期刊文献+
共找到217篇文章
< 1 2 11 >
每页显示 20 50 100
Optimized Features Extraction of IRIS Recognition by Using MADLA to Ensure Secure Authentication
1
作者 S. Pravinthraja K. Umamaheswari 《Circuits and Systems》 2016年第8期1927-1933,共7页
Nowadays, Iris recognition is a method of biometric verification of the person authentication process based on the human iris unique pattern, which is applied to control system for high level security. It is a popular... Nowadays, Iris recognition is a method of biometric verification of the person authentication process based on the human iris unique pattern, which is applied to control system for high level security. It is a popular system for recognizing humans and essential to understand it. The objective of this method is to assign a unique subject for each iris image for authentication of the person and provide an effective feature representation of the iris recognition with the image analysis. This paper proposed a new optimization and recognition process of iris features selection by using proposed Modified ADMM and Deep Learning Algorithm (MADLA). For improving the performance of the security with feature extraction, the proposed algorithm is designed and used to extract the strong features identification of iris of the person with less time, better accuracy, improving performance in access control and in security level. The evaluations of iris data are demonstrated the improvement of the recognition accuracy. In this proposed methodology, the recognition of the iris features has been improved and it incorporates into the iris recognition systems. 展开更多
关键词 GLCM Deep Learning Strong features Extraction MADMM iris Recognition
在线阅读 下载PDF
Using multi-matching system based on a simplified deformable model of the human iris for iris recognition 被引量:2
2
作者 MING Xing , XU Tao , WANG Zheng-xuan 1 2 3 1. College of Computer Science and Technology, Nanling Campus,Jilin University, 5988 Renmin Street,Changchun 130022, P. R. China 2. College of Mechanical Science and Engineering, Nanling Campus,Jilin University, 5988 Renmin Street, Changchun 130022, P. R. China 3. College of Computer Science and Technology, Qianwei Campus,Jilin University, 10 Qianwei Road, Changchun 130012, P. R. China. 《Journal of Bionic Engineering》 SCIE EI CSCD 2004年第3期183-190,共8页
A new method for iris recognition using a multi-matching system based on a simplified deformable model of the human iris was proposed. The method defined iris feature points and formed the feature space based on a wa... A new method for iris recognition using a multi-matching system based on a simplified deformable model of the human iris was proposed. The method defined iris feature points and formed the feature space based on a wavelet transform. In the matching stage it worked in a crude manner. Driven by a simplified deformable iris model, the crude matching was refined. By means of such multi-matching system, the task of iris recognition was accomplished. This process can preserve the elastic deformation between an input iris image and a template and improve precision for iris recognition. The experimental results indicate the va- lidity of this method. 展开更多
