The thermal modeling of underwater friction stir welding (FSW) was conddcted with a three-dimensional heat transfer model. The vaporizing characteristics of water were analyzed to illuminate the boundary conditions ...The thermal modeling of underwater friction stir welding (FSW) was conddcted with a three-dimensional heat transfer model. The vaporizing characteristics of water were analyzed to illuminate the boundary conditions of underwater FSW. Temperature dependent properties of the material were considered for the modeling. FSW experiments were carried out to validate the calculated results, and the calculated results showed good agreement with the experimental results. The results indicate that the maximum peak temperature of underwater joint is significantly lower than that of normal joint, although the surface heat flux of shoulder during the underwater FSW is higher than that during normal FSW. For underwater joint, the high-temperature distributing area is dramatically narrowed and the welding thermal cycles in different zones are effectively controlled in contrast to the normal joint.展开更多
Corner contact in gear pair causes vibration and noise,which has attracted many attentions.However,teeth errors and deformation make it difficulty to determine the point situated at corner contact and study the mechan...Corner contact in gear pair causes vibration and noise,which has attracted many attentions.However,teeth errors and deformation make it difficulty to determine the point situated at corner contact and study the mechanism of teeth impact friction in the current researches.Based on the mechanism of corner contact,the process of corner contact is divided into two stages of impact and scratch,and the calculation model including gear equivalent error-combined deformation is established along the line of action.According to the distributive law,gear equivalent error is synthesized by base pitch error,normal backlash and tooth profile modification on the line of action.The combined tooth compliance of the first point lying in corner contact before the normal path is inversed along the line of action,on basis of the theory of engagement and the curve of tooth synthetic complianceload-history.Combined secondarily the equivalent error with the combined deflection,the position standard of the point situated at corner contact is probed.Then the impact positions and forces,from the beginning to the end during corner contact before the normal path,are calculated accurately.Due to the above results,the lash model during corner contact is founded,and the impact force and frictional coefficient are quantified.A numerical example is performed and the averaged impact friction coefficient based on the presented calculation method is validated.This research obtains the results which could be referenced to understand the complex mechanism of teeth impact friction and quantitative calculation of the friction force and coefficient,and to gear exact design for tribology.展开更多
This paper presents a new thermomechanical model of friction stir welding which is capable of simulating the three major steps of friction stir welding (FSW) process, i.e., plunge, dwell, and travel stages. A rate-d...This paper presents a new thermomechanical model of friction stir welding which is capable of simulating the three major steps of friction stir welding (FSW) process, i.e., plunge, dwell, and travel stages. A rate-dependent Johnson- Cook constitutive model is chosen to capture elasto-plastic work deformations during FSW. Two different weld schedules (i.e., plunge rate, rotational speed, and weld speed) are validated by comparing simulated temperature profiles with experimental results. Based on this model, the influences of various welding parameters on temperatures and energy generation during the welding process are investigated. Numerical results show that maximum temperature in FSW process increases with the decrease in plunge rate, and the frictional energy increases almost linearly with respect to time for different rotational speeds. Furthermore, low rotational speeds cause inadequate temperature distribution due to low frictional and plastic dissipation energy which eventually results in weld defects. When both the weld speed and rotational speed are increased, the contribution of plastic dissipation energy increases significantly and improved weld quality can be expected.展开更多
Friction stir welding (FSW) is a solid-state joining process, where joint properties largely depend on the amount of heat generation during the welding process. The objective of this paper was to develop a numerical...Friction stir welding (FSW) is a solid-state joining process, where joint properties largely depend on the amount of heat generation during the welding process. The objective of this paper was to develop a numerical thermomechanical model for FSW of aluminum--copper alloy AA2219 and analyze heat generation during the welding process. The thermomechanical model has been developed utilizing ANSYS APDL. The model was verified by comparing simulated temperature profile of three different weld schedules (i.e., different combinations of weld parameters in real weld situations) from simulation with experimental results. Furthermore, the verified model was used to analyze the effect of different weld parameters on heat generation. Among all the weld parameters, the effect of rotational speed on heat generation is the highest.展开更多
The elastic support/dry friction damper is a type of damper which is used for active vibration control in a rotor system.To establish the analytical model of this type of damper,a two-dimensional friction model-ball/p...The elastic support/dry friction damper is a type of damper which is used for active vibration control in a rotor system.To establish the analytical model of this type of damper,a two-dimensional friction model-ball/plate model was proposed.By using this ball/plate model,a dynamics model of rotor with elastic support/dry friction dampers was established and experimentally verified.Moreover,the damping performance of the elastic support/dry friction damper was studied numerically with respect to some variable parameters.The numerical study shows that the damping performance of the elastic support/dry friction damper is closely related to the stiffness distribution of the rotor-support system,the damper location,the pressing force between the moving and stationary disk,the friction coefficient,the tangential contact stiffness of the contact interface,and the stiffness of the stationary disk.In general,the damper should be located on an elastic support which has a large vibration amplitude in order to achieve a better damping performance,and the more vibration energy in this elastic support concentrates,the better performance of the damper will be.The larger the tangential contact stiffness of the contact interface,and the stiffness of the stationary disk are,the better performance of the damper will be.There will be an optimal value of the friction force at which the damper performs best.展开更多
