期刊文献+
共找到149,983篇文章
< 1 2 250 >
每页显示 20 50 100
Dynamics of inflammatory signals within the tumor microenvironment 被引量:1
1
作者 Hala Issa Lokjan Singh +2 位作者 Kok-Song Lai Tina Parusheva-Borsitzky Shamshul Ansari 《World Journal of Experimental Medicine》 2025年第2期24-39,共16页
Tumor stroma,or tumor microenvironment(TME),has been in the spotlight during recent years for its role in tumor development,growth,and metastasis.It consists of a myriad of elements,including tumor-associated macropha... Tumor stroma,or tumor microenvironment(TME),has been in the spotlight during recent years for its role in tumor development,growth,and metastasis.It consists of a myriad of elements,including tumor-associated macrophages,cancer-associated fibroblasts,a deregulated extracellular matrix,endothelial cells,and vascular vessels.The release of proinflammatory molecules,due to the inflamed microenvironment,such as cytokines and chemokines is found to play a pivotal role in progression of cancer and response to therapy.This review discusses the major key players and important chemical inflammatory signals released in the TME.Furthermore,the latest breakthroughs in cytokine-mediated crosstalk between immune cells and cancer cells have been highlighted.In addition,recent updates on alterations in cytokine signaling between chronic inflammation and malignant TME have also been reviewed. 展开更多
关键词 Inflammatory signals Tumor microenvironment CYTOKINES INTERLEUKINS Transforming growth factor
暂未订购
A Review of Deep Learning for Biomedical Signals:Current Applications,Advancements,Future Prospects,Interpretation,and Challenges
2
作者 Ali Mohammad Alqudah Zahra Moussavi 《Computers, Materials & Continua》 2025年第6期3753-3841,共89页
This reviewpresents a comprehensive technical analysis of deep learning(DL)methodologies in biomedical signal processing,focusing on architectural innovations,experimental validation,and evaluation frameworks.We syste... This reviewpresents a comprehensive technical analysis of deep learning(DL)methodologies in biomedical signal processing,focusing on architectural innovations,experimental validation,and evaluation frameworks.We systematically evaluate key deep learning architectures including convolutional neural networks(CNNs),recurrent neural networks(RNNs),transformer-based models,and hybrid systems across critical tasks such as arrhythmia classification,seizure detection,and anomaly segmentation.The study dissects preprocessing techniques(e.g.,wavelet denoising,spectral normalization)and feature extraction strategies(time-frequency analysis,attention mechanisms),demonstrating their impact on model accuracy,noise robustness,and computational efficiency.Experimental results underscore the superiority of deep learning over traditional methods,particularly in automated feature extraction,real-time processing,cross-modal generalization,and achieving up to a 15%increase in classification accuracy and enhanced noise resilience across electrocardiogram(ECG),electroencephalogram(EEG),and electromyogram(EMG)signals.Performance is rigorously benchmarked using precision,recall,F1-scores,area under the receiver operating characteristic curve(AUC-ROC),and computational complexitymetrics,providing a unified framework for comparing model efficacy.Thesurvey addresses persistent challenges:synthetic data generationmitigates limited training samples,interpretability tools(e.g.,Gradient-weighted Class Activation Mapping(Grad-CAM),Shapley values)resolve model opacity,and federated learning ensures privacy-compliant deployments.Distinguished from prior reviews,this work offers a structured taxonomy of deep learning architectures,integrates emerging paradigms like transformers and domain-specific attention mechanisms,and evaluates preprocessing pipelines for spectral-temporal trade-offs.It advances the field by bridging technical advancements with clinical needs,such as scalability in real-world settings(e.g.,wearable devices)and regulatory alignment with theHealth Insurance Portability and Accountability Act(HIPAA)and General Data Protection Regulation(GDPR).By synthesizing technical rigor,ethical considerations,and actionable guidelines for model selection,this survey establishes a holistic reference for developing robust,interpretable biomedical artificial intelligence(AI)systems,accelerating their translation into personalized and equitable healthcare solutions. 展开更多
关键词 Deep learning deep models biomedical signals physiological signals biosignals
在线阅读 下载PDF
RBOHD,GLR3.3,and GLR3.6 cooperatively control wounding hypocotyl-induced systemic Ca^(2+) signals,jasmonic acid,and glucosinolates in Arabidopsis leaves
3
作者 Che Zhan Na Xue +2 位作者 Zhongxiang Tianyin Zheng Jianqiang Wu 《Plant Diversity》 2025年第4期690-701,共12页
