作为抑制低频振荡最有效的手段之一,电力系统稳定器(power system stabilizer,PSS)在电力系统中得到了广泛的应用。现今国内最广泛采用的PSS是PSS2B,不过由于其自身结构问题,PSS2B对频率较低的区域间振荡模式抑制效果一般。新型多频段...作为抑制低频振荡最有效的手段之一,电力系统稳定器(power system stabilizer,PSS)在电力系统中得到了广泛的应用。现今国内最广泛采用的PSS是PSS2B,不过由于其自身结构问题,PSS2B对频率较低的区域间振荡模式抑制效果一般。新型多频段稳定器PSS4B有望解决这一问题,然而PSS4B的多参数多自由度给其参数整定带来了困难,提出了一种基于等高线控制器波特图(contoured controller bode,CCBode)的PSS4B稳定器迭代设计方法。PSS4B稳定器由带通滤波器和相位补偿器串联组成。使用空间搜索方法调整相位补偿器以确保PSS4B的相频特性被限制在可接受的范围内。CCBode曲线有助于调整带通滤波器的幅频特性,从而在较宽的频带范围内具有更好的稳定性能。对Kundur的四机两区系统的测试分析证明了该方法的有效性。展开更多
介绍了单相级联型静止无功发生器(static var generator,SVG)的原理与控制系统结构,采用光纤隔离检测技术进行级联单元直流侧电压的测量。考虑光纤隔离检测延时,建立了基于瞬时能量平衡的直流侧电压外环控制数学模型,得到了基于比例积分...介绍了单相级联型静止无功发生器(static var generator,SVG)的原理与控制系统结构,采用光纤隔离检测技术进行级联单元直流侧电压的测量。考虑光纤隔离检测延时,建立了基于瞬时能量平衡的直流侧电压外环控制数学模型,得到了基于比例积分(proportional integral,PI)控制的传递函数,并进行了电压外环稳定性分析;建立了基于比例(proportional,P)控制的电流内环离散控制模型,分析得到其在离散域内稳定控制的充要条件。样机实验结果验证了所提稳定性分析方法的正确性。展开更多
Treating plant dynamics as an ideal integrator chain disturbed by the total disturbance is the hallmark of active disturbance rejection control(ADRC).To interpret its effectiveness and success,to explain why so many v...Treating plant dynamics as an ideal integrator chain disturbed by the total disturbance is the hallmark of active disturbance rejection control(ADRC).To interpret its effectiveness and success,to explain why so many vastly different dynamic systems can be treated in this manner,and to answer why a detailed,accurate,and global mathematical model is unnecessary,is the target of this paper.Driven by a motivating example,the notions of normality and locality are introduced.Normality shows that,in ADRC,the plant is normalized to an integrator chain,which is called local nominal model and locally describes the plant’s frequency response in the neighborhood of the expected gain crossover frequency.Locality interprets why ADRC can design the controller only with the local information of the plant.With normality and locality,ADRC can be effective and robust,and obtain operational stability discussed by T.S.Tsien.Then viewing proportional-integral-derivative(PID)control as a low-frequency approximation of second-order linear ADRC,the above results are extended to PID control.A controller design framework is proposed to obtain the controller in three steps:(1)choose an integrator chain as the local nominal model of the plant;(2)select a controller family corresponding to the local nominal model;and(3)tune the controller to guarantee the gain crossover frequency specification.The second-order linear ADRC and the PID control are two special cases of the framework.展开更多
文摘作为抑制低频振荡最有效的手段之一,电力系统稳定器(power system stabilizer,PSS)在电力系统中得到了广泛的应用。现今国内最广泛采用的PSS是PSS2B,不过由于其自身结构问题,PSS2B对频率较低的区域间振荡模式抑制效果一般。新型多频段稳定器PSS4B有望解决这一问题,然而PSS4B的多参数多自由度给其参数整定带来了困难,提出了一种基于等高线控制器波特图(contoured controller bode,CCBode)的PSS4B稳定器迭代设计方法。PSS4B稳定器由带通滤波器和相位补偿器串联组成。使用空间搜索方法调整相位补偿器以确保PSS4B的相频特性被限制在可接受的范围内。CCBode曲线有助于调整带通滤波器的幅频特性,从而在较宽的频带范围内具有更好的稳定性能。对Kundur的四机两区系统的测试分析证明了该方法的有效性。
文摘介绍了单相级联型静止无功发生器(static var generator,SVG)的原理与控制系统结构,采用光纤隔离检测技术进行级联单元直流侧电压的测量。考虑光纤隔离检测延时,建立了基于瞬时能量平衡的直流侧电压外环控制数学模型,得到了基于比例积分(proportional integral,PI)控制的传递函数,并进行了电压外环稳定性分析;建立了基于比例(proportional,P)控制的电流内环离散控制模型,分析得到其在离散域内稳定控制的充要条件。样机实验结果验证了所提稳定性分析方法的正确性。
基金This work was supported by the National Nature Science Foundation of China(Grant No.61733017).
文摘Treating plant dynamics as an ideal integrator chain disturbed by the total disturbance is the hallmark of active disturbance rejection control(ADRC).To interpret its effectiveness and success,to explain why so many vastly different dynamic systems can be treated in this manner,and to answer why a detailed,accurate,and global mathematical model is unnecessary,is the target of this paper.Driven by a motivating example,the notions of normality and locality are introduced.Normality shows that,in ADRC,the plant is normalized to an integrator chain,which is called local nominal model and locally describes the plant’s frequency response in the neighborhood of the expected gain crossover frequency.Locality interprets why ADRC can design the controller only with the local information of the plant.With normality and locality,ADRC can be effective and robust,and obtain operational stability discussed by T.S.Tsien.Then viewing proportional-integral-derivative(PID)control as a low-frequency approximation of second-order linear ADRC,the above results are extended to PID control.A controller design framework is proposed to obtain the controller in three steps:(1)choose an integrator chain as the local nominal model of the plant;(2)select a controller family corresponding to the local nominal model;and(3)tune the controller to guarantee the gain crossover frequency specification.The second-order linear ADRC and the PID control are two special cases of the framework.