In this paper,an analytical model that represents the streamwise velocity distribution for open channel flow with submerged flexible vegetation is studied.In the present vegetated flow modelling,the whole flow field h...In this paper,an analytical model that represents the streamwise velocity distribution for open channel flow with submerged flexible vegetation is studied.In the present vegetated flow modelling,the whole flow field has been separated into two layers vertically: a vegetated layer and a non-vegetated free-water layer.Within the vegetated layer,an analysis of the mechanisms affecting water flow through flexible vegetation has been conducted.In the non-vegetated layer,a modified log-law equation that represents the velocity profile varying with vegetation height has been investigated.Based on the studied analytical model,a sensitivity analysis has been conducted to assess the influences of the drag (CD) and friction (Cf ) coefficients on the flow velocity.The investigated ranges of CD and Cf have also been compared to published values.The findings suggest that the CD and Cf values are non-constant at different depths and vegetation densities,unlike the constant values commonly suggested in literature.This phenomenon is particularly clear for flows with flexible vegetation,which is characterised by large deflection.展开更多
Friction stir additive manufacturing is a newly developed solid-state additive manufacturing technology.The material in the stirring zone can be re-stirred and reheated,and mechanical properties can be changed along t...Friction stir additive manufacturing is a newly developed solid-state additive manufacturing technology.The material in the stirring zone can be re-stirred and reheated,and mechanical properties can be changed along the building direction.An integrated model is developed to investigate the internal relations of process,microstructure and mechanical properties.Moving heat source model is used to simulate the friction stir additive manufacturing process to obtain the temperature histories,which are used in the following microstructural simulations.Monte Carlo method is used for simulation of recrystallization and grain growth.Precipitate evolution model is used for calculation of precipitate size distributions.Mechanical property is then predicted.Experiments are used for validation of the predicted grains and hardness.Results indicate that the average grain sizes on diff erent layers depend on the temperature in stirring and re-stirring processes.With the increase in building height,average grain size is decreased and hardness is increased.The increase in layer thickness can lead to temperature decrease in reheating and re-stirring processes and then lead to the decrease in average grain size and increase of hardness in stir zone.展开更多
Current structural analysis software programs offer few if any applicable device-specifi c hysteresis rules or nonlinear elements to simulate the precise mechanical behavior of a multiple friction pendulum system(MFPS...Current structural analysis software programs offer few if any applicable device-specifi c hysteresis rules or nonlinear elements to simulate the precise mechanical behavior of a multiple friction pendulum system(MFPS) with numerous sliding interfaces.Based on the concept of subsystems,an equivalent series system that adopts existing nonlinear elements with parameters systematically calculated and mathematically proven through rigorous derivations is proposed.The aim is to simulate the characteristics of sliding motions for an MFPS isolation system with numerous concave sliding interfaces without prior knowledge of detailed information on the mobilized forces at various sliding stages.An MFPS with numerous concave sliding interfaces and one articulated or rigid slider located between these interfaces is divided into two subsystems: the fi rst represents the concave sliding interfaces above the slider,and the second represents those below the slider.The equivalent series system for the entire system is then obtained by connecting those for each subsystem in series.The equivalent series system is validated by comparing numerical results for an MFPS with four sliding interfaces obtained from the proposed method with those from a previous study by Fenz and Constantinou.Furthermore,these numerical results demonstrate that an MFPS isolator with numerous concave sliding interfaces,which may have any number of sliding interfaces,is a good isolation device to protect structures from earthquake damage through appropriate designs with controllable mechanisms.展开更多
Vibrations of a rotor-bearing system(RBS)can be affected by the frictional forces between the components of the inherent bearings.Thus,an in-depth investigation of the influences of the frictional moments of the beari...Vibrations of a rotor-bearing system(RBS)can be affected by the frictional forces between the components of the inherent bearings.Thus,an in-depth investigation of the influences of the frictional moments of the bearings on the vibrations of the RBS can be helpful for understanding the vibration mechanisms in the rotating machinery.In this study,an improved dynamic model of a RBS considering different frictional force models is presented.A comparative investigation on the influences of the empirical and analytical frictional force models on the vibration characteristics of the RBS is proposed.The empirical frictional force models include Palmgren’s and SKF’s models.The analytical frictional force model considers the rolling friction caused by the radial elastic material hysteresis,slipping friction between the ball and races,viscosity friction caused by the lubricating oil,and contact friction between the ball and cage.The influences of the external load and rotational speed on the vibrations of the RBS are analyzed.The comparative results show that the analytical frictional force model can give a more reasonable method for formulating the effects of the friction forces in the bearings on the vibrations of the RBS.The results also demonstrate that the friction forces in the bearings can significantly affect the vibrations of the RBSs.展开更多
