The kinetics of ultrasonic degradation of aqueous solution of polyacrylamide(PAM)and poly(ethyleneoxide)(PEO)as well as ultrasonic block copolymerization of aqueous solution of the mixture of PAM/PEOwere studied...The kinetics of ultrasonic degradation of aqueous solution of polyacrylamide(PAM)and poly(ethyleneoxide)(PEO)as well as ultrasonic block copolymerization of aqueous solution of the mixture of PAM/PEOwere studied respectively.The degradation reaction of PEO follows a linear relationship between(P1-P∞)-1and irradiation time,while that of PAM follows a linear relationship between(P1-P∞)-1/2and irradiation time.The structure of the copolymer was identified by IR,NMR and DTA,and the copolymer prepared is a blockone.The copolymer formed by irradiating 1% aqueous solution of PEO/PAM mixture(1:1)for a period of40min.at 18.2 kHz with a sonic intensity corresponding to 2.OA input current on the reversed main circuitamounts to 61.8%.展开更多
Polyolefin-b-poly(ethylene oxide)(PEO)represents the most widely investigated amphiphilic block copolymers.So far,one-pot continuous synthesis of such hybrid block copolymers has only been fulfilled by anionic polymer...Polyolefin-b-poly(ethylene oxide)(PEO)represents the most widely investigated amphiphilic block copolymers.So far,one-pot continuous synthesis of such hybrid block copolymers has only been fulfilled by anionic polymerization through sequen-tial addition of vinyl monomers and ethylene oxide(EO).It still remains challenging to achieve altogether high block efficiency,high polymerization efficiency,and high molar mass for PEO.Here,we report a one-pot hybrid block copolymerization approach to polyisoprene/polystyrene(PI/PS)-b-PEO,in which PI/PS are formed by sBuLi-initiated anionic vinyl-addition polymerization,then in situ employed as macroinitiators for the anionic ring-opening polymerization(ROP)of EO aided by an organic Lewis pair.The cooperative(dual-ion-complexing)catalytic effect of organobase and triethylborane is proven,for thefirst time,effective for lithium alkoxide initiator system,allowing to achieve at room temperature high ROP activity(complete EO conversion and PEO of 3–64 kg/mol reached in 1–6 h),narrow molar mass distribution,controlled block lengths and composition.Density functional the-ory calculation shows that phosphazene bases are particularly effective,compared with N-heterocyclic bases,for complexing with Li+and enhancing the nucleophilicity of oxyanion.The rate of ROP is also affected by Li^(+)-induced aggregation of the chain-end ion pairs,which though can be offset by adequate catalyst loadings.The versatility of this approach is further demonstrated in the one-pot synthesis of tri-/tetrablock ter-/quaterpolymers constituted by PI,PS,PEO,and poly(propylene oxide).Of great interest,PS-b-PI-b-PEO triblock terpolymer with a specific com-position is found to form internally microphase-separated micellar aggregates when dispersed in water.展开更多
Po ly(ethylene terephthalate)-polycaprolactone block copolymer (PCL-b-PET) is a polyester with improved biodegradability. In the present paper, a new direct copolymerization method of epsilon-caprolactone (epsilon-CL)...Po ly(ethylene terephthalate)-polycaprolactone block copolymer (PCL-b-PET) is a polyester with improved biodegradability. In the present paper, a new direct copolymerization method of epsilon-caprolactone (epsilon-CL) and bishydroxyethylene terephthalate (BHET) in the presence of Ti(OBu)(4) was proposed for the synthesis of PCL-b-PET. The PCL-b-PET copolymer was characterized by IR, GPC and H-1-NMR techniques, and the effects of synthesis conditions, such as temperature, reaction time and concentration of catalyst on the copolymerization were discussed.展开更多
Block copolymer(BCP) nanolithography offers potential beyond traditional photolithographic limits, yet reliably producing low-defect, perpendicular domains remains challenging. We introduce a microenvironmentdriven is...Block copolymer(BCP) nanolithography offers potential beyond traditional photolithographic limits, yet reliably producing low-defect, perpendicular domains remains challenging. We introduce a microenvironmentdriven isothermal annealing method for directed self-assembly of BCP thin films. By annealing films at stable temperature in a quasi-sealed, inert-gas chamber, our approach promotes highly uniform perpendicular lamellar nanopatterns over large areas, effectively mitigating environmental fluctuations and emulating solvent-vapor annealing without solvent exposure. Resulting BCP structures demonstrate enhanced spatial coherence and notably low defect density. Furthermore, we successfully transfer these nanopatterns into precise metal nano-line arrays,confirming the method's capability for high-fidelity pattern replication. This scalable, solvent-free technique provides a robust, reliable route for high-resolution nanopatterning in advanced semiconductor manufacturing.展开更多