关键词 iris recognition wavelet transform feature points deformable model
在线阅读 下载PDF
Iris Identification Technology Based on Multiwavelets 被引量:1
3
作者 Wei Lian-xin Ma Fu-ming +2 位作者 Xu Tao Li Zhi-hui Wu Deng-feng 《Journal of Bionic Engineering》 SCIE EI CSCD 2005年第4期203-207,共5页
A new method for iris identification based on multiwavelets is proposed. By means of the properties of multiwavelets, such as orthogonality, symmetry, vanishing moments and approximation order, the iris texture can be... A new method for iris identification based on multiwavelets is proposed. By means of the properties of multiwavelets, such as orthogonality, symmetry, vanishing moments and approximation order, the iris texture can be simply presented. A brief overview of muhiwavelets is presented at first. Iris identification system and iris texture feature presentation and recognition based on multiwavelets a,e introduced subsequently. And the experiment indicates the validity of this method finally. 展开更多
关键词 MULTIWAVELETS iris identification texture feature
在线阅读 下载PDF
Detecting Iris Liveness with Batch Normalized Convolutional Neural Network 被引量:2
4
作者 Min Long Yan Zeng 《Computers, Materials & Continua》 SCIE EI 2019年第2期493-504,共12页
Aim to countermeasure the presentation attack for iris recognition system,an iris liveness detection scheme based on batch normalized convolutional neural network(BNCNN)is proposed to improve the reliability of the ir... Aim to countermeasure the presentation attack for iris recognition system,an iris liveness detection scheme based on batch normalized convolutional neural network(BNCNN)is proposed to improve the reliability of the iris authentication system.The BNCNN architecture with eighteen layers is constructed to detect the genuine iris and fake iris,including convolutional layer,batch-normalized(BN)layer,Relu layer,pooling layer and full connected layer.The iris image is first preprocessed by iris segmentation and is normalized to 256×256 pixels,and then the iris features are extracted by BNCNN.With these features,the genuine iris and fake iris are determined by the decision-making layer.Batch normalization technique is used in BNCNN to avoid the problem of over fitting and gradient disappearing during training.Extensive experiments are conducted on three classical databases:the CASIA Iris Lamp database,the CASIA Iris Syn database and Ndcontact database.The results show that the proposed method can effectively extract micro texture features of the iris,and achieve higher detection accuracy compared with some typical iris liveness detection methods. 展开更多
关键词 iris liveness detection batch normalization convolutional neural network biometric feature recognition
在线阅读 下载PDF
IrisCodeNet:虹膜特征编码网络 被引量:5
5
作者 贾丁丁 沈文忠 《计算机工程与应用》 CSCD 北大核心 2022年第10期185-192,共8页
使用有效的特征提取算法对虹膜纹理进行准确的表达是虹膜识别技术的关键。基于虹膜识别任务的特殊性,提出了用于虹膜特征编码的网络模型IrisCodeNet。该网络架构使用了改进的BasicBlock,并结合了可以扩大决策边界的损失函数AM-Softmax(a... 使用有效的特征提取算法对虹膜纹理进行准确的表达是虹膜识别技术的关键。基于虹膜识别任务的特殊性,提出了用于虹膜特征编码的网络模型IrisCodeNet。该网络架构使用了改进的BasicBlock,并结合了可以扩大决策边界的损失函数AM-Softmax(additive margin softmax)。为了获取最佳的虹膜识别效果,对AM-Softmax的参数设置、虹膜图像预处理输入形式、数据增强方式、网络输入尺寸做了细致的研究。实验结果表明:使用IrisCodeNet训练得到的特征提取器在CASIA-Iris-Thousand、CASIA-Iris-Distance、IITD虹膜数据库上进行测试,所评估的等错误率(equal error rate,EER)和正确接受率(true acceptance rate,TAR)均远远超过了广泛应用的传统算法。特别地,IrisCodeNet无需传统的虹膜归一化或精确的虹膜分割步骤依然取得了极好的识别效果。并且使用Grad-CAM(gradient-weighted class activation mapping)算法进行了可视化分析,结果表明该网络框架有效地关注了虹膜纹理信息,从而证明了IrisCodeNet具有较强的虹膜纹理特征提取能力。 展开更多