Ca^(2+)signaling plays crucial roles in plant stress responses,including defense against insects.To counteract insect feeding,different parts of a plant deploy systemic signaling to communicate and coordinate defense ... Ca^(2+)signaling plays crucial roles in plant stress responses,including defense against insects.To counteract insect feeding,different parts of a plant deploy systemic signaling to communicate and coordinate defense responses,but little is known about the underlying mechanisms.In this study,micrografting,in vivo imaging of Ca^(2+)and reactive oxygen species(ROS),quantification of jasmonic acid(JA)and defensive metabolites,and bioassay were used to study how Arabidopsis seedlings regulate systemic responses in leaves after hypocotyls are wounded.We show that wounding hypocotyls rapidly activated both Ca^(2+)and ROS signals in leaves.RBOHD,which functions to produce ROS,along with two glutamate receptors GLR3.3 and GLR3.6,but not individually RBOHD or GLR3.3 and GLR3.6,in hypocotyls regulate the dynamics of systemic Ca^(2+)signals in leaves.In line with the systemic Ca^(2+)signals,after wounding hypocotyl,RBOHD,GLR3.3,and GLR3.6 in hypocotyl also cooperatively regulate the transcriptome,hormone jasmonic acid,and defensive secondary metabolites in leaves of Arabidopsis seedlings,thus controlling the systemic resistance to insects.Unlike leaf-to-leaf systemic signaling,this study reveals the unique regulation of wounding-induced hypocotyl-to-leaf systemic signaling and sheds new light on how different plant organs use complex signaling pathways to modulate defense responses. 展开更多
关键词 signal transduction GRAFTING Reactive oxygen species Calcium signaling GLUTAMATE Jasmonic acid
在线阅读 下载PDF
A Method for Detecting Non-Cooperative Communication Signals Utilizing Multi-Resolution Time-Frequency Images
4
作者 Zhaoqi Zhang Chundong Qi Danping Yu 《Journal of Beijing Institute of Technology》 2025年第5期447-457,共11页
Non-cooperative communication detection is a key technology for locating radio interfer-ence sources and conducting reconnaissance on adversary radiation sources.To meet the require-ments of wide-area monitoring,a sin... Non-cooperative communication detection is a key technology for locating radio interfer-ence sources and conducting reconnaissance on adversary radiation sources.To meet the require-ments of wide-area monitoring,a single interception channel often contains mixed multi-source sig-nals and interference,resulting in generally low signal-to-noise ratio(SNR)of the received signals;meanwhile,improving detection quality urgently requires either high frequency resolution or high-time resolution,which poses severe challenges to detection techniques based on time-frequency rep-resentations(TFR).To address this issue,this paper proposes a fixed-frame-structure signal detec-tion algorithm that integrates image enhancement and multi-scale template matching:first,the Otsu-Sauvola hybrid thresholding algorithm is employed to enhance TFR features,suppress noise interference,and extract time-frequency parameters of potential target signals(such as bandwidth and occurrence time);then,by exploiting the inherent time-frequency characteristics of the fixed-frame structure,the signal is subjected to multi-scale transformation(with either high-frequency resolution or high-time resolution),and accurate detection is achieved through the corresponding multi-scale template matching.Experimental results demonstrate that under 0 dB SNR conditions,the proposed algorithm achieves a detection rate greater than 87%,representing a significant improvement over traditional methods. 展开更多
关键词 signal detection non-cooperative communication signal image enhancement time-fre-quency transformation
在线阅读 下载PDF
An Integrated System Evaluation Engine for Cross-Domain Simulation and Design Optimization of a Transceiver Front-End Dealing with Complex OFDM Signals
5
作者 Hu Chunyu Shi Weimin +1 位作者 Li Mingyu C.Patrick Yue 《China Communications》 2025年第12期183-193,共11页
Traditionally,a continuous-wave(CW)signal is used to simulate RF circuits during the design procedure,while the fabricated circuits are measured by modulated signals in the test phase,because modulated signals are use... Traditionally,a continuous-wave(CW)signal is used to simulate RF circuits during the design procedure,while the fabricated circuits are measured by modulated signals in the test phase,because modulated signals are used in reality.It is almost impossible to use a CW signal to predict system performances,such as error vector magnitude(EVM),bit error rate(BER),etc.,of a transceiver front-end when dealing with complex modulated signals.This paper develops an integrated system evaluation engine(ISEE)to evaluate the system performances of a transceiver front-end or its sub-circuits.This crossdomain simulation platform is based on Matlab,advanced design system(ADS),and Cadence simulators to link the baseband signals and transceiver frond-end.An orthogonal frequency division multiplex(OFDM)modem is implemented in Matlab for evaluating the system performances.The modulated baseband signal from Matlab is dynamically fed into ADS,which includes transceiver front-end for co-simulation.The sub-block circuits of the transceiver front-end can be implemented using ADS and Cadence simulators.After system-level circuit simulation in ADS,the output signal is dynamically delivered to Matlab for demodulation.To simplify the use of the co-simulation platform,a graphical user interface(GUI)is constructed using Matlab.The parameters of the OFDM signals can be easily reconfigured on the GUI to simulate RF circuits with different modulation schemes.To demonstrate the effectiveness of the ISEE,a 3.5 GHz power amplifier is simulated and characterized using 20 MHz 16-and 64-QAM OFDM signals. 展开更多