The self-assembly of block copolymers serves as an effective approach for fabricating various periodic ordered nanostructures. By employing self-consistent field theory (SCFT) to calculate the phase diagrams of block ...The self-assembly of block copolymers serves as an effective approach for fabricating various periodic ordered nanostructures. By employing self-consistent field theory (SCFT) to calculate the phase diagrams of block copolymers, one can accurately predict their self-assembly behaviors, thus providing guidance for the fabrication of various novel structures. However, SCFT is highly sensitive to initial conditions because it finds the free energy minima through an iterative process. Consequently, constructing phase diagrams using SCFT typically requires predefined candidate structures based on the experience of researchers. Such experience-dependent strategies often miss some structures and thus result in inaccurate phase diagrams. Recently, artificial intelligence (AI) techniques have demonstrated significant potential across diverse fields of science and technology. By leveraging AI methods, it is possible to reduce reliance on human experience, thereby constructing more robust and reliable phase diagrams. In this work, we demonstrate how to combine AI with SCFT to automatically search for self-assembled structures of block copolymers and construct phase diagrams. Our aim is to realize automatic construction of block copolymer phase diagrams while minimizing reliance on human prior knowledge.展开更多
Polymerization-induced self-assembly(PISA)has become one of the most versatile approaches for scalable preparation of linear block copolymer nanoparticles with various morphologies.However,the controlled introduction ...Polymerization-induced self-assembly(PISA)has become one of the most versatile approaches for scalable preparation of linear block copolymer nanoparticles with various morphologies.However,the controlled introduction of branching into the core-forming block and the effect on the morphologies of block copolymer nanoparticles under PISA conditions have rarely been explored.Herein,a series of multifunctional macromolecular chain transfer agents(macro-CTAs)were first synthesized by a two-step green light-activated photoiniferter polymerization using two types of chain transfer monomers(CTMs).These macro-CTAs were then used to mediate reversible addition-fragmentation chain transfer(RAFT)dispersion polymerization of styrene(St)to prepare block copolymers with different core-forming block structures and the assemblies.The effect of the core-forming block structure on the morphology of block copolymer nanoparticles was investigated in detail.Transmission electron microscopy(TEM)analysis indicated that the brush-like core-forming block structure facilitated the formation of higher-order morphologies,while the branched core-forming block structure favored the formation of lower-order morphologies.Moreover,it was found that using macroCTAs with a shorter length also promoted the formation of higher-order morphologies.Finally,structures of block copolymers and the assemblies were further controlled by changing the structure of macro-CTA or using a binary mixture of two different macro-CTAs.We expect that this work not only sheds light on the synthesis of block copolymer nanoparticles but also provide important mechanistic insights into PISA of nonlinear block copolymers.展开更多