关键词 虹膜识别 特征编码 图像预处理 AM-Softmax Grad-CAM
在线阅读 下载PDF
IrisBeautyDet:虹膜定位和美瞳检测网络 被引量:1
6
作者 陈旭旗 沈文忠 《计算机工程与应用》 CSCD 北大核心 2023年第2期120-128,共9页
虹膜活体检测是虹膜识别中涉及安全的重要环节之一,也是虹膜识别领域亟待解决的问题之一,其中美瞳检测是虹膜活体检测中最具挑战性的领域。提出了一种基于SSD(single shot multibox detector)目标检测网络的虹膜定位和美瞳检测算法IrisB... 虹膜活体检测是虹膜识别中涉及安全的重要环节之一,也是虹膜识别领域亟待解决的问题之一,其中美瞳检测是虹膜活体检测中最具挑战性的领域。提出了一种基于SSD(single shot multibox detector)目标检测网络的虹膜定位和美瞳检测算法IrisBeautyDet,并对网络结构进行轻量化处理,引入MobileNet主干网络显著减少模型计算量,极大提高速度。采用空间注意力和通道注意力机制,进一步提高模型准确率。实验表明,在CASIA-Iris和圣母大学NDCLD的活体和美瞳虹膜数据集上,该算法具有较好的泛化能力和鲁棒性,相比原始SSD算法,IrisBeautyDet具有更少的参数量、更快的实时性和更高的准确率。相比原始SSD网络模型,该模型大小从91.1 MB下降到26.1 MB,同时将检测速度从29.68 frame/s提高到41.88 frame/s,对活体类和美瞳类的检测精确率达到99.21%和98.61%。利用导向反向传播(guided-backpropagation)对检测特征图进行可视化,分析并优化网络模型使其更有效地提取美瞳纹理特征。 展开更多
关键词 美瞳检测 虹膜活体检测 呈现攻击检测 注意力机制 轻量级网络 特征图可视化
在线阅读 下载PDF
Iris Liveness Detection Using Fragmental Energy of Haar Transformed Iris Images Using Ensemble of Machine Learning Classifiers
7
作者 Smita Khade Shilpa Gite +2 位作者 Sudeep D.Thepade Biswajeet Pradhan Abdullah Alamri 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第7期323-345,共23页
Contactless verification is possible with iris biometric identification,which helps prevent infections like COVID-19 from spreading.Biometric systems have grown unsteady and dangerous as a result of spoofing assaults ... Contactless verification is possible with iris biometric identification,which helps prevent infections like COVID-19 from spreading.Biometric systems have grown unsteady and dangerous as a result of spoofing assaults employing contact lenses,replayed the video,and print attacks.The work demonstrates an iris liveness detection approach by utilizing fragmental coefficients of Haar transformed Iris images as signatures to prevent spoofing attacks for the very first time in the identification of iris liveness.Seven assorted feature creation ways are studied in the presented solutions,and these created features are explored for the training of eight distinct machine learning classifiers and ensembles.The predicted iris liveness identification variants are evaluated using recall,F-measure,precision,accuracy,APCER,BPCER,and ACER.Three standard datasets were used in the investigation.The main contribution of our study is achieving a good accuracy of 99.18%with a smaller feature vector.The fragmental coefficients of Haar transformed iris image of size 8∗8 utilizing random forest algorithm showed superior iris liveness detection with reduced featured vector size(64 features).Random forest gave 99.18%accuracy.Additionally,conduct an extensive experiment on cross datasets for detailed analysis.The results of our experiments showthat the iris biometric template is decreased in size tomake the proposed framework suitable for algorithmic verification in real-time environments and settings. 展开更多
关键词 iris images liveness identification Haar transform machine learning BIOMETRIC feature formation ensemble model