关键词 cross-domain simulation OFDM signal power amplifier transceiver front-end
在线阅读 下载PDF
Space-Borne Interferometers to Detect Thousands of Memory Signals Emitted by Stellar-Mass Binary Black Holes
6
作者 Shaoqi Hou Zhi-Chao Zhao +1 位作者 Zhoujian Cao Zong-Hong Zhu 《Chinese Physics Letters》 2025年第10期323-330,共8页
The gravitational memory effect manifests gravitational nonlinearity,degenerate vacua,and asymptotic symmetries;its detection is considered challenging.We propose using a space-borne interferometer to detect memory si... The gravitational memory effect manifests gravitational nonlinearity,degenerate vacua,and asymptotic symmetries;its detection is considered challenging.We propose using a space-borne interferometer to detect memory signals from stellar-mass binary black holes(BBHs),typically targeted by ground-based detectors.We use DECIGO detector as an example.Over 5 years,DECIGO is estimated to detect approximately 2,036 memory signals(SNRs>3)from stellar-mass BBHs.Simulations used frequency-domain memory waveforms for direct SNR estimation.Predictions utilized a GWTC-3 constrained BBH population model(Power law+Peak mass,DEFAULT spin,Madau-Dickinson merger rate).The analysis used conservative lower merger rate limits and considered orbital eccentricity.The high detection rate stems from strong memory signals within DECIGO’s bandwidth and the abundance of stellar-mass BBHs.This substantial and conservative detection count enables statistical use of the memory effect for fundamental physics and astrophysics.DECIGO exemplifies that space interferometers may better detect memory signals from smaller mass binaries than their typical targets.Detectors in lower frequency bands are expected to find strong memory signals from∼10^(4)M⊙binaries. 展开更多
关键词 space borne interferometer detect memory signals gravitational memory effect decigo detector binary black holes bbhs typically stellar mass binary black holes signal noise ratio
原文传递
Eltrombopag in pediatrics:revealing hidden signals of adverse drug events
7
作者 Yingqiu Tu Tiantian Xu +1 位作者 Nan Zhong Xin Lai 《Journal of Chinese Pharmaceutical Sciences》 2025年第11期1033-1040,共8页
This study sought to investigate adverse drug event(ADE)signals associated with eltrombopag use in pediatric patients aged 0–18 years,utilizing data from the U.S.Food and Drug Administration Adverse Event Reporting S... This study sought to investigate adverse drug event(ADE)signals associated with eltrombopag use in pediatric patients aged 0–18 years,utilizing data from the U.S.Food and Drug Administration Adverse Event Reporting System(FAERS).By analyzing this extensive pharmacovigilance database,the study aimed to offer meaningful insights for improving the clinical safety of eltrombopag in children.Data covering eltrombopag-related ADEs from Q12004 to Q42023 were extracted from FAERS,and signal detection was conducted using both the reporting odds ratio(ROR)and proportional reporting ratio(PRR)methods.ADEs were categorized based on the System Organ Class(SOC)classification in MedDRA version 25.0.A total of 582 reports involving pediatric patients receiving eltrombopag were identified,encompassing 21 SOC categories.The analysis revealed that,in addition to the known ADEs listed in the drug label,clinicians should remain vigilant for potential off-label ADE signals.These included abnormal platelet counts,thrombocytosis,antiphospholipid syndrome,myelofibrosis,reduced serum iron levels,myelodysplastic syndrome,hepatic infections,and other related conditions.Given these findings,it is strongly recommended that serum iron and ferritin levels should be routinely monitored in pediatric patients undergoing eltrombopag therapy,particularly during long-term treatment.Such proactive surveillance may help prevent the onset of iron deficiency anemia and enhance overall treatment safety. 展开更多
关键词 Children Off-label medication ELTROMBOPAG signal mining Adverse drug events
原文传递
A Compact Manifold Mixup Feature-Based Open-Set Recognition Approach for Unknown Signals
8
作者 Yang Ying Zhu Lidong +1 位作者 Li Chengjie Sun Hong 《China Communications》 2025年第4期322-338,共17页
There are all kinds of unknown and known signals in the actual electromagnetic environment,which hinders the development of practical cognitive radio applications.However,most existing signal recognition models are di... There are all kinds of unknown and known signals in the actual electromagnetic environment,which hinders the development of practical cognitive radio applications.However,most existing signal recognition models are difficult to discover unknown signals while recognizing known ones.In this paper,a compact manifold mixup feature-based open-set recognition approach(OR-CMMF)is proposed to address the above problem.First,the proposed approach utilizes the center loss to constrain decision boundaries so that it obtains the compact latent signal feature representations and extends the low-confidence feature space.Second,the latent signal feature representations are used to construct synthetic representations as substitutes for unknown categories of signals.Then,these constructed representations can occupy the extended low-confidence space.Finally,the proposed approach applies the distillation loss to adjust the decision boundaries between the known categories signals and the constructed unknown categories substitutes so that it accurately discovers unknown signals.The OR-CMMF approach outperformed other state-of-the-art open-set recognition methods in comprehensive recognition performance and running time,as demonstrated by simulation experiments on two public datasets RML2016.10a and ORACLE. 展开更多