During the process of finite element simulation of precision warm forging, the selection of friction models has a direct effect on the precision accuracy of finite element simulation results. Among all the factors whi...During the process of finite element simulation of precision warm forging, the selection of friction models has a direct effect on the precision accuracy of finite element simulation results. Among all the factors which influence the selection of friction models, the distribution rule of normal stress at the tool-workpiece interface is a key one. To find out the distribution rule of normal stress at the tool-workpiece interface, this paper has made a systematic research on three typical plastic deformation processes: forward extrusion, backward extrusion, and lateral extrusion by a method of finite element simulation. Then on the base of synthesizing and correcting traditional friction models, a new general friction model which is fit for warm extrusion is developed at last.展开更多
This paper presents a dynamic model for a disc subjected to two sliders rotating in the circumferential direction over the top and bottom surfaces of the disc.The two sliders are vertically misaligned and each is a ma...This paper presents a dynamic model for a disc subjected to two sliders rotating in the circumferential direction over the top and bottom surfaces of the disc.The two sliders are vertically misaligned and each is a mass-spring-damper system with friction between the slider and the disc. The moving loads produced by misaligned sliders can destabilise the whole system.Stability analysis is carried out in a simulated example.This model is meant to explain the friction mechanism for generating unstable vibration in many applications involving rotating discs.展开更多
The position tracking control problem of an electrical cylinder in the presence of dynamic friction nonlinearities in its transmission process is addressed in this paper. First, a torque decou- piing approach is propo...The position tracking control problem of an electrical cylinder in the presence of dynamic friction nonlinearities in its transmission process is addressed in this paper. First, a torque decou- piing approach is proposed to formulate the dynamic model. Secondly, to compensate the friction in the case of servo motion, a modified LuGre model is designed to make a continuous transition be- tween a static model at a high speed and a LuGre model at a low speed to avoid instability due to dis- cretization with a finite sampling rate. To accelerate the speed of estimating time-varying parame- ters, a fast adaption law is proposed by designing an attraction domain around a rough value related to the load force. Finally, a discontinuous projection based adaptive robust controller is synthesized to effectively handle parametric uncertainties for ensuring a guaranteed robust performance. A Lya- punov stability analysis demonstrates that all signals including tracking errors have the guaranteed convergent and bounded performance. Extensive comparative simulations with sinusoidal and point- point tracks are obtained respectively in low and high speeds. The results show the effectiveness and the achievable control performance of the proposed control strategy.展开更多
Friction plays a pivotal role in the sliding-mode triboelectric energy harvester(TEH),which not only enables the charge transfer between two dielectrics,but also influences the energy harvesting performance by affecti...Friction plays a pivotal role in the sliding-mode triboelectric energy harvester(TEH),which not only enables the charge transfer between two dielectrics,but also influences the energy harvesting performance by affecting the dynamic response of the TEH.How to evaluate the effects of the friction on TEHs is important for optimizing TEHs in engineering practices.In order to analyze the effects of the friction on the dynamic response and evaluate the energy harvesting performance ofTEHs,the paper models the friction of a devised non-linear TEH based on the Coulomb friction model and the Macro-slip friction theory.The TEH equips a pair of magnets,rendering a switching between the bistability and the monostability by tuning the distance between two magnets.The dynamic model of the non-linear TEH is established by the extended Hamilton principle.The effects of friction in slidingmode TEH are dissected in detail.The influences of parameters on both the mechanical and electrical responses are also systemically studied to explore an optimal energy harvesting performance in the low-frequency range.This work provides a guideline for designing and accurately analyzing a sliding-mode TEH.展开更多
A new modified LuGre friction model is presented for electromagnetic valve actuator system.The modification to the traditional LuGre friction model is made by adding an acceleration-dependent part and a nonlinear cont...A new modified LuGre friction model is presented for electromagnetic valve actuator system.The modification to the traditional LuGre friction model is made by adding an acceleration-dependent part and a nonlinear continuous switch function.The proposed new friction model solves the implementation problems with the traditional LuGre model at high speeds.An improved artificial fish swarm algorithm(IAFSA)method which combines the chaotic search and Gauss mutation operator into traditional artificial fish swarm algorithm is used to identify the parameters in the proposed modified LuGre friction model.The steady state response experiments and dynamic friction experiments are implemented to validate the effectiveness of IAFSA algorithm.The comparisons between the measured dynamic friction forces and the ones simulated with the established mathematic friction model at different frequencies and magnitudes demonstrate that the proposed modified LuGre friction model can give accurate simulation about the dynamic friction characteristics existing in the electromagnetic valve actuator system.The presented modelling and parameter identification methods are applicable for many other high-speed mechanical systems with friction.展开更多
