Nowadays, Iris recognition is a method of biometric verification of the person authentication process based on the human iris unique pattern, which is applied to control system for high level security. It is a popular...Nowadays, Iris recognition is a method of biometric verification of the person authentication process based on the human iris unique pattern, which is applied to control system for high level security. It is a popular system for recognizing humans and essential to understand it. The objective of this method is to assign a unique subject for each iris image for authentication of the person and provide an effective feature representation of the iris recognition with the image analysis. This paper proposed a new optimization and recognition process of iris features selection by using proposed Modified ADMM and Deep Learning Algorithm (MADLA). For improving the performance of the security with feature extraction, the proposed algorithm is designed and used to extract the strong features identification of iris of the person with less time, better accuracy, improving performance in access control and in security level. The evaluations of iris data are demonstrated the improvement of the recognition accuracy. In this proposed methodology, the recognition of the iris features has been improved and it incorporates into the iris recognition systems.展开更多
A new method for iris recognition using a multi-matching system based on a simplified deformable model of the human iris was proposed. The method defined iris feature points and formed the feature space based on a wa...A new method for iris recognition using a multi-matching system based on a simplified deformable model of the human iris was proposed. The method defined iris feature points and formed the feature space based on a wavelet transform. In the matching stage it worked in a crude manner. Driven by a simplified deformable iris model, the crude matching was refined. By means of such multi-matching system, the task of iris recognition was accomplished. This process can preserve the elastic deformation between an input iris image and a template and improve precision for iris recognition. The experimental results indicate the va- lidity of this method.展开更多
A new method for iris identification based on multiwavelets is proposed. By means of the properties of multiwavelets, such as orthogonality, symmetry, vanishing moments and approximation order, the iris texture can be...A new method for iris identification based on multiwavelets is proposed. By means of the properties of multiwavelets, such as orthogonality, symmetry, vanishing moments and approximation order, the iris texture can be simply presented. A brief overview of muhiwavelets is presented at first. Iris identification system and iris texture feature presentation and recognition based on multiwavelets a,e introduced subsequently. And the experiment indicates the validity of this method finally.展开更多
Aim to countermeasure the presentation attack for iris recognition system,an iris liveness detection scheme based on batch normalized convolutional neural network(BNCNN)is proposed to improve the reliability of the ir...Aim to countermeasure the presentation attack for iris recognition system,an iris liveness detection scheme based on batch normalized convolutional neural network(BNCNN)is proposed to improve the reliability of the iris authentication system.The BNCNN architecture with eighteen layers is constructed to detect the genuine iris and fake iris,including convolutional layer,batch-normalized(BN)layer,Relu layer,pooling layer and full connected layer.The iris image is first preprocessed by iris segmentation and is normalized to 256×256 pixels,and then the iris features are extracted by BNCNN.With these features,the genuine iris and fake iris are determined by the decision-making layer.Batch normalization technique is used in BNCNN to avoid the problem of over fitting and gradient disappearing during training.Extensive experiments are conducted on three classical databases:the CASIA Iris Lamp database,the CASIA Iris Syn database and Ndcontact database.The results show that the proposed method can effectively extract micro texture features of the iris,and achieve higher detection accuracy compared with some typical iris liveness detection methods.展开更多
Contactless verification is possible with iris biometric identification,which helps prevent infections like COVID-19 from spreading.Biometric systems have grown unsteady and dangerous as a result of spoofing assaults ...Contactless verification is possible with iris biometric identification,which helps prevent infections like COVID-19 from spreading.Biometric systems have grown unsteady and dangerous as a result of spoofing assaults employing contact lenses,replayed the video,and print attacks.The work demonstrates an iris liveness detection approach by utilizing fragmental coefficients of Haar transformed Iris images as signatures to prevent spoofing attacks for the very first time in the identification of iris liveness.Seven assorted feature creation ways are studied in the presented solutions,and these created features are explored for the training of eight distinct machine learning classifiers and ensembles.The predicted iris liveness identification variants are evaluated using recall,F-measure,precision,accuracy,APCER,BPCER,and ACER.Three standard datasets were used in the investigation.The main contribution of our study is achieving a good accuracy of 99.18%with a smaller feature vector.The fragmental coefficients of Haar transformed iris image of size 8∗8 utilizing random forest algorithm showed superior iris liveness detection with reduced featured vector size(64 features).Random forest gave 99.18%accuracy.Additionally,conduct an extensive experiment on cross datasets for detailed analysis.The results of our experiments showthat the iris biometric template is decreased in size tomake the proposed framework suitable for algorithmic verification in real-time environments and settings.展开更多
