To solve the problem that the digital image recognition accuracy of concrete structure cracks is not high under the condition of uneven ill umination and complex surface color of concrete structure,this paper has prop...To solve the problem that the digital image recognition accuracy of concrete structure cracks is not high under the condition of uneven ill umination and complex surface color of concrete structure,this paper has proposed a block segmentation method of maximum entropy threshold based on the digital image data obtained by the ACTIS automatic detection system.The steps in this research are as follows:1.The crack digital images of concrete specimens with typical fea-tures were collected by using the Actis system of KURABO Co,Ltd,of Japan in the concrete beam bending test.2.The images are segmented into blocks to dis-tinguish backgrounds of different grayscale.3.The max imum interclass average gray difference method is used to distinguish the sub-blocks and screen out the image blocks that need to be segmented.4.Segmentation is made to the image with 2D max imum entropy threshold segmentation method to obtain the binary image,and the target image can be obtained by screening the connected domain features of the binary image.Results have shown that compared with other algo-rithms,the proposed method can effectively decrease the image over-segmentation and under segmentation rates,highlight the characteristics of the target cracks,solve the problems of excessive difference between the identified length and actual length of cracks caused by background gray level change and uneven ilumnination,and effectively improve the recognition accuracy of bridge concrete cracks.展开更多
A conventional global contrast enhancement is difficult to apply in various images because image quality and contrast enhancement are dependent on image characteristics largely. And a local contrast enhancement not on...A conventional global contrast enhancement is difficult to apply in various images because image quality and contrast enhancement are dependent on image characteristics largely. And a local contrast enhancement not only causes a washed-out effect, but also blocks. To solve these drawbacks, this paper derives an optimal global equalization function with variable size block based local contrast enhancement. The optimal equalization function makes it possible to get a good quality image through the global contrast enhancement. The variable size block segmentation is firstly exeoated using intensity differences as a measure of similarity. In the second step, the optimal global equalization function is obtained from the enhanced contrast image having variable size blocks. Conformed experiments have showed that the proposed algorithm produces a visually comfortable result image.展开更多
Segmented block copolymer based on nylon6 (N6) and polyethylene oxide (PEO) with stochiometric ratio was synthesized via a two-step process. The first step represents end capping of N6 in the presence of adipic ac...Segmented block copolymer based on nylon6 (N6) and polyethylene oxide (PEO) with stochiometric ratio was synthesized via a two-step process. The first step represents end capping of N6 in the presence of adipic acid leading to carboxy terminated N6, and the second one is polycondensation of the latter product with PEO in the presence of catalyst and thermostabilizer to form a high molecular weight multi-block copolymer. Several methods were applied to characterize the synthesized copolyrner such as Fourier transform infrared spectroscopy, proton nuclear magnetic resonance spectroscopy, differential thermal analysis, differential scanning calorimetry, X-ray diffraction and atomic force microscopy. The obtained results confirmed the multi-block structure for copolymer with a very high degree of micro-phase separation. Atomic force microscopy micrographs indicated that the morphology was the dispersion of high stiffness nanostructured polyamide (PA) domains in the amorphous region of PEO matrix, which can be very important in their performance for membrane processes.展开更多
Multi-stage Mesozoic thrust-nappe and extensional structures are distributed in the east segment of the Southeast Yangtze Block situated in the junction region of Zhejiang-Jiangxi-Anhui provinces. The features and gen...Multi-stage Mesozoic thrust-nappe and extensional structures are distributed in the east segment of the Southeast Yangtze Block situated in the junction region of Zhejiang-Jiangxi-Anhui provinces. The features and genetic mechanism of the deformations were analyzed after a detailed field observation of their distribution, geometry, and kinematics. In addition, the time sequences of the thrust and extensional structures were determined by combining the results of the comparative analysis with the chronological evidence of strata and magmatic rocks cut by a fault or formed after a fault according to field facts. This study identified three stages of the nappe structures and at least two stages of the extensional structures during the Mesozoic. The geotectonic setting of the nappe and extensional structures was considered to be related to the different geodynamics in the study area including the Early Mesozoic geological event, i.e., N-S compression, forming Lantian fault, etc.;the Late Mesozoic flat-slab subduction, forming Xiaoxi thrust fault and tectonic window;and the roll-back of the paleoPacific Plate, forming extensional structures like basin marginal fault;the last compression, forming Wucheng-Shenxian fault. These findings provide additional evidence for remodeling the tectonic and geodynamic evolution of Southeast China.展开更多