A new experimental apparatus was set up to investigate the actual fi-iction characteristics on the basis of speed control of the serve system.A modified friction model was proposed due to real time varying deformation...A new experimental apparatus was set up to investigate the actual fi-iction characteristics on the basis of speed control of the serve system.A modified friction model was proposed due to real time varying deformation resistance.The approach to identify the parameters of comprehensive friction behaviors based on the modified model was proposed and applied to the forging press.The impacts on parameters which the external load had were also investigated.The results show that friction force decreases with velocity in the low velocity regime whereas the friction force increases with the velocity in the high velocity regime under no external load.It is also shown that the Coulomb friction force,the maximum static friction force and the vicious friction coefficient change linearly with the external load taking the velocity at which the magnitude of the steady state friction force becomes minimum as the critical velocity.展开更多
Nonlinear friction is a dominant factor afecting the control accuracy of CNC machine tools.This paper proposes a friction pre-compensation method for CNC machine tools through constructing a nonlinear model predictive...Nonlinear friction is a dominant factor afecting the control accuracy of CNC machine tools.This paper proposes a friction pre-compensation method for CNC machine tools through constructing a nonlinear model predictive scheme.The nonlinear friction-induced tracking error is frstly modeled and then utilized to establish the nonlinear model predictive scheme,which is subsequently used to optimize the compensation signal by treating the friction-induced tracking error as the optimization objective.During the optimization procedure,the derivative of compensation signal is constrained to avoid vibration of machine tools.In contrast to other existing approaches,the proposed method only needs the parameters of Stribeck friction model and an additional tuning parameter,while fnely identifying the parameters related to the pre-sliding phenomenon is not required.As a result,it greatly facilitates the practical applicability.Both air cutting and real cutting experiments conducted on an in-house developed open-architecture CNC machine tool prove that the proposed method can reduce the tracking errors by more than 56%,and reduce the contour errors by more than 50%.展开更多
A microstructural simulation method is adopted to predict the location specific strain rates, temperatures, grain evolution, and accumulated strains in the Inconel 718 friction welds. Cellular automata based 2D micros...A microstructural simulation method is adopted to predict the location specific strain rates, temperatures, grain evolution, and accumulated strains in the Inconel 718 friction welds. Cellular automata based 2D microstructure model was developed for Inconel 718 alloy using theoretical aspects of dynamic recrystallization. Flow curves were simulated and compared with experimental results using hot deformation parameter obtained from literature work. Using validated model, simulations were performed for friction welds of Inconel 718 alloy generated at three rotational speed i.e., 1200, 1500, and1500 RPM. Results showed the increase in strain rates with increasing rotational speed. These simulated strain rates were found to match with the analytical results. Temperature difference of 150 K was noticed from center to edge of the weld. At all the rotational speeds, the temperature was identical implying steady state temperature(0.89 T_m) attainment.展开更多
Based on focused ion beam and shear friction apparatus data, the multi-resolutions (0.2 nm-5μm) volume roughness & asperity contact (VR & AC) three-dimensional structure on principle slip surface interface-surf...Based on focused ion beam and shear friction apparatus data, the multi-resolutions (0.2 nm-5μm) volume roughness & asperity contact (VR & AC) three-dimensional structure on principle slip surface interface-surface (PSS-IS) is measured on high performance computational platform; and physical plastic-creep friction model is established by using hybrid hyper-singular integral equation & lattice Boltzmann & lattice Green function (BE-LB-LG). The correlation of rheological property and VR & AC evolution under transient (10 μs) macro-normal stress (18-300 MPa) and slip rate (0.25-7.5 m/s) are obtained; and the PSS-IS friction in co-seismic flash heating is quantitative analyzed for the first time.展开更多
Adaptive control of servo actuator with nonlinear friction compensation is addressed. LuGre dynamic friction model is adopted to characterize the nonlinear friction and a new kind of slid ing mode observer is designe...Adaptive control of servo actuator with nonlinear friction compensation is addressed. LuGre dynamic friction model is adopted to characterize the nonlinear friction and a new kind of slid ing mode observer is designed to estimate the internal immeasurable state of LuGre model. Based on the estimated friction state, adaptive laws are designed to identify the unknown model parameters and the external disturbances, and the system stability and asymptotic trajectory tracking perform ance are guaranteed by Lyapunov function. The position tracking performance is verified by the ex perimental results.展开更多
