期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Effect of structural flexibility and geometry on the hydrodynamic force of vertical columns under dam-break flow
1
作者 WANG Jianguo LI Xiongkai +2 位作者 QIN Shunquan LI Yongle WEI Kai 《Journal of Southeast University(English Edition)》 2025年第3期261-269,共9页
Past investigations of the hydrodynamic forces on vertical columns have generally been based on rigid structure assumptions.The effects of structural flexibility and geometry characteristics on the hydrodynamic force ... Past investigations of the hydrodynamic forces on vertical columns have generally been based on rigid structure assumptions.The effects of structural flexibility and geometry characteristics on the hydrodynamic force distribution are not well understood.In this study,fluid-structure interaction models are developed for numerical analyses.This modeling technique is verified with an experimental test in the literature using both circular and rectangular cross-sections.A series of material elasticities that present structural properties ranging from rigid to flexible is then used to conduct analyses.This finding indicates that an increase in structural flexibility can decrease the impact force to some extent,but this effect is limited.A concrete bridge pier with fluid flow impact can be considered rigid when it is fixed at the bottom.After that,the effects of the initial downstream water height and the width of water tank on the hydrodynamic force are thoroughly investigated.The results demonstrate that the increase in the downstream water height with a constant upstream water height corresponds to a decreased force.Moreover,the vertical column results in a blockage effect on the fluid flow.The greater the blockage effect,the higher the hydrodynamic force.The blockage effect from the vertical column can be neglected when the tank width is greater than eight times the structural cross-section diameter. 展开更多
关键词 hydrodynamic force structural flexibility ma-terial elasticity initial downstream water height blockage effect dam-break flow
在线阅读 下载PDF
Debris flow runout behaviors considering the influences of densely populated buildings
2
作者 ZHANG Shuai FANG Zhe +4 位作者 DAI Cong WANG Shuairong PENG Jingyu ZHOU Yiling SHEN Ping 《Journal of Mountain Science》 SCIE CSCD 2024年第8期2696-2712,共17页
Debris flows pose serious risks to communities in mountainous areas,often resulting in large losses of human life and property.The impeding presence of urban buildings often affects the runout behavior and deposition ... Debris flows pose serious risks to communities in mountainous areas,often resulting in large losses of human life and property.The impeding presence of urban buildings often affects the runout behavior and deposition of debris flows.But the impact of different building densities and sizes on debris flow dynamics has yet to be quantified to guide urban planning in debris flow risk zones.This study focused on a debris flow that occurred in Zhouqu County,Gansu Province,China on August 7th,2010,which was catastrophic and destroyed many buildings.The FLO-2D software was used to simulate this debris flow in two scenarios,i.e.the presence and the absence of buildings,to obtain debris-flow intensity parameters.The developed model was then used to further analyze the influence of large buildings and narrow channels within the urban environment.The simulation results show that considering the presence of buildings in the simulation is essential for accurate assessment of debris flow intensity and deposition distribution.The layout of buildings in the upstream urban area,such as large buildings or parallel buildings which form narrow channels,can affect the flow velocity and depth of debris flow heading towards downstream buildings.To mitigate damage to downstream buildings,the relative spacing(d/a)between upstream and downstream buildings should not exceed a value of two and should ideally be even lower.These findings provide valuable insights for improving the resistance of mountainous cities to urban debris flows. 展开更多
关键词 Debris flow Risk Building blockage effect Zhouqu Urban layout
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部