关键词 manifold mixup open-set recognition synthetic representation unknown signal recognition
在线阅读 下载PDF
An ultra energy-saving mechanism based on beacon signals for 6G networks
9
作者 Ailin Deng Xiaoqian Li +1 位作者 Gang Feng Lu Guan 《Digital Communications and Networks》 2025年第5期1330-1342,共13页
Terahertz(THz) and millimeter Wave(mmWave) have been considered as potential frequency bands for 6G cellular systems to meet the need of ultra-high data rates. However, indoor communications could be blocked in THz/mm... Terahertz(THz) and millimeter Wave(mmWave) have been considered as potential frequency bands for 6G cellular systems to meet the need of ultra-high data rates. However, indoor communications could be blocked in THz/mmW cellular systems due to the high free-space propagation loss. Deploying a large number of small base stations indoors has been considered as a promising solution for solving indoor coverage problems. However, base station dense deployment leads to a significant increase in system energy consumption. In this paper, we develop a novel ultra-efficient energy-saving mechanism with the aim of reducing energy consumption in 6G distributed indoor base station scenarios. Unlike the existing relevant protocol framework of 3GPP, which operates the cellular system based on constant system signaling messages(including cell ID, cell reselection information, etc.), the proposed mechanism eliminates the need for system messages. The intuition comes from the observation that the probability of having no users within the coverage area of an indoor base station is high, hence continuously sending system messages to guarantee the quality of service is unnecessary in indoor scenarios. Specifically, we design a dedicated beacon signal to detect whether there are users in the coverage area of the base station and switch off the main communication module when there are no active users for energy saving. The beacon frame structure is carefully designed based on the existing 3GPP specifications with minimal protocol modifications, and the protocol parameters involved are optimized. Simulation results show that the proposed mechanism can reduce the system energy from the order of tens of watts to the order of hundreds of milliwatts. Compared to traditional energy-saving schemes, the proposed mechanism achieves an average energy-saving gain of 58%, with a peak energy-saving gain of 90%. 展开更多
关键词 6G Indoor coverage Energy saving User detection Beacon signal
在线阅读 下载PDF
Quantum Genetic Algorithm Based Ensemble Learning for Detection of Atrial Fibrillation Using ECG Signals
10
作者 Yazeed Alkhrijah Marwa Fahim +4 位作者 Syed Muhammad Usman Qasim Mehmood Shehzad Khalid Mohamad A.Alawad Haya Aldossary 《Computer Modeling in Engineering & Sciences》 2025年第11期2339-2355,共17页
Atrial Fibrillation(AF)is a cardiac disorder characterized by irregular heart rhythms,typically diagnosed using Electrocardiogram(ECG)signals.In remote regions with limited healthcare personnel,automated AF detection ... Atrial Fibrillation(AF)is a cardiac disorder characterized by irregular heart rhythms,typically diagnosed using Electrocardiogram(ECG)signals.In remote regions with limited healthcare personnel,automated AF detection is extremely important.Although recent studies have explored various machine learning and deep learning approaches,challenges such as signal noise and subtle variations between AF and other cardiac rhythms continue to hinder accurate classification.In this study,we propose a novel framework that integrates robust preprocessing,comprehensive feature extraction,and an ensemble classification strategy.In the first step,ECG signals are divided into equal-sized segments using a 5-s sliding window with 50%overlap,followed by bandpass filtering between 0.5 and 45 Hz for noise removal.After preprocessing,both time and frequency-domain features are extracted,and a custom one-dimensional Convolutional Neural Network—Bidirectional Long Short-Term Memory(1D CNN-BiLSTM)architecture is introduced.Handcrafted and automated features are concatenated into a unified feature vector and classified using Support Vector Machine(SVM),Random Forest(RF),and Long Short-Term Memory(LSTM)models.A Quantum Genetic Algorithm(QGA)optimizes weighted averages of the classifier outputs for multi-class classification,distinguishing among AF,noisy,normal,and other rhythms.Evaluated on the PhysioNet 2017 Cardiology Challenge dataset,the proposed method achieved an accuracy of 94.40%and an F1-score of 92.30%,outperforming several state-of-the-art techniques. 展开更多