In practical engineering, finite element(FE) modeling for weld seam is commonly simplified by neglecting its inhomogeneous mechanical properties. This will cause a significant loss in accuracy of FE forming analysis...In practical engineering, finite element(FE) modeling for weld seam is commonly simplified by neglecting its inhomogeneous mechanical properties. This will cause a significant loss in accuracy of FE forming analysis, in particular, for friction stir welded(FSW) blanks due to the large width and good formability of its weld seam. The inhomogeneous mechanical properties across weld seam need to be well characterized for an accurate FE analysis. Based on a similar AA5182 FSW blank, the metallographic observation and micro-Vickers hardness analysis upon the weld cross-section are performed to identify the interfaces of different sub-zones, i.e., heat affected zone(HAZ), thermal-mechanically affected zone(TMAZ) and weld nugget(WN). Based on the rule of mixture and hardness distribution, a constitutive model is established for each sub-zone to characterize the inhomogeneous mechanical properties across the weld seam. Uniaxial tensile tests of the AA5182 FSW blank are performed with the aid of digital image correlation(DIC) techniques. Experimental local stress-strain curves are obtained for different weld sub-zones. The experimental results show good agreement with those derived from the constitutive models, which demonstrates the feasibility and accuracy of these models. The proposed research gives an accurate characterization of inhomogeneous mechanical properties across the weld seam produced by FSW, which provides solutions for improving the FE simulation accuracy of FSW sheet forming.展开更多
基金Project(2010CB731704) supported by the National Basic Research Progiam of ChinaProject(51175117) supported by the National Natural Science Foundation of ChinaProject(2010ZX04007-011) supported by the National Science and Technology Major Project of China
文摘The thermal modeling of underwater friction stir welding (FSW) was conddcted with a three-dimensional heat transfer model. The vaporizing characteristics of water were analyzed to illuminate the boundary conditions of underwater FSW. Temperature dependent properties of the material were considered for the modeling. FSW experiments were carried out to validate the calculated results, and the calculated results showed good agreement with the experimental results. The results indicate that the maximum peak temperature of underwater joint is significantly lower than that of normal joint, although the surface heat flux of shoulder during the underwater FSW is higher than that during normal FSW. For underwater joint, the high-temperature distributing area is dramatically narrowed and the welding thermal cycles in different zones are effectively controlled in contrast to the normal joint.
基金Supported by National Science Foundation of China(Grant No.51275160)National Science Foundation of China(Grant No.51305462)National Key Basic Research Program of China(973 Program,Grant No.2010CB832700)
文摘Corner contact in gear pair causes vibration and noise,which has attracted many attentions.However,teeth errors and deformation make it difficulty to determine the point situated at corner contact and study the mechanism of teeth impact friction in the current researches.Based on the mechanism of corner contact,the process of corner contact is divided into two stages of impact and scratch,and the calculation model including gear equivalent error-combined deformation is established along the line of action.According to the distributive law,gear equivalent error is synthesized by base pitch error,normal backlash and tooth profile modification on the line of action.The combined tooth compliance of the first point lying in corner contact before the normal path is inversed along the line of action,on basis of the theory of engagement and the curve of tooth synthetic complianceload-history.Combined secondarily the equivalent error with the combined deflection,the position standard of the point situated at corner contact is probed.Then the impact positions and forces,from the beginning to the end during corner contact before the normal path,are calculated accurately.Due to the above results,the lash model during corner contact is founded,and the impact force and frictional coefficient are quantified.A numerical example is performed and the averaged impact friction coefficient based on the presented calculation method is validated.This research obtains the results which could be referenced to understand the complex mechanism of teeth impact friction and quantitative calculation of the friction force and coefficient,and to gear exact design for tribology.
基金financial support provided by Louisiana Economic Development Assistantship (EDA) programpartially supported by NASA through the NASA-SLS Grant # NNM13AA02G
文摘This paper presents a new thermomechanical model of friction stir welding which is capable of simulating the three major steps of friction stir welding (FSW) process, i.e., plunge, dwell, and travel stages. A rate-dependent Johnson- Cook constitutive model is chosen to capture elasto-plastic work deformations during FSW. Two different weld schedules (i.e., plunge rate, rotational speed, and weld speed) are validated by comparing simulated temperature profiles with experimental results. Based on this model, the influences of various welding parameters on temperatures and energy generation during the welding process are investigated. Numerical results show that maximum temperature in FSW process increases with the decrease in plunge rate, and the frictional energy increases almost linearly with respect to time for different rotational speeds. Furthermore, low rotational speeds cause inadequate temperature distribution due to low frictional and plastic dissipation energy which eventually results in weld defects. When both the weld speed and rotational speed are increased, the contribution of plastic dissipation energy increases significantly and improved weld quality can be expected.
基金financial support received from the Louisiana Economic Development Assistantship (EDA) program
文摘Friction stir welding (FSW) is a solid-state joining process, where joint properties largely depend on the amount of heat generation during the welding process. The objective of this paper was to develop a numerical thermomechanical model for FSW of aluminum--copper alloy AA2219 and analyze heat generation during the welding process. The thermomechanical model has been developed utilizing ANSYS APDL. The model was verified by comparing simulated temperature profile of three different weld schedules (i.e., different combinations of weld parameters in real weld situations) from simulation with experimental results. Furthermore, the verified model was used to analyze the effect of different weld parameters on heat generation. Among all the weld parameters, the effect of rotational speed on heat generation is the highest.