Biometrics represents the technology for measuring the characteristics of the human body.Biometric authentication currently allows for secure,easy,and fast access by recognizing a person based on facial,voice,and fing...Biometrics represents the technology for measuring the characteristics of the human body.Biometric authentication currently allows for secure,easy,and fast access by recognizing a person based on facial,voice,and fingerprint traits.Iris authentication is one of the essential biometric methods for identifying a person.This authentication type has become popular in research and practical applications.Unlike the face and hands,the iris is an internal organ,protected and therefore less likely to be damaged.However,the number of helpful information collected from the iris is much greater than the other biometric human organs.This work proposes a new iris identification model based on a multilevel thresholding technique and modified Fuzzy cmeans algorithm.The multilevel thresholding technique extracts the iris from its surroundings,such as specular reflections,eyelashes,pupils,and sclera.On the other hand,the modified Fuzzy c-means is used to combine and classify the most useful statistical features to maximize the accuracy of the collected information.Therefore,having the most optimal iris recognition.The proposed model results are validated using True Success Rate(TSR)and compared to other existing models.The results show how effective the combination of the two stages of the proposed model is:the Otsu method and modified Fuzzy c-means for the 400 tested images representing 40 people.展开更多
The demand on security is increasing greatly in these years and biometric recognition gradually becomes a hot field of research. Iris recognition is a new branch of biometric recognition, which is regarded as the most...The demand on security is increasing greatly in these years and biometric recognition gradually becomes a hot field of research. Iris recognition is a new branch of biometric recognition, which is regarded as the most stable, safe and accurate biometric recognition method. In these years, much progress in this field has been made by scholars and experts of different countries. In this paper, some successful iris recognition methods are listed and their performance are compared. Furthermore, the existing problems and challenges are discussed.展开更多
In recent years,biometric sensors are applicable for identifying impor-tant individual information and accessing the control using various identifiers by including the characteristics like afingerprint,palm print,iris r...In recent years,biometric sensors are applicable for identifying impor-tant individual information and accessing the control using various identifiers by including the characteristics like afingerprint,palm print,iris recognition,and so on.However,the precise identification of human features is still physically chal-lenging in humans during their lifetime resulting in a variance in their appearance or features.In response to these challenges,a novel Multimodal Biometric Feature Extraction(MBFE)model is proposed to extract the features from the noisy sen-sor data using a modified Ranking-based Deep Convolution Neural Network(RDCNN).The proposed MBFE model enables the feature extraction from differ-ent biometric images that includes iris,palm print,and lip,where the images are preprocessed initially for further processing.The extracted features are validated after optimal extraction by the RDCNN by splitting the datasets to train the fea-ture extraction model and then testing the model with different sets of input images.The simulation is performed in matlab to test the efficacy of the modal over multi-modal datasets and the simulation result shows that the proposed meth-od achieves increased accuracy,precision,recall,and F1 score than the existing deep learning feature extraction methods.The performance improvement of the MBFE Algorithm technique in terms of accuracy,precision,recall,and F1 score is attained by 0.126%,0.152%,0.184%,and 0.38%with existing Back Propaga-tion Neural Network(BPNN),Human Identification Using Wavelet Transform(HIUWT),Segmentation Methodology for Non-cooperative Recognition(SMNR),Daugman Iris Localization Algorithm(DILA)feature extraction techni-ques respectively.展开更多
文摘Nowadays, Iris recognition is a method of biometric verification of the person authentication process based on the human iris unique pattern, which is applied to control system for high level security. It is a popular system for recognizing humans and essential to understand it. The objective of this method is to assign a unique subject for each iris image for authentication of the person and provide an effective feature representation of the iris recognition with the image analysis. This paper proposed a new optimization and recognition process of iris features selection by using proposed Modified ADMM and Deep Learning Algorithm (MADLA). For improving the performance of the security with feature extraction, the proposed algorithm is designed and used to extract the strong features identification of iris of the person with less time, better accuracy, improving performance in access control and in security level. The evaluations of iris data are demonstrated the improvement of the recognition accuracy. In this proposed methodology, the recognition of the iris features has been improved and it incorporates into the iris recognition systems.
文摘A new method for iris recognition using a multi-matching system based on a simplified deformable model of the human iris was proposed. The method defined iris feature points and formed the feature space based on a wavelet transform. In the matching stage it worked in a crude manner. Driven by a simplified deformable iris model, the crude matching was refined. By means of such multi-matching system, the task of iris recognition was accomplished. This process can preserve the elastic deformation between an input iris image and a template and improve precision for iris recognition. The experimental results indicate the va- lidity of this method.
文摘A new method for iris identification based on multiwavelets is proposed. By means of the properties of multiwavelets, such as orthogonality, symmetry, vanishing moments and approximation order, the iris texture can be simply presented. A brief overview of muhiwavelets is presented at first. Iris identification system and iris texture feature presentation and recognition based on multiwavelets a,e introduced subsequently. And the experiment indicates the validity of this method finally.
基金This work was supported in part by project supported by National Natural Science Foundation of China(Grant No.61572182,No.61370225)project supported by Hunan Provincial Natural Science Foundation of China(Grant No.15JJ2007).