关键词 Quantum genetic algorithm AF detection heart disease ECG signals CNN LSTM
在线阅读 下载PDF
Deep learning-based compressed sampling reconstruction algorithm for digitizing intensive neutron ToF signals
11
作者 Chao Deng Shu-Jun Wang +6 位作者 Qin Hu Ying-Hong Tang Peng-Cheng Li Bo Xie Jian-Bo Yang Xian-Guo Tuo Qi-Biao Wang 《Nuclear Science and Techniques》 2025年第7期1-13,共13页
Neutron time-of-flight(ToF)measurement is a highly accurate method for obtaining the kinetic energy of a neutron by measuring its velocity,but requires precise acquisition of the neutron signal arrival time.However,th... Neutron time-of-flight(ToF)measurement is a highly accurate method for obtaining the kinetic energy of a neutron by measuring its velocity,but requires precise acquisition of the neutron signal arrival time.However,the high hardware costs and data burden associated with the acquisition of neutron ToF signals pose significant challenges.Higher sampling rates increase the data volume,data processing,and storage hardware costs.Compressed sampling can address these challenges,but it faces issues regarding optimal sampling efficiency and high-quality reconstructed signals.This paper proposes a revolutionary deep learning-based compressed sampling(DL-CS)algorithm for reconstructing neutron ToF signals that outperform traditional compressed sampling methods.This approach comprises four modules:random projection,rising dimensions,initial reconstruction,and final reconstruction.Initially,the technique adaptively compresses neutron ToF signals sequentially using three convolutional layers,replacing random measurement matrices in traditional compressed sampling theory.Subsequently,the signals are reconstructed using a modified inception module,long short-term memory,and self-attention.The performance of this deep compressed sampling method was quantified using the percentage root-mean-square difference,correlation coefficient,and reconstruction time.Experimental results showed that our proposed DL-CS approach can significantly enhance signal quality compared with other compressed sampling methods.This is evidenced by a percentage root-mean-square difference,correlation coefficient,and reconstruction time results of 5%,0.9988,and 0.0108 s,respectively,obtained for sampling rates below 10%for the neutron ToF signal generated using an electron-beam-driven photoneutron source.The results showed that the proposed DL-CS approach significantly improves the signal quality compared with other compressed sampling methods,exhibiting excellent reconstruction accuracy and speed. 展开更多
关键词 Deep learning Compressed sampling Neutron ToF signal LSTM Inception block Self-attention
在线阅读 下载PDF
Sparse Recovery of Decaying Signals by the Piecewise Generalized Orthogonal Matching Pursuit Algorithm
12
作者 Hanbing LIU Chongjun LI 《Journal of Mathematical Research with Applications》 2025年第6期813-834,共22页
In this paper,we focus on the recovery of piecewise sparse signals containing both fast-decaying and slow-decaying nonzero entries.In order to improve the performance of classic Orthogonal Matching Pursuit(OMP)and Gen... In this paper,we focus on the recovery of piecewise sparse signals containing both fast-decaying and slow-decaying nonzero entries.In order to improve the performance of classic Orthogonal Matching Pursuit(OMP)and Generalized Orthogonal Matching Pursuit(GOMP)algorithms for solving this problem,we propose the Piecewise Generalized Orthogonal Matching Pursuit(PGOMP)algorithm,by considering the mixed-decaying sparse signals as piecewise sparse signals with two components containing nonzero entries with different decay factors.The algorithm incorporates piecewise selection and deletion to retain the most significant entries according to the sparsity of each component.We provide a theoretical analysis based on the mutual coherence of the measurement matrix and the decay factors of the nonzero entries,establishing a sufficient condition for the PGOMP algorithm to select at least two correct indices in each iteration.Numerical simulations and an image decomposition experiment demonstrate that the proposed algorithm significantly improves the support recovery probability by effectively matching piecewise sparsity with decay factors. 展开更多
关键词 piecewise sparse recovery decaying sparse signals mutual coherence greedy algorithm
原文传递
Modulated-unlimited sampling scheme and large dynamic range single carrier signals receiving in ultra-wideband frequency space
13
作者 Zhaoyang Qiu Pei Wang Chenpu Li 《Defence Technology(防务技术)》 2025年第9期234-245,共12页