基金supported by the National Natural Science Foundation of China(No.51405393)
文摘The elastic support/dry friction damper is a type of damper which is used for active vibration control in a rotor system.To establish the analytical model of this type of damper,a two-dimensional friction model-ball/plate model was proposed.By using this ball/plate model,a dynamics model of rotor with elastic support/dry friction dampers was established and experimentally verified.Moreover,the damping performance of the elastic support/dry friction damper was studied numerically with respect to some variable parameters.The numerical study shows that the damping performance of the elastic support/dry friction damper is closely related to the stiffness distribution of the rotor-support system,the damper location,the pressing force between the moving and stationary disk,the friction coefficient,the tangential contact stiffness of the contact interface,and the stiffness of the stationary disk.In general,the damper should be located on an elastic support which has a large vibration amplitude in order to achieve a better damping performance,and the more vibration energy in this elastic support concentrates,the better performance of the damper will be.The larger the tangential contact stiffness of the contact interface,and the stiffness of the stationary disk are,the better performance of the damper will be.There will be an optimal value of the friction force at which the damper performs best.
文摘In this paper,an analytical model that represents the streamwise velocity distribution for open channel flow with submerged flexible vegetation is studied.In the present vegetated flow modelling,the whole flow field has been separated into two layers vertically: a vegetated layer and a non-vegetated free-water layer.Within the vegetated layer,an analysis of the mechanisms affecting water flow through flexible vegetation has been conducted.In the non-vegetated layer,a modified log-law equation that represents the velocity profile varying with vegetation height has been investigated.Based on the studied analytical model,a sensitivity analysis has been conducted to assess the influences of the drag (CD) and friction (Cf ) coefficients on the flow velocity.The investigated ranges of CD and Cf have also been compared to published values.The findings suggest that the CD and Cf values are non-constant at different depths and vegetation densities,unlike the constant values commonly suggested in literature.This phenomenon is particularly clear for flows with flexible vegetation,which is characterised by large deflection.
基金financially supported by the National Natural Science Foundation of China(No.11572074).
文摘Friction stir additive manufacturing is a newly developed solid-state additive manufacturing technology.The material in the stirring zone can be re-stirred and reheated,and mechanical properties can be changed along the building direction.An integrated model is developed to investigate the internal relations of process,microstructure and mechanical properties.Moving heat source model is used to simulate the friction stir additive manufacturing process to obtain the temperature histories,which are used in the following microstructural simulations.Monte Carlo method is used for simulation of recrystallization and grain growth.Precipitate evolution model is used for calculation of precipitate size distributions.Mechanical property is then predicted.Experiments are used for validation of the predicted grains and hardness.Results indicate that the average grain sizes on diff erent layers depend on the temperature in stirring and re-stirring processes.With the increase in building height,average grain size is decreased and hardness is increased.The increase in layer thickness can lead to temperature decrease in reheating and re-stirring processes and then lead to the decrease in average grain size and increase of hardness in stir zone.
文摘Current structural analysis software programs offer few if any applicable device-specifi c hysteresis rules or nonlinear elements to simulate the precise mechanical behavior of a multiple friction pendulum system(MFPS) with numerous sliding interfaces.Based on the concept of subsystems,an equivalent series system that adopts existing nonlinear elements with parameters systematically calculated and mathematically proven through rigorous derivations is proposed.The aim is to simulate the characteristics of sliding motions for an MFPS isolation system with numerous concave sliding interfaces without prior knowledge of detailed information on the mobilized forces at various sliding stages.An MFPS with numerous concave sliding interfaces and one articulated or rigid slider located between these interfaces is divided into two subsystems: the fi rst represents the concave sliding interfaces above the slider,and the second represents those below the slider.The equivalent series system for the entire system is then obtained by connecting those for each subsystem in series.The equivalent series system is validated by comparing numerical results for an MFPS with four sliding interfaces obtained from the proposed method with those from a previous study by Fenz and Constantinou.Furthermore,these numerical results demonstrate that an MFPS isolator with numerous concave sliding interfaces,which may have any number of sliding interfaces,is a good isolation device to protect structures from earthquake damage through appropriate designs with controllable mechanisms.
基金Projects(51605051,51975068)supported by the National Natural Science Foundation of ChinaProject(3102020HHZY030001)supported by the Fundamental Research Funds for the Central Universities,China。
文摘Vibrations of a rotor-bearing system(RBS)can be affected by the frictional forces between the components of the inherent bearings.Thus,an in-depth investigation of the influences of the frictional moments of the bearings on the vibrations of the RBS can be helpful for understanding the vibration mechanisms in the rotating machinery.In this study,an improved dynamic model of a RBS considering different frictional force models is presented.A comparative investigation on the influences of the empirical and analytical frictional force models on the vibration characteristics of the RBS is proposed.The empirical frictional force models include Palmgren’s and SKF’s models.The analytical frictional force model considers the rolling friction caused by the radial elastic material hysteresis,slipping friction between the ball and races,viscosity friction caused by the lubricating oil,and contact friction between the ball and cage.The influences of the external load and rotational speed on the vibrations of the RBS are analyzed.The comparative results show that the analytical frictional force model can give a more reasonable method for formulating the effects of the friction forces in the bearings on the vibrations of the RBS.The results also demonstrate that the friction forces in the bearings can significantly affect the vibrations of the RBSs.
