A helicon wave plasma source in a tube of ring permanent magnets(PMs)has been constructed to study the effect of the conflguration of the magnetic fleld with zero magnetic points on plasma parameters.This device also ...A helicon wave plasma source in a tube of ring permanent magnets(PMs)has been constructed to study the effect of the conflguration of the magnetic fleld with zero magnetic points on plasma parameters.This device also serves as an exploration platform for a simple,compact helicon wave plasma source adaptable to engineering applications.A small-diameter(26 mm)highdensity(~10^(18)m^(-3))blue core plasma is produced in~1 Pa argon by helicon RF(radiofrequency)discharge using a NagoyaⅢantenna under magnetic fleld(~2 k G)of compact ring PMs(length~204 mm).Operational parameters,i.e.RF power and neutral gas pressure are scanned and plasma density is measured by an RF compensated probe to explore the operating characteristics of the device.Iconic feature of a helicon discharge,such as blue core plasmas and E-H-W mode transitions are well observed in the device,despite the wavelength calculated using the conventional dispersion relation of a bounded whistler waves(Chen 1991 Plasma Phys.Control.Fusion 33339)is order of magnitudes longer than the length of the plasma in this device which seems to suggest that such helicon device is impossible.Surprisingly,the wavelength calculated by the unbounded whistle wave dispersion formula in turn suggests the occurrence of a half wavelength resonance.展开更多
The effect of neutral pressure on the blue core in Ar helicon plasma under an inhomogeneous magnetic field was investigated in this work.The neutral pressure was set to 0.08 Pa,0.36 Pa,and 0.68 Pa.A Nikon camera,inten...The effect of neutral pressure on the blue core in Ar helicon plasma under an inhomogeneous magnetic field was investigated in this work.The neutral pressure was set to 0.08 Pa,0.36 Pa,and 0.68 Pa.A Nikon camera,intensified charge-coupled device(ICCD),optical emission spectrometer(OES),and Langmuir probe were used to diagnose the blue core in helicon plasma.Helicon plasma discharges experienced density jumps from the E mode,H mode to W mode before power just rose to 200 W.The plasma density increased and maintained a central peak with the increase of neutral pressure.However,the brightness of the blue core gradually decreased.It is demonstrated that the relative intensity of Ar II spectral lines and the ionization rate in the central area were reduced.Radial electron temperature profiles were flattened and became hollow as neutral pressure increased.It is demonstrated that increasing the neutral pressure weakened the central heating efficiency dominated by the helicon wave and strengthened the edge heating efficiency governed by the TG wave and skin effect.Therefore,the present experiment successfully reveals how the neutral pressure affects the heating mechanism of helicon plasma in an inhomogeneous magnetic field.展开更多
The characteristics of the blue core phenomenon observed in a divergent magnetic field helicon plasma are investigated using two different helical antennas, namely right-handed and lefthanded helical antennas. The mod...The characteristics of the blue core phenomenon observed in a divergent magnetic field helicon plasma are investigated using two different helical antennas, namely right-handed and lefthanded helical antennas. The mode transition, discharge image, spatial profiles of plasma density and electron temperature are diagnosed using a Langmuir probe, a Nikon D90 camera,an intensified charge-coupled device camera and an optical emission spectrometer, respectively.The results demonstrated that the blue core phenomenon appeared in the upstream region of the discharge tube at a fixed magnetic field under both helical antennas. However, it is more likely to appear in a right-handed helical antenna, in which the plasma density and ionization rate of the helicon plasma are higher. The spatial profiles of the plasma density and electron temperature are also different in both axial and radial directions for these two kinds of helical antenna. The wavelength calculated based on the dispersion relation of the bounded whistler wave is consistent with the order of magnitude of plasma length. It is proved that the helicon plasma is part of the wave mode discharge mechanism.展开更多
基金supported by National Natural Science Foundation of China(No.U19A20113)。
文摘A helicon wave plasma source in a tube of ring permanent magnets(PMs)has been constructed to study the effect of the conflguration of the magnetic fleld with zero magnetic points on plasma parameters.This device also serves as an exploration platform for a simple,compact helicon wave plasma source adaptable to engineering applications.A small-diameter(26 mm)highdensity(~10^(18)m^(-3))blue core plasma is produced in~1 Pa argon by helicon RF(radiofrequency)discharge using a NagoyaⅢantenna under magnetic fleld(~2 k G)of compact ring PMs(length~204 mm).Operational parameters,i.e.RF power and neutral gas pressure are scanned and plasma density is measured by an RF compensated probe to explore the operating characteristics of the device.Iconic feature of a helicon discharge,such as blue core plasmas and E-H-W mode transitions are well observed in the device,despite the wavelength calculated using the conventional dispersion relation of a bounded whistler waves(Chen 1991 Plasma Phys.Control.Fusion 33339)is order of magnitudes longer than the length of the plasma in this device which seems to suggest that such helicon device is impossible.Surprisingly,the wavelength calculated by the unbounded whistle wave dispersion formula in turn suggests the occurrence of a half wavelength resonance.