Large dynamic range and ultra-wideband receiving abilities are significant for many receivers. With these abilities, receivers can obtain signals with different power in ultra-wideband frequency space without informat... Large dynamic range and ultra-wideband receiving abilities are significant for many receivers. With these abilities, receivers can obtain signals with different power in ultra-wideband frequency space without information loss. However, conventional receiving scheme is hard to have large dynamic range and ultra-wideband receiving simultaneously because of the analog-to-digital converter(ADC) dynamic range and sample rate limitations. In this paper, based on the modulated sampling and unlimited sampling, a novel receiving scheme is proposed to achieve large dynamic range and ultra-wideband receiving. Focusing on the single carrier signals, the proposed scheme only uses a single self-rest ADC(SR-ADC) with low sample rate, and it achieves large dynamic range and ultra-wideband receiving simultaneously. Two receiving scenarios are considered, and they are cooperative strong signal receiving and non-cooperative strong/weak signals receiving. In the cooperative receiving scenario, an improved fast recovery method is proposed to obtain the modulated sampling output. In the non-cooperative receiving scenario, the strong and weak signals with different carrier frequencies are considered, and the signal processing method can recover and estimate each signal. Simulation results show that the proposed scheme can realize large dynamic range and ultra-wideband receiving simultaneously when the input signal-to-noise(SNR) ratio is high. 展开更多
关键词 Modulated-unlimited sampling Ultra-wideband receiving Large dynamic range signal recovery Parameter estimation
在线阅读 下载PDF
Differential Gene Expression and Metabolic Changes in Soybean Leaves Triggered by Caterpillar Chewing Sound Signals
14
作者 Lucas Leal Lima Angélica Souza Gouveia +8 位作者 Analice Martins Duarte Filipe Schitini Salgado Nathália Silva Oliveira Monique da Silva Bonjour Iana Pedro da Silva Quadros Maria Goreti Almeida Oliveira Flavia Maria Silva Carmo Elizabeth Pacheco Batista Fontes Humberto Josuéde Oliveira Ramos 《Phyton-International Journal of Experimental Botany》 2025年第6期1787-1810,共24页
Sound contains mechanical signals that can promote physiological and biochemical changes in plants.Insects produce different sounds in the environment,which may be relevant to plant behavior.Thus,we evaluated whether ... Sound contains mechanical signals that can promote physiological and biochemical changes in plants.Insects produce different sounds in the environment,which may be relevant to plant behavior.Thus,we evaluated whether signaling cascades are regulated differently by ecological sounds and whether they trigger molecular responses following those produced by herbivorous insects.Soybean plants were treated with two different sounds:chewing herbivore and forest ambient.The responses were markedly distinct,indicating that sound signals may also trigger specific cascades.Enzymes involved in oxidative metabolism were responsive to both sounds,while salicylic acid(SA)was responsive only to the chewing sound.In contrast,lipoxygenase(LOX)activity and jasmonic acid(JA)did not change.Soybean Kunitz trypsin inhibitor gene(SKTI)and Bowman-Birk(BBI)genes,encoding for protease inhibitors,were induced by chewing sound.Chewing sound-induced high expression of the pathogenesis-related protein(PR1)gene,confirming the activation of SA-dependent cascades.In contrast,the sound treatments promoted modifications in different branches of the phenylpropanoid pathway,highlighting a tendency for increased flavonols for plants under chewing sounds.Accordingly,chewing sounds induced pathogenesis-related protein(PR10/Bet v-1)and gmFLS1 flavonol synthase(FLS1)genes involved in flavonoid biosynthesis and flavonols.Finally,our results propose that plants may recognize herbivores by their chewing sound and that different ecological sounds can trigger distinct signaling cascades. 展开更多
关键词 Vibrational signaling plant–insect interactions phytohormonal response METABOLOMIC phenolic compounds
在线阅读 下载PDF
Research on the Safe,Reliable and Low-Cost Transmission of Multiple Signals between Different Control Systems
15
作者 Yonggang Deng 《Journal of Electronic Research and Application》 2025年第6期362-369,共8页
With the gradual development of smart power plants and large-scale centralized control,there is a need to exchange a large number of signals between different DCS systems and between DCS and PLC systems.Different cont... With the gradual development of smart power plants and large-scale centralized control,there is a need to exchange a large number of signals between different DCS systems and between DCS and PLC systems.Different control systems have different brands and cannot communicate directly via networks.Moreover,due to network security concerns,the main control of unit units and the auxiliary control system of the entire plant cannot communicate directly via networks either.The commonly adopted methods for signal exchange between control systems are hardwiring and 485 communications.Both have obvious drawbacks,where hardwiring requires a large number of channels and cable laying;485 configuration is difficult,not easy to maintain,and faults are hard to locate.This paper studies how to strike a balance between the two,using a minimal amount of hardwiring to transmit a large number of signals,which is safe,reliable,cost-effective,and can be maintained by any control personnel without network security risks. 展开更多
关键词 Control systems signal exchange Safety and reliability Low cost Easy maintenance
在线阅读 下载PDF
Few-Shot Recognition of Fiber Optic Vibration Sensing Signals Based on Triplet Loss Learning
16