在线阅读 下载PDF
Iris Recognition Based on Multilevel Thresholding Technique and Modified Fuzzy c-Means Algorithm
8
作者 Slim Ben Chaabane Rafika Harrabi +1 位作者 Anas Bushnag Hassene Seddik 《Journal on Artificial Intelligence》 2022年第4期201-214,共14页
Biometrics represents the technology for measuring the characteristics of the human body.Biometric authentication currently allows for secure,easy,and fast access by recognizing a person based on facial,voice,and fing... Biometrics represents the technology for measuring the characteristics of the human body.Biometric authentication currently allows for secure,easy,and fast access by recognizing a person based on facial,voice,and fingerprint traits.Iris authentication is one of the essential biometric methods for identifying a person.This authentication type has become popular in research and practical applications.Unlike the face and hands,the iris is an internal organ,protected and therefore less likely to be damaged.However,the number of helpful information collected from the iris is much greater than the other biometric human organs.This work proposes a new iris identification model based on a multilevel thresholding technique and modified Fuzzy cmeans algorithm.The multilevel thresholding technique extracts the iris from its surroundings,such as specular reflections,eyelashes,pupils,and sclera.On the other hand,the modified Fuzzy c-means is used to combine and classify the most useful statistical features to maximize the accuracy of the collected information.Therefore,having the most optimal iris recognition.The proposed model results are validated using True Success Rate(TSR)and compared to other existing models.The results show how effective the combination of the two stages of the proposed model is:the Otsu method and modified Fuzzy c-means for the 400 tested images representing 40 people. 展开更多
关键词 Biometric authentication RECOGNITION iris recognition statistical features feature extraction fuzzy c-means TSR sensitivity classification
在线阅读 下载PDF
Iris Recognition Technique
9
作者 解梅 《Journal of Electronic Science and Technology of China》 2006年第3期219-224,共6页
The demand on security is increasing greatly in these years and biometric recognition gradually becomes a hot field of research. Iris recognition is a new branch of biometric recognition, which is regarded as the most... The demand on security is increasing greatly in these years and biometric recognition gradually becomes a hot field of research. Iris recognition is a new branch of biometric recognition, which is regarded as the most stable, safe and accurate biometric recognition method. In these years, much progress in this field has been made by scholars and experts of different countries. In this paper, some successful iris recognition methods are listed and their performance are compared. Furthermore, the existing problems and challenges are discussed. 展开更多
关键词 biometric recognition iris localization NORMALIZATION feature vectorextraction and match
在线阅读 下载PDF
Novel Multimodal Biometric Feature Extraction for Precise Human Identification
10
作者 J.Vasavi M.S.Abirami 《Intelligent Automation & Soft Computing》 SCIE 2023年第5期1349-1363,共15页
