The paper contains two parts. First, by applying the results about the eigenvalue perturbation bounds for Hermitian block tridiagonal matrices in paper [1], we obtain a new efficient method to estimate the perturbatio...The paper contains two parts. First, by applying the results about the eigenvalue perturbation bounds for Hermitian block tridiagonal matrices in paper [1], we obtain a new efficient method to estimate the perturbation bounds for singular values of block tridiagonal matrix. Second, we consider the perturbation bounds for eigenvalues of Hermitian matrix with block tridiagonal structure when its two adjacent blocks are perturbed simultaneously. In this case, when the eigenvalues of the perturbed matrix are well-separated from the spectrum of the diagonal blocks, our eigenvalues perturbation bounds are very sharp. The numerical examples illustrate the efficiency of our methods.展开更多
In this paper, we established a connection between a square matrix “A” of order “n” and a matrix defined through a new approach of the recursion relation . (where is any column matrix with n real ...In this paper, we established a connection between a square matrix “A” of order “n” and a matrix defined through a new approach of the recursion relation . (where is any column matrix with n real elements). Now the new matrix gives us a characteristic equation of matrix A and we can find the exact determination of Eigenvalues and its Eigenvectors of the matrix A. This new approach was invented by using Two eigenvector theorems along with some examples. In the subsequent paper we apply this approach by considering some examples on this invention.展开更多
The approximate eigenvectors or Ritz vectors obtained by the block Arnoldi method may converge very slowly and even fail to converge even if the approximate eigenvalues do. In order to improve the quality of the Ritz ...The approximate eigenvectors or Ritz vectors obtained by the block Arnoldi method may converge very slowly and even fail to converge even if the approximate eigenvalues do. In order to improve the quality of the Ritz vectors, a modified strategy is proposed such that new approximate eigenvectors are certain combinations of the Ritz vectors and the waSted (m+1) th block basis vector and their corresponding residual norms are minimized in a certain sense. They can be cheaply computed by solving a few small 'dimensional minimization problems. The resulting modified m-step block Arnoldi method is better than the standard m-step one in theory and cheaper than the standard (m+1)-step one. Based on this strategy, a modified m-step iterative block Arnoldi algorithm is presented. Numerical experiments are reported to show that the modified m-step algorithm is often considerably more efficient than the standard (m+1)-step iterative one.展开更多
文摘The paper contains two parts. First, by applying the results about the eigenvalue perturbation bounds for Hermitian block tridiagonal matrices in paper [1], we obtain a new efficient method to estimate the perturbation bounds for singular values of block tridiagonal matrix. Second, we consider the perturbation bounds for eigenvalues of Hermitian matrix with block tridiagonal structure when its two adjacent blocks are perturbed simultaneously. In this case, when the eigenvalues of the perturbed matrix are well-separated from the spectrum of the diagonal blocks, our eigenvalues perturbation bounds are very sharp. The numerical examples illustrate the efficiency of our methods.
文摘In this paper, we established a connection between a square matrix “A” of order “n” and a matrix defined through a new approach of the recursion relation . (where is any column matrix with n real elements). Now the new matrix gives us a characteristic equation of matrix A and we can find the exact determination of Eigenvalues and its Eigenvectors of the matrix A. This new approach was invented by using Two eigenvector theorems along with some examples. In the subsequent paper we apply this approach by considering some examples on this invention.
文摘The approximate eigenvectors or Ritz vectors obtained by the block Arnoldi method may converge very slowly and even fail to converge even if the approximate eigenvalues do. In order to improve the quality of the Ritz vectors, a modified strategy is proposed such that new approximate eigenvectors are certain combinations of the Ritz vectors and the waSted (m+1) th block basis vector and their corresponding residual norms are minimized in a certain sense. They can be cheaply computed by solving a few small 'dimensional minimization problems. The resulting modified m-step block Arnoldi method is better than the standard m-step one in theory and cheaper than the standard (m+1)-step one. Based on this strategy, a modified m-step iterative block Arnoldi algorithm is presented. Numerical experiments are reported to show that the modified m-step algorithm is often considerably more efficient than the standard (m+1)-step iterative one.