文摘Aim to countermeasure the presentation attack for iris recognition system,an iris liveness detection scheme based on batch normalized convolutional neural network(BNCNN)is proposed to improve the reliability of the iris authentication system.The BNCNN architecture with eighteen layers is constructed to detect the genuine iris and fake iris,including convolutional layer,batch-normalized(BN)layer,Relu layer,pooling layer and full connected layer.The iris image is first preprocessed by iris segmentation and is normalized to 256×256 pixels,and then the iris features are extracted by BNCNN.With these features,the genuine iris and fake iris are determined by the decision-making layer.Batch normalization technique is used in BNCNN to avoid the problem of over fitting and gradient disappearing during training.Extensive experiments are conducted on three classical databases:the CASIA Iris Lamp database,the CASIA Iris Syn database and Ndcontact database.The results show that the proposed method can effectively extract micro texture features of the iris,and achieve higher detection accuracy compared with some typical iris liveness detection methods.
基金supported by theResearchers Supporting Project No.RSP-2021/14,King Saud University,Riyadh,Saudi Arabia.
文摘Contactless verification is possible with iris biometric identification,which helps prevent infections like COVID-19 from spreading.Biometric systems have grown unsteady and dangerous as a result of spoofing assaults employing contact lenses,replayed the video,and print attacks.The work demonstrates an iris liveness detection approach by utilizing fragmental coefficients of Haar transformed Iris images as signatures to prevent spoofing attacks for the very first time in the identification of iris liveness.Seven assorted feature creation ways are studied in the presented solutions,and these created features are explored for the training of eight distinct machine learning classifiers and ensembles.The predicted iris liveness identification variants are evaluated using recall,F-measure,precision,accuracy,APCER,BPCER,and ACER.Three standard datasets were used in the investigation.The main contribution of our study is achieving a good accuracy of 99.18%with a smaller feature vector.The fragmental coefficients of Haar transformed iris image of size 8∗8 utilizing random forest algorithm showed superior iris liveness detection with reduced featured vector size(64 features).Random forest gave 99.18%accuracy.Additionally,conduct an extensive experiment on cross datasets for detailed analysis.The results of our experiments showthat the iris biometric template is decreased in size tomake the proposed framework suitable for algorithmic verification in real-time environments and settings.
基金This research is supported by the faculty of computers and information Technology and the Industrial Innovation and Robotics Center,University of Tabuk.
文摘Biometrics represents the technology for measuring the characteristics of the human body.Biometric authentication currently allows for secure,easy,and fast access by recognizing a person based on facial,voice,and fingerprint traits.Iris authentication is one of the essential biometric methods for identifying a person.This authentication type has become popular in research and practical applications.Unlike the face and hands,the iris is an internal organ,protected and therefore less likely to be damaged.However,the number of helpful information collected from the iris is much greater than the other biometric human organs.This work proposes a new iris identification model based on a multilevel thresholding technique and modified Fuzzy cmeans algorithm.The multilevel thresholding technique extracts the iris from its surroundings,such as specular reflections,eyelashes,pupils,and sclera.On the other hand,the modified Fuzzy c-means is used to combine and classify the most useful statistical features to maximize the accuracy of the collected information.Therefore,having the most optimal iris recognition.The proposed model results are validated using True Success Rate(TSR)and compared to other existing models.The results show how effective the combination of the two stages of the proposed model is:the Otsu method and modified Fuzzy c-means for the 400 tested images representing 40 people.
基金Supported by the National Natural Science Foundation of China (No.60472046)
文摘The demand on security is increasing greatly in these years and biometric recognition gradually becomes a hot field of research. Iris recognition is a new branch of biometric recognition, which is regarded as the most stable, safe and accurate biometric recognition method. In these years, much progress in this field has been made by scholars and experts of different countries. In this paper, some successful iris recognition methods are listed and their performance are compared. Furthermore, the existing problems and challenges are discussed.
文摘In recent years,biometric sensors are applicable for identifying impor-tant individual information and accessing the control using various identifiers by including the characteristics like afingerprint,palm print,iris recognition,and so on.However,the precise identification of human features is still physically chal-lenging in humans during their lifetime resulting in a variance in their appearance or features.In response to these challenges,a novel Multimodal Biometric Feature Extraction(MBFE)model is proposed to extract the features from the noisy sen-sor data using a modified Ranking-based Deep Convolution Neural Network(RDCNN).The proposed MBFE model enables the feature extraction from differ-ent biometric images that includes iris,palm print,and lip,where the images are preprocessed initially for further processing.The extracted features are validated after optimal extraction by the RDCNN by splitting the datasets to train the fea-ture extraction model and then testing the model with different sets of input images.The simulation is performed in matlab to test the efficacy of the modal over multi-modal datasets and the simulation result shows that the proposed meth-od achieves increased accuracy,precision,recall,and F1 score than the existing deep learning feature extraction methods.The performance improvement of the MBFE Algorithm technique in terms of accuracy,precision,recall,and F1 score is attained by 0.126%,0.152%,0.184%,and 0.38%with existing Back Propaga-tion Neural Network(BPNN),Human Identification Using Wavelet Transform(HIUWT),Segmentation Methodology for Non-cooperative Recognition(SMNR),Daugman Iris Localization Algorithm(DILA)feature extraction techni-ques respectively.