基金supported by National Natural Science Foundation of China(Nos.11505013 and 11875090)Beijing Municipal Natural Science Foundation(No.1192008)Beijing Municipal Commission of Education(Nos.KM202010015003,22150122029,and 202210015017)。
文摘The effect of neutral pressure on the blue core in Ar helicon plasma under an inhomogeneous magnetic field was investigated in this work.The neutral pressure was set to 0.08 Pa,0.36 Pa,and 0.68 Pa.A Nikon camera,intensified charge-coupled device(ICCD),optical emission spectrometer(OES),and Langmuir probe were used to diagnose the blue core in helicon plasma.Helicon plasma discharges experienced density jumps from the E mode,H mode to W mode before power just rose to 200 W.The plasma density increased and maintained a central peak with the increase of neutral pressure.However,the brightness of the blue core gradually decreased.It is demonstrated that the relative intensity of Ar II spectral lines and the ionization rate in the central area were reduced.Radial electron temperature profiles were flattened and became hollow as neutral pressure increased.It is demonstrated that increasing the neutral pressure weakened the central heating efficiency dominated by the helicon wave and strengthened the edge heating efficiency governed by the TG wave and skin effect.Therefore,the present experiment successfully reveals how the neutral pressure affects the heating mechanism of helicon plasma in an inhomogeneous magnetic field.
文摘蓝冰钻(BID,Blue Ice Drill)是一款大直径、便携式钻机系统,由美国麦迪逊-威斯康辛大学冰钻设计与操作团队研发,可以从近地面的钻点快速获取直径241 mm、无污染的冰芯样品.蓝冰钻的主要组成部分如下:1)下井电机/齿轮减速器:带动冰芯钻刀和外管内的芯管旋转,以便高效运送切割下来的固态冰;2)变频驱动器及配套的控制箱,管理钻机的输入电源;3)安装在反扭杆两侧的把手,在地面以上时起到反扭作用;4)冰芯回收工具:回收冰芯不是通过钻头上的卡刀,而是由独立的冰芯回收工具完成;5)其他附属设备:所有的下井设备通过在绞车上运行的绳索,悬挂在一个可折叠的三脚架上.蓝冰钻系统最少可由两个人操作,并已成功在南极Taylor冰川蓝冰区完成两个工作季.本款钻机系统的升级版本——深蓝冰钻(BID-Deep),目前已经完成设计,获取冰芯深度可至200 m.
基金supported by the Beijing Municipal Natural Science Foundation (No. 1242015)Discipline Construction of Material Science and Engineering (Nos. 21090122014 and 21090123007)。
文摘The characteristics of the blue core phenomenon observed in a divergent magnetic field helicon plasma are investigated using two different helical antennas, namely right-handed and lefthanded helical antennas. The mode transition, discharge image, spatial profiles of plasma density and electron temperature are diagnosed using a Langmuir probe, a Nikon D90 camera,an intensified charge-coupled device camera and an optical emission spectrometer, respectively.The results demonstrated that the blue core phenomenon appeared in the upstream region of the discharge tube at a fixed magnetic field under both helical antennas. However, it is more likely to appear in a right-handed helical antenna, in which the plasma density and ionization rate of the helicon plasma are higher. The spatial profiles of the plasma density and electron temperature are also different in both axial and radial directions for these two kinds of helical antenna. The wavelength calculated based on the dispersion relation of the bounded whistler wave is consistent with the order of magnitude of plasma length. It is proved that the helicon plasma is part of the wave mode discharge mechanism.