In recent years,biometric sensors are applicable for identifying impor-tant individual information and accessing the control using various identifiers by including the characteristics like afingerprint,palm print,iris r... In recent years,biometric sensors are applicable for identifying impor-tant individual information and accessing the control using various identifiers by including the characteristics like afingerprint,palm print,iris recognition,and so on.However,the precise identification of human features is still physically chal-lenging in humans during their lifetime resulting in a variance in their appearance or features.In response to these challenges,a novel Multimodal Biometric Feature Extraction(MBFE)model is proposed to extract the features from the noisy sen-sor data using a modified Ranking-based Deep Convolution Neural Network(RDCNN).The proposed MBFE model enables the feature extraction from differ-ent biometric images that includes iris,palm print,and lip,where the images are preprocessed initially for further processing.The extracted features are validated after optimal extraction by the RDCNN by splitting the datasets to train the fea-ture extraction model and then testing the model with different sets of input images.The simulation is performed in matlab to test the efficacy of the modal over multi-modal datasets and the simulation result shows that the proposed meth-od achieves increased accuracy,precision,recall,and F1 score than the existing deep learning feature extraction methods.The performance improvement of the MBFE Algorithm technique in terms of accuracy,precision,recall,and F1 score is attained by 0.126%,0.152%,0.184%,and 0.38%with existing Back Propaga-tion Neural Network(BPNN),Human Identification Using Wavelet Transform(HIUWT),Segmentation Methodology for Non-cooperative Recognition(SMNR),Daugman Iris Localization Algorithm(DILA)feature extraction techni-ques respectively. 展开更多
关键词 Multimodalbiometric feature extraction ranking-baseddeepconvolution neural network noisy sensor data palm prints lip biometric iris recognition
在线阅读 下载PDF
基于RAA-UNet的虹膜块状特征分割
11
作者 陈宇 唐云祁 《电子测量技术》 北大核心 2025年第7期179-191,共13页
目前虹膜识别结果尚不能应用到司法审判当中,法庭科学领域开始关注以虹膜可解释特征统计规律为基础的量化鉴定方法,为此需要实现虹膜纹理特征的自动分割提取。针对近红外虹膜图像中块状特征的提取问题,提出一种结合残差网络、注意力机... 目前虹膜识别结果尚不能应用到司法审判当中,法庭科学领域开始关注以虹膜可解释特征统计规律为基础的量化鉴定方法,为此需要实现虹膜纹理特征的自动分割提取。针对近红外虹膜图像中块状特征的提取问题,提出一种结合残差网络、注意力机制和空洞空间金字塔池化的虹膜块状特征分割网络。为此,首先构建了虹膜块状特征标注数据集,用于模型的训练、验证和测试。其次,以UNet为基础框架进行改进,将UNet的卷积模块替换为残差模块,促进梯度的传播并提高特征的保留和传递能力;在跳跃连接中加入注意力门模块以提高模型对块状特征的感知能力;在模型中部和末端采用空洞空间金字塔池化模块,扩大感受野并进行多尺度特征提取和融合。最后,提出了结合交叉熵和Dice系数的混合损失函数,并采用归一化和直方图均衡化等预处理技术以突出虹膜块状特征。实验结果表明,RAA-UNet在测试集上的表现优于其他对比模型,F1分数、mIoU和Dice系数分别达到了82.64%、84.21%、81.66%,较UNet提升4.42%、3.37%和3.87%。损失函数实验确定了最佳权重因子,直方图均衡化处理显著提升了分割效果,消融实验验证了模型改进的有效性。提出的RAA-UNet语义分割模型能够实现虹膜块状特征的准确分割,可为虹膜鉴定的研究提供技术支撑。 展开更多
关键词 虹膜块状特征 UNet 虹膜鉴定 残差网络 金字塔池化 注意力机制
原文传递
地铁系统中的人员自动识别与追踪技术应用研究
12
作者 冯浩 《科技资讯》 2025年第4期78-80,共3页
探讨了自动识别和追踪地铁系统人员的创新技术,重点研究了这些技术在英国交通网络中的应用。主要技术包括虹膜扫描识别和多目标跨摄像头跟踪,通过结合深度学习、多特征融合模型与超宽带技术,显著提高了识别和追踪的精度和效率。尽管该... 探讨了自动识别和追踪地铁系统人员的创新技术,重点研究了这些技术在英国交通网络中的应用。主要技术包括虹膜扫描识别和多目标跨摄像头跟踪,通过结合深度学习、多特征融合模型与超宽带技术,显著提高了识别和追踪的精度和效率。尽管该系统存在成本、识别速度与准确性的挑战,但其展示了在地铁复杂环境中有效识别和追踪人员的潜力,提升了公共交通的安全性和运营效率。 展开更多