作者 WANG Qiao REN Yanhui +4 位作者 LI Ziqiang QIAN Cheng DU Defei HU Xing LIU Dequan 《Wuhan University Journal of Natural Sciences》 2025年第4期334-342,共9页
The distributed fiber optic sensing system,known for its high sensitivity and wide-ranging measurement capabilities,has been widely used in monitoring underground gas pipelines.It primarily serves to perceive vibratio... The distributed fiber optic sensing system,known for its high sensitivity and wide-ranging measurement capabilities,has been widely used in monitoring underground gas pipelines.It primarily serves to perceive vibration signals induced by external events and to effectively provide early warnings of potential intrusion activities.Due to the complexity and diversity of external intrusion events,traditional deep learning methods can achieve event recognition with an average accuracy exceeding 90%.However,these methods rely on large-scale datasets,leading to significant time and labor costs during the data collection process.Additionally,traditional methods perform poorly when faced with the scarcity of low-frequency event samples,making it challenging to address these rare occurrences.To address this issue,this paper proposes a small-sample learning model based on triplet learning for intrusion event recognition.The model employs a 6-way 20-shot support set configuration and utilizes the KNN clustering algorithm to assess the model's performance.Experimental results indicate that the model achieves an average accuracy of 91.6%,further validating the superior performance of the triplet learning model in classifying external intrusion events.Compared to traditional methods,this approach not only effectively reduces the dependence on large-scale datasets but also better addresses the classification of low-frequency event samples,demonstrating significant application potential. 展开更多
关键词 distributed fiber optic sensing system deep learning signal processing small-sample learning triplet learning
原文传递
Detection and interpretation of the time-varying seasonal signals in China with multi-geodetic measurements
17
作者 Liansheng Deng Yugang Xiao +4 位作者 Qusen Chen Wei Peng Zhao Li Hua Chen Zhiwen Wu 《Geodesy and Geodynamics》 2025年第1期42-54,共13页
The time-varying periodic variations in Global Navigation Satellite System(GNSS)stations affect the reliable time series analysis and appropriate geophysical interpretation.In this study,we apply the singular spectrum... The time-varying periodic variations in Global Navigation Satellite System(GNSS)stations affect the reliable time series analysis and appropriate geophysical interpretation.In this study,we apply the singular spectrum analysis(SSA)method to characterize and interpret the periodic patterns of GNSS deformations in China using multiple geodetic datasets.These include 23-year observations from the Crustal Movement Observation Network of China(CMONOC),displacements inferred from the Gravity Recovery and Climate Experiment(GRACE),and loadings derived from Geophysical models(GM).The results reveal that all CMONOC time series exhibit seasonal signals characterized by amplitude and phase modulations,and the SSA method outperforms the traditional least squares fitting(LSF)method in extracting and interpreting the time-varying seasonal signals from the original time series.The decrease in the root mean square(RMS)correlates well with the annual cycle variance estimated by the SSA method,and the average reduction in noise amplitudes is nearly twice as much for SSA filtered results compared with those from the LSF method.With SSA analysis,the time-varying seasonal signals for all the selected stations can be identified in the reconstructed components corresponding to the first ten eigenvalues.Moreover,both RMS reduction and correlation analysis imply the advantages of GRACE solutions in explaining the GNSS periodic variations,and the geophysical effects can account for 71%of the GNSS annual amplitudes,and the average RMS reduction is 15%.The SSA method has proved to be useful for investigating the GNSS timevarying seasonal signals.It could be applicable as an auxiliary tool in the improvement of nonlinear variations investigations. 展开更多
关键词 GNSS coordinate time series Singularspectrumanalysis Time-varying seasonal signals Loading effects GRACE
原文传递
DOA estimation of non-cooperative UAV beam signals based on BD-DOANet
18
作者 Xieda SONG Guoru DING +3 位作者 Haichao WANG Jiangchun GU Peng TANG Yitao XU 《Chinese Journal of Aeronautics》 2025年第12期325-336,共12页