Mechanochromic materials respond to external stimuli and provide early warnings of material damage.Perylene diimide(PDI)-based materials have attracted attention because of their outstanding fluorescence performance.H...Mechanochromic materials respond to external stimuli and provide early warnings of material damage.Perylene diimide(PDI)-based materials have attracted attention because of their outstanding fluorescence performance.However,the application of PDI in mechanochromism is limited by the difficulty for mechanical forces to disrupt the aggregation of PDI and its derivatives,as well as the fluorescence quenching caused by continuousπ-πstacking between PDI molecules.To eliminate the fluorescence quenching effect caused by the aggregation of PDI and broaden its application fields,polyhedral oligomeric silsesquioxane(POSS)-PDI-POSS(PPP)was screened as PDI doping.The photophysical properties of PPP in both monomeric and aggregated states in different solvents were studied.Then,PPP and styrene-butadiene-styrene block copolymer(SBS)were mixed to prepare the PPP/SBS film.The mechanochromic properties of PPP/SBS film were explored.The fluorescence emission spectra confirmed that when the PPP mass fraction increased to 0.30%,the PPP/SBS film exhibited mechanochromic behavior under uniaxial deformation due to the changes in the molecular packing.展开更多
Poly(isoprene-b-butyl methacrylate) block copolymer with a high molecular weight was synthesized in the presence of rare earth coordination catalyst [RE(P 204 ) 3-Al( i Bu) 3 DBE]. The block copolymer wa...Poly(isoprene-b-butyl methacrylate) block copolymer with a high molecular weight was synthesized in the presence of rare earth coordination catalyst [RE(P 204 ) 3-Al( i Bu) 3 DBE]. The block copolymer was characterized by means of GPC,IR,DSC,NMR and elemental analysis. The block copolymer prepared has two glass transition temperatures: -75 6 ℃ and 32 2 ℃. The microstructure of the diblock copolymer possessed 96 8% cis 1,4 addition for the isoprene segment and a 70% syndiotacticity for the butyl methacrylate segment.展开更多
Diblock copolymers containing polystyrene (PSt) andpolybutyl methacrylate (PBMA)segnents and random coplymer of styrene (St) and butyl methacrylate (BMA) havebeen prepared by atom transfer radical polymerizanon (ATRP)...Diblock copolymers containing polystyrene (PSt) andpolybutyl methacrylate (PBMA)segnents and random coplymer of styrene (St) and butyl methacrylate (BMA) havebeen prepared by atom transfer radical polymerizanon (ATRP). Diblock copolymers ofBAN and St with predetermined molecular weight (1× 104ed.5 × 104)and narrowermolecular weight distribution(1.25~1.5) were obained The random copolymercompositions were determined by 1HNMR spectroscopy and the reactivity ratios wereevaluated by the extended Kelen-Tudos method to be γst=0.91, γBMA=0.32.展开更多
Conjugated block copolymers have gained increasing interests in recent years. Development of a novel method for facile synthesis of conjugated block copolymers with desired structures and functions is greatly desired....Conjugated block copolymers have gained increasing interests in recent years. Development of a novel method for facile synthesis of conjugated block copolymers with desired structures and functions is greatly desired. In this mini review, we summarized the recent advances in one-pot synthesis of conjugated block copolymers containing π-conjugated polythiophene and helical polyisocyanide segments by using a nickel(Ⅱ) complex as single catalyst. The sequential living polymerization of the two monomers proceeded in a controlled manner, affording expected block copolymers in high yields with controlled molecular weights(Mns) and narrow molecular weight distributions(Mw/Mns). By using this method, a family of block copolymers with expected structure and tunable compositions can be facilely prepared. Introducing functional groups onto the pendant, these block copolymers can exhibit interesting self-assembly property, tunable light emission and multi-responsiveness.展开更多
The self-assembly of block copolymer in solution has proven to be an effective strategy for building up a wide range of nanomaterials with diverse structures and applications.This paper reports a facile self-assembly ...The self-assembly of block copolymer in solution has proven to be an effective strategy for building up a wide range of nanomaterials with diverse structures and applications.This paper reports a facile self-assembly approach towards two-dimensional(2D)sandwich-like mesoporous nitrogen-doped carbon/reduced graphene oxide nanocomposites(denoted as mNC/rGO)with well-defined large mesopores.The strategy involves the synergistic self-assembly ofpolystyrene-block-poly(ethylene oxide)(PS-b-PEO)spherical micelles,m-phenylenediamine(mPD)monomers and GO in