文摘To solve the problem that the digital image recognition accuracy of concrete structure cracks is not high under the condition of uneven ill umination and complex surface color of concrete structure,this paper has proposed a block segmentation method of maximum entropy threshold based on the digital image data obtained by the ACTIS automatic detection system.The steps in this research are as follows:1.The crack digital images of concrete specimens with typical fea-tures were collected by using the Actis system of KURABO Co,Ltd,of Japan in the concrete beam bending test.2.The images are segmented into blocks to dis-tinguish backgrounds of different grayscale.3.The max imum interclass average gray difference method is used to distinguish the sub-blocks and screen out the image blocks that need to be segmented.4.Segmentation is made to the image with 2D max imum entropy threshold segmentation method to obtain the binary image,and the target image can be obtained by screening the connected domain features of the binary image.Results have shown that compared with other algo-rithms,the proposed method can effectively decrease the image over-segmentation and under segmentation rates,highlight the characteristics of the target cracks,solve the problems of excessive difference between the identified length and actual length of cracks caused by background gray level change and uneven ilumnination,and effectively improve the recognition accuracy of bridge concrete cracks.
文摘A conventional global contrast enhancement is difficult to apply in various images because image quality and contrast enhancement are dependent on image characteristics largely. And a local contrast enhancement not only causes a washed-out effect, but also blocks. To solve these drawbacks, this paper derives an optimal global equalization function with variable size block based local contrast enhancement. The optimal equalization function makes it possible to get a good quality image through the global contrast enhancement. The variable size block segmentation is firstly exeoated using intensity differences as a measure of similarity. In the second step, the optimal global equalization function is obtained from the enhanced contrast image having variable size blocks. Conformed experiments have showed that the proposed algorithm produces a visually comfortable result image.
文摘Segmented block copolymer based on nylon6 (N6) and polyethylene oxide (PEO) with stochiometric ratio was synthesized via a two-step process. The first step represents end capping of N6 in the presence of adipic acid leading to carboxy terminated N6, and the second one is polycondensation of the latter product with PEO in the presence of catalyst and thermostabilizer to form a high molecular weight multi-block copolymer. Several methods were applied to characterize the synthesized copolyrner such as Fourier transform infrared spectroscopy, proton nuclear magnetic resonance spectroscopy, differential thermal analysis, differential scanning calorimetry, X-ray diffraction and atomic force microscopy. The obtained results confirmed the multi-block structure for copolymer with a very high degree of micro-phase separation. Atomic force microscopy micrographs indicated that the morphology was the dispersion of high stiffness nanostructured polyamide (PA) domains in the amorphous region of PEO matrix, which can be very important in their performance for membrane processes.
文摘Multi-stage Mesozoic thrust-nappe and extensional structures are distributed in the east segment of the Southeast Yangtze Block situated in the junction region of Zhejiang-Jiangxi-Anhui provinces. The features and genetic mechanism of the deformations were analyzed after a detailed field observation of their distribution, geometry, and kinematics. In addition, the time sequences of the thrust and extensional structures were determined by combining the results of the comparative analysis with the chronological evidence of strata and magmatic rocks cut by a fault or formed after a fault according to field facts. This study identified three stages of the nappe structures and at least two stages of the extensional structures during the Mesozoic. The geotectonic setting of the nappe and extensional structures was considered to be related to the different geodynamics in the study area including the Early Mesozoic geological event, i.e., N-S compression, forming Lantian fault, etc.;the Late Mesozoic flat-slab subduction, forming Xiaoxi thrust fault and tectonic window;and the roll-back of the paleoPacific Plate, forming extensional structures like basin marginal fault;the last compression, forming Wucheng-Shenxian fault. These findings provide additional evidence for remodeling the tectonic and geodynamic evolution of Southeast China.