In recent years,the proliferation of beamforming signals has made the electromagnetic environment more complex.Traditional spectrum sensing techniques mainly focus on the detection of omnidirectional signals and can n... In recent years,the proliferation of beamforming signals has made the electromagnetic environment more complex.Traditional spectrum sensing techniques mainly focus on the detection of omnidirectional signals and can no longer meet the needs of beamforming signals.Moreover,the next-generation spectrum sensing technologies must not only reliably detect the presence of beamforming signals but also accurately estimate the spatial information of these signals.This paper investigates the issue of Direction of Arrival(DOA)of non-cooperative Unmanned Aerial Vehicle(UAV)beamforming signals,where most of the prior information about non-cooperative transmitters,such as the transmission power and the communication time slots,is unknown.In such conditions,we consider two types of data models for UAV beamforming signals with different Signalto-Noise Ratios(SNRs).Based on these data models,we develop a UAV Beamforming signals Detection-DOA Network(BD-DOANet),comprising convolutional modules,a channel attention module,and residual modules.Simulation results show that BD-DOANet effectively captures the angle information of non-cooperative UAV beamforming signals for both ideal and non-ideal data.At higher SNR levels,the average error is below 0.5 and its mean squared error is below 0.2.Even at lower SNR levels,BD-DOANet shows superior performance of DOA estimation. 展开更多
关键词 BD-DOANet Beam signals Deep learning Direction of arrival estimation Unmanned aerial vehicle
原文传递
Classification of EEG signals in depression by fusing temporal convolution and feature recalibration
19
作者 SUN Fanglin ZHAI Fengwen JIN Jing 《Journal of Measurement Science and Instrumentation》 2025年第4期547-557,共11页
Aiming at the problem of insufficient feature extraction in single scale neural network model and the problem that convolutional neural network cannot process sequential tasks in the classification of EEG signals in d... Aiming at the problem of insufficient feature extraction in single scale neural network model and the problem that convolutional neural network cannot process sequential tasks in the classification of EEG signals in depression,a hybrid model(BFTCNet)of dualbranch convolutional neural network(Bi_CNN)and temporal convolutional network(TCN)based on feature recalibration(FR)was proposed to classify EEG signals of depressed patients and healthy controls.Firstly,Bi_CNN module was used to extract the mixed EEG features between different frequency bands and different channels.Secondly,FR module was used to enhance the features extracted by Bi_CNN.Finally,TCN with dilated causal convolution was used for the sequence learning to capture the temporal dependency between features.In this study,128 EEG channels of resting-state(closed-eye)EEG data from the public dataset MODMA were used as experimental data,including 29 healthy controls and 24 depression patients.The performance of the model was evaluated by the 10-fold cross validation method.The proposed BFTCNet achieves a classification accuracy of 95.98%,F1 score value of 95.47%,sensitivity and specificity of 94.21%and 97.50%,respectively.Compared with the single-scale network model EEGNet-8,2,the classification accuracy and F1 value are improved by 1.5%and 1.48%,respectively.Meanwhile,the ablation experiment proved that each sub-module had its contribution to the improvement of the model’s classification ability. 展开更多
关键词 multi-channel EEG signal dual-branch convolutional neural network feature recalibration temporal convolutional network
在线阅读 下载PDF
Assessment of the diurnal and semidiurnal signals induced by monument thermal effect with time series of very short GPS baselines
20
作者 Kaihua Wang Linsong Yang +3 位作者 Shuangping Li Tengxu Zhang Zhao Li Liansheng Deng 《Geodesy and Geodynamics》 2025年第2期158-171,共14页
The monument thermal effect(MTE)displacements could result in periodical signals with several mil-limeters magnitudes in the vertical and horizontal GPS position time series.However,the interaction ofvarious origins o... The monument thermal effect(MTE)displacements could result in periodical signals with several mil-limeters magnitudes in the vertical and horizontal GPS position time series.However,the interaction ofvarious origins of periodic signals in GPS observations makes it difficult to isolate the millimeter-levelMTE displacement from other signals and noises.In this study,to assess the diurnal and semidiurnalsignals induced by MTE,we processed 12 very short GPS baselines(VSGB)with length<150 m.Themonument pairs for each baseline differ in their heights,horizontal structure,or base foundations.Meanwhile,two zero-baselines were also processed as the control group.Results showed that the sea-sonal signals observed in VSGB time series in the horizontal and vertical directions,were mainly inducedby seasonal MTE.Time-varying diurnal and semidiurnal signals with amplitude up to 4 mm wereobserved in the vertical direction for baselines with monument height difference(MHD)larger than10 m.Horizontal diurnal signal with an amplitude of about 2 mm was also detected for baselines withnon-axisymmetric monument structure.The orientation of the detected horizontal displacement wascoherent with the direction of daily temperature variation(DTV)driven by direct solar radiation,whichindicates that the diurnal and semidiurnal signals are likely induced by MTE.The observed high-frequency MTE displacements,if not well modeled and removed,may propagate into spurious long-term signals and bias the velocity estimation in the daily GPS time series. 展开更多
关键词 Monument thermal effect Diurnal and semidiurnal signal Very short GPS baseline Monument difference
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部