文摘During the process of finite element simulation of precision warm forging, the selection of friction models has a direct effect on the precision accuracy of finite element simulation results. Among all the factors which influence the selection of friction models, the distribution rule of normal stress at the tool-workpiece interface is a key one. To find out the distribution rule of normal stress at the tool-workpiece interface, this paper has made a systematic research on three typical plastic deformation processes: forward extrusion, backward extrusion, and lateral extrusion by a method of finite element simulation. Then on the base of synthesizing and correcting traditional friction models, a new general friction model which is fit for warm extrusion is developed at last.
文摘This paper presents a dynamic model for a disc subjected to two sliders rotating in the circumferential direction over the top and bottom surfaces of the disc.The two sliders are vertically misaligned and each is a mass-spring-damper system with friction between the slider and the disc. The moving loads produced by misaligned sliders can destabilise the whole system.Stability analysis is carried out in a simulated example.This model is meant to explain the friction mechanism for generating unstable vibration in many applications involving rotating discs.
文摘The position tracking control problem of an electrical cylinder in the presence of dynamic friction nonlinearities in its transmission process is addressed in this paper. First, a torque decou- piing approach is proposed to formulate the dynamic model. Secondly, to compensate the friction in the case of servo motion, a modified LuGre model is designed to make a continuous transition be- tween a static model at a high speed and a LuGre model at a low speed to avoid instability due to dis- cretization with a finite sampling rate. To accelerate the speed of estimating time-varying parame- ters, a fast adaption law is proposed by designing an attraction domain around a rough value related to the load force. Finally, a discontinuous projection based adaptive robust controller is synthesized to effectively handle parametric uncertainties for ensuring a guaranteed robust performance. A Lya- punov stability analysis demonstrates that all signals including tracking errors have the guaranteed convergent and bounded performance. Extensive comparative simulations with sinusoidal and point- point tracks are obtained respectively in low and high speeds. The results show the effectiveness and the achievable control performance of the proposed control strategy.
基金the National Natural Science Foundation of China(Grant Nos.11972152,12002122,and 12122206)Natural Science Foundation of Hunan Province(Grant Nos.2021JJ40092,and 2020JJ4208)Natural Science Foundation of Chongqing and China Postdoctoral Science Foundation(Grant No.2020M672476).
文摘Friction plays a pivotal role in the sliding-mode triboelectric energy harvester(TEH),which not only enables the charge transfer between two dielectrics,but also influences the energy harvesting performance by affecting the dynamic response of the TEH.How to evaluate the effects of the friction on TEHs is important for optimizing TEHs in engineering practices.In order to analyze the effects of the friction on the dynamic response and evaluate the energy harvesting performance ofTEHs,the paper models the friction of a devised non-linear TEH based on the Coulomb friction model and the Macro-slip friction theory.The TEH equips a pair of magnets,rendering a switching between the bistability and the monostability by tuning the distance between two magnets.The dynamic model of the non-linear TEH is established by the extended Hamilton principle.The effects of friction in slidingmode TEH are dissected in detail.The influences of parameters on both the mechanical and electrical responses are also systemically studied to explore an optimal energy harvesting performance in the low-frequency range.This work provides a guideline for designing and accurately analyzing a sliding-mode TEH.
基金Project(2015BAG06B00)supported by the National Key Technology Research from Development Program of the Ministry of Science and Technology of China
文摘A new modified LuGre friction model is presented for electromagnetic valve actuator system.The modification to the traditional LuGre friction model is made by adding an acceleration-dependent part and a nonlinear continuous switch function.The proposed new friction model solves the implementation problems with the traditional LuGre model at high speeds.An improved artificial fish swarm algorithm(IAFSA)method which combines the chaotic search and Gauss mutation operator into traditional artificial fish swarm algorithm is used to identify the parameters in the proposed modified LuGre friction model.The steady state response experiments and dynamic friction experiments are implemented to validate the effectiveness of IAFSA algorithm.The comparisons between the measured dynamic friction forces and the ones simulated with the established mathematic friction model at different frequencies and magnitudes demonstrate that the proposed modified LuGre friction model can give accurate simulation about the dynamic friction characteristics existing in the electromagnetic valve actuator system.The presented modelling and parameter identification methods are applicable for many other high-speed mechanical systems with friction.