关键词 地铁系统 多特征融合 深度学习 虹膜识别 超宽带技术
在线阅读 下载PDF
虹膜识别算法的研究及实现 被引量:50
13
作者 黄惠芳 胡广书 《红外与激光工程》 EI CSCD 北大核心 2002年第5期404-409,共6页
Daugman提出的虹膜识别算法具有准确性高、速度快的优点 ,但是有关该算法的具体实现却未见文献报道。对Daugman的算法进行了研究 ,并尝试该算法的实现 ,提出了一种新的粗定位和精定位相结合的算法来快速定位虹膜。在滤波过程中仅利用了... Daugman提出的虹膜识别算法具有准确性高、速度快的优点 ,但是有关该算法的具体实现却未见文献报道。对Daugman的算法进行了研究 ,并尝试该算法的实现 ,提出了一种新的粗定位和精定位相结合的算法来快速定位虹膜。在滤波过程中仅利用了实部滤波器就可减少代码长度 ,而不影响识别效果 ,其中包括图像的预处理、多尺度 2DGabor滤波器的构造 ,虹膜码及Ham ming距离的计算等。实验结果表明 ,该方法计算速度快 ,提取特征的效果好 ,可用于实际的身份鉴别系统。 展开更多
关键词 虹膜识别 虹膜定位 GABOR滤波器 特征提取 HAMMING距离 身份鉴别
原文传递
虹膜识别技术进展与趋势 被引量:28
14
作者 李海青 孙哲南 +2 位作者 谭铁牛 何召锋 马力 《信息安全研究》 2016年第1期40-43,共4页
虹膜识别具有很高的精度和稳定性,已广泛应用在金融、边防和门禁等领域.经过20多年的发展,虹膜识别在成像装置和识别算法方面均取得了显著的进展.一方面,虹膜成像装置的成像距离越来越远、成像范围越来越大、重量体积越来越小,明显提高... 虹膜识别具有很高的精度和稳定性,已广泛应用在金融、边防和门禁等领域.经过20多年的发展,虹膜识别在成像装置和识别算法方面均取得了显著的进展.一方面,虹膜成像装置的成像距离越来越远、成像范围越来越大、重量体积越来越小,明显提高了虹膜识别系统的易用性.另一方面,大规模的应用促进了许多低质量虹膜图像处理、快速分类检索、跨设备识别和安全隐私保护方法的研究.未来几年,虹膜识别将在技术、应用和行业等方面呈现出以下六大发展趋势:从近红外到多光谱、从人工设计到数据驱动、从人配合机器到机器配合人、从固定设备到移动互联、从可控环境到复杂场景、从各行其是到标准规范. 展开更多
关键词 虹膜识别 虹膜成像装置 虹膜分割 质量评价 特征分析 跨设备识别
在线阅读 下载PDF
基于改进的Log-Gabor小波的虹膜识别算法 被引量:16
15
作者 姚鹏 叶学义 +2 位作者 张文聪 庄镇泉 李斌 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2007年第5期563-568,574,共7页
对二维Gabor复小波应用于虹膜识别进行了详细的理论分析,提出了采用二维奇对称Gabor小波代替二维Gabor复小波来提取虹膜纹理特征的改进算法.在此基础上,进一步提出一种采用改进的二维Log-Gabor小波来提取虹膜纹理特征,采用汉明距来进行... 对二维Gabor复小波应用于虹膜识别进行了详细的理论分析,提出了采用二维奇对称Gabor小波代替二维Gabor复小波来提取虹膜纹理特征的改进算法.在此基础上,进一步提出一种采用改进的二维Log-Gabor小波来提取虹膜纹理特征,采用汉明距来进行特征匹配的新方法,克服了二维Gabor复小波应用于虹膜识别的缺陷.与已有算法进行比较的实验数据表明,采用二维奇对称Gabor小波的改进算法在识别率略有提高的基础上,能大大地减少编码存储空间以及编码和匹配的时间.而采用改进的二维Log-Gabor小波算法则进一步的提高了识别率. 展开更多
关键词 虹膜识别 特征提取 GABOR小波 LOG-GABOR小波
在线阅读 下载PDF
虹膜识别综述 被引量:27
16
作者 田启川 刘正光 《计算机应用研究》 CSCD 北大核心 2008年第5期1295-1300,1314,共7页
回顾了虹膜识别的研究背景及发展,对近年来虹膜识别方法的研究进展进行综述,并对各种方法加以介绍和评价,总结了存在的研究难点并提出了解决方法及今后的发展方向。
关键词 虹膜识别 虹膜定位 特征提取 模板匹配
在线阅读 下载PDF
基于稳定特征的虹膜分类算法 被引量:5
17
作者 田启川 刘正光 +1 位作者 潘泉 李临生 《电子学报》 EI CAS CSCD 北大核心 2008年第4期760-766,共7页
虹膜分类中,由于虹膜的相似度计算会受到特征模板中不可靠和不固定特征的影响,使得虹膜分类的错误率(错误识别率+错误拒绝率)增加.为了解决这个问题,本文提出了一种稳定特征提取的方法,从同一虹膜的多个图像中提取虹膜的稳定特征,并利... 虹膜分类中,由于虹膜的相似度计算会受到特征模板中不可靠和不固定特征的影响,使得虹膜分类的错误率(错误识别率+错误拒绝率)增加.为了解决这个问题,本文提出了一种稳定特征提取的方法,从同一虹膜的多个图像中提取虹膜的稳定特征,并利用这些稳定特征建立该虹膜的特征模板,然后用于虹膜的分类.采用CASIA虹膜数据库进行测试,仿真结果表明,基于稳定特征的虹膜分类算法能提高虹膜分类精度和改善虹膜识别系统性能. 展开更多
关键词 虹膜分类 稳定特征 特征模板
在线阅读 下载PDF
虹膜识别技术的研究 被引量:6
18
作者 祝连庆 穆婕 马龙 《仪器仪表学报》 EI CAS CSCD 北大核心 2006年第z1期753-755,共3页
虹膜具有随机的细节特征和独特的纹理图像,并且在人的一生中都保持不变。虹膜识别技术在人类身份鉴别中较其他生物识别方法更可靠、更便捷,因而更具发展优势。本文提出了虹膜识别系统的工作原理和组成,对虹膜定位以及虹膜特征提取与编... 虹膜具有随机的细节特征和独特的纹理图像,并且在人的一生中都保持不变。虹膜识别技术在人类身份鉴别中较其他生物识别方法更可靠、更便捷,因而更具发展优势。本文提出了虹膜识别系统的工作原理和组成,对虹膜定位以及虹膜特征提取与编码作了分析。虹膜识别技术在身份鉴别和安全保障领域有着广泛的应用前景。 展开更多
关键词 虹膜识别 虹膜定位 特征提取
在线阅读 下载PDF
基于多子区域联合的高适应性虹膜识别算法 被引量:7
19
作者 苑玮琦 张雷 柯丽 《电子学报》 EI CAS CSCD 北大核心 2009年第5期981-986,共6页
由于在采集虹膜图像前,无法预知眼睑、睫毛等噪声对虹膜纹理的干扰程度和不受干扰的可用虹膜区域的位置和大小,这可能会使提取到的特征模板中包含了由噪声引起的不可靠和不稳定特征,使识别的错误率增加.本文提出了多子区域联合的识别方... 由于在采集虹膜图像前,无法预知眼睑、睫毛等噪声对虹膜纹理的干扰程度和不受干扰的可用虹膜区域的位置和大小,这可能会使提取到的特征模板中包含了由噪声引起的不可靠和不稳定特征,使识别的错误率增加.本文提出了多子区域联合的识别方法,将相对不易受干扰的图像区域划分为4个子区域,分别计算两幅图像对应子区域的相似度,动态选择最相似的子区域,将其特征作为判定依据进行分类.克服了之前算法只选择一个固定位置的区域用于特征提取的局限性.采用CASIA虹膜图库进行测试,结果表明:本方法能提高识别准确率、增强算法对采集图像质量要求的适应性,改善了虹膜识别系统的性能. 展开更多
关键词 生物特征识别 虹膜识别 特征提取 匹配
在线阅读 下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部