti-6Al-4V alloy. The quantitative results show that the average ... The effect of grain size of primary α phase on the bonding interface characteristic and shear strength of bond was investigated in the press bonding of Ti-6Al-4V alloy. The quantitative results show that the average size of voids increases from 0.8 to 2.6 μm and the bonding ratio decreases from 90.9% to 77.8% with an increase in grain size of primary α phase from 8.2 to 16.4 μm. The shape of voids changes from the tiny round to the irregular strip. The highest shear strength of bond can be obtained in the Ti-6Al-4V alloy with a grain size of 8.2 μm. This is contributed to the higher ability of plastic flow and more short-paths for diffusion in the alloy with smaller grain size of primary α phase, which promote the void closure process and the formation of α/β grains across bonding interface. 展开更多
关键词 grain size bonding interface void closure shear strength press bonding Ti-6Al-4V alloy
在线阅读 下载PDF
Effect of intermetallic compounds on heat resistance of hot roll bonded titanium alloy-stainless steel transition joint 被引量:4
19
作者 赵东升 闫久春 刘玉君 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第7期1966-1970,共5页
The effect of intermetallic compounds on the heat resistance of transition joint was investigated. The experiment of post-weld heat treatment for the hot roll bonded titanium alloy-stainless steel joint using nickels ... The effect of intermetallic compounds on the heat resistance of transition joint was investigated. The experiment of post-weld heat treatment for the hot roll bonded titanium alloy-stainless steel joint using nickels interlayer was carried out, and the interface microstructure evolution due to heat treatment was presented. There was not found significant interdiffusion at stainless steel/nickel interface, when the specimens were heat treated in the temperature range of 600-800 °C for 10 and 30 min, while micro-cracks occurred at the stainless steel/nickel interface heat treated at 700 °C for 30 min. The thickness of intermetallic layers at nickel/titanium alloy interface increased at 600 °C, and micro-cracks occurred at 700 and 800 °C. The micro-cracks occurred between intermetallic layers or between intermetallic layer and nickel interlayer as well. The tensile strength of the transition joint decreased with the increase of heat treatment temperature or holding time. 展开更多
关键词 INTERMETALLICS titanium alloy stainless steel transition joint heat resistance heat treatment hot roll bonding
在线阅读 下载PDF
Microstructures and interfacial quality of diffusion bonded TC21 titanium alloy joints 被引量:8
20
作者 刘会杰 冯秀丽 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第1期58-64,共7页
Diffusion bonding of TC21 titanium alloy was carried out at temperature ranging from 780 ℃ to 980 ℃ for 5-90 min.The interfacial bonding ratio,deformation ratio,microstructures and microhardness of the diffusion bon... Diffusion bonding of TC21 titanium alloy was carried out at temperature ranging from 780 ℃ to 980 ℃ for 5-90 min.The interfacial bonding ratio,deformation ratio,microstructures and microhardness of the diffusion bonded joints were investigated.Results show that joints with high bonding quality can be obtained when bonded at 880 ℃ for 15?30 min.The microhardness increases with increasing the bonding temperature,while it has a peak value(HV367) when bonding time is prolonged up to 90 min.Fully equiaxed microstructures,bi-modal microstructures and fully lamellar microstructures were observed when bonded in temperature range of 780-880 ℃,at 930 ℃ or 980 ℃,respectively.The volume fraction of α phase first increases and achieves the maximum when bonded at 880 ℃ for 60 min,and then descended. 展开更多
关键词 TC21 titanium alloy diffusion bonding MICROSTRUCTURE interfacial quality
在线阅读 下载PDF
上一页 1 2 210 下一页 到第
使用帮助 返回顶部