基金Project(51005251)supported by the National Natural Science Foundation of ChinaProject(2011CB706802)supported by the National Basic Research Development Program of China(973 Program)
文摘A new experimental apparatus was set up to investigate the actual fi-iction characteristics on the basis of speed control of the serve system.A modified friction model was proposed due to real time varying deformation resistance.The approach to identify the parameters of comprehensive friction behaviors based on the modified model was proposed and applied to the forging press.The impacts on parameters which the external load had were also investigated.The results show that friction force decreases with velocity in the low velocity regime whereas the friction force increases with the velocity in the high velocity regime under no external load.It is also shown that the Coulomb friction force,the maximum static friction force and the vicious friction coefficient change linearly with the external load taking the velocity at which the magnitude of the steady state friction force becomes minimum as the critical velocity.
基金Supported by National Natural Science Foundation of China(Grant No.51975481)Fundamental Research Funds for the Central Universities of China(Grant No.D5000220061).
文摘Nonlinear friction is a dominant factor afecting the control accuracy of CNC machine tools.This paper proposes a friction pre-compensation method for CNC machine tools through constructing a nonlinear model predictive scheme.The nonlinear friction-induced tracking error is frstly modeled and then utilized to establish the nonlinear model predictive scheme,which is subsequently used to optimize the compensation signal by treating the friction-induced tracking error as the optimization objective.During the optimization procedure,the derivative of compensation signal is constrained to avoid vibration of machine tools.In contrast to other existing approaches,the proposed method only needs the parameters of Stribeck friction model and an additional tuning parameter,while fnely identifying the parameters related to the pre-sliding phenomenon is not required.As a result,it greatly facilitates the practical applicability.Both air cutting and real cutting experiments conducted on an in-house developed open-architecture CNC machine tool prove that the proposed method can reduce the tracking errors by more than 56%,and reduce the contour errors by more than 50%.
文摘A microstructural simulation method is adopted to predict the location specific strain rates, temperatures, grain evolution, and accumulated strains in the Inconel 718 friction welds. Cellular automata based 2D microstructure model was developed for Inconel 718 alloy using theoretical aspects of dynamic recrystallization. Flow curves were simulated and compared with experimental results using hot deformation parameter obtained from literature work. Using validated model, simulations were performed for friction welds of Inconel 718 alloy generated at three rotational speed i.e., 1200, 1500, and1500 RPM. Results showed the increase in strain rates with increasing rotational speed. These simulated strain rates were found to match with the analytical results. Temperature difference of 150 K was noticed from center to edge of the weld. At all the rotational speeds, the temperature was identical implying steady state temperature(0.89 T_m) attainment.
文摘Based on focused ion beam and shear friction apparatus data, the multi-resolutions (0.2 nm-5μm) volume roughness & asperity contact (VR & AC) three-dimensional structure on principle slip surface interface-surface (PSS-IS) is measured on high performance computational platform; and physical plastic-creep friction model is established by using hybrid hyper-singular integral equation & lattice Boltzmann & lattice Green function (BE-LB-LG). The correlation of rheological property and VR & AC evolution under transient (10 μs) macro-normal stress (18-300 MPa) and slip rate (0.25-7.5 m/s) are obtained; and the PSS-IS friction in co-seismic flash heating is quantitative analyzed for the first time.
基金Supported by State Key Laboratory of Explosion Science and Technology(QNKT11-08)
文摘Adaptive control of servo actuator with nonlinear friction compensation is addressed. LuGre dynamic friction model is adopted to characterize the nonlinear friction and a new kind of slid ing mode observer is designed to estimate the internal immeasurable state of LuGre model. Based on the estimated friction state, adaptive laws are designed to identify the unknown model parameters and the external disturbances, and the system stability and asymptotic trajectory tracking perform ance are guaranteed by Lyapunov function. The position tracking performance is verified by the ex perimental results.
基金Supported by National Natural Science Foundation of China(Grant No.51375346)Doctoral Fund of Ministry of Education of China(Grant No.20110072110056)
文摘In practical engineering, finite element(FE) modeling for weld seam is commonly simplified by neglecting its inhomogeneous mechanical properties. This will cause a significant loss in accuracy of FE forming analysis, in particular, for friction stir welded(FSW) blanks due to the large width and good formability of its weld seam. The inhomogeneous mechanical properties across weld seam need to be well characterized for an accurate FE analysis. Based on a similar AA5182 FSW blank, the metallographic observation and micro-Vickers hardness analysis upon the weld cross-section are performed to identify the interfaces of different sub-zones, i.e., heat affected zone(HAZ), thermal-mechanically affected zone(TMAZ) and weld nugget(WN). Based on the rule of mixture and hardness distribution, a constitutive model is established for each sub-zone to characterize the inhomogeneous mechanical properties across the weld seam. Uniaxial tensile tests of the AA5182 FSW blank are performed with the aid of digital image correlation(DIC) techniques. Experimental local stress-strain curves are obtained for different weld sub-zones. The experimental results show good agreement with those derived from the constitutive models, which demonstrates the feasibility and accuracy of these models. The proposed research gives an accurate characterization of inhomogeneous mechanical properties across the weld seam produced by FSW, which provides solutions for improving the FE simulation accuracy of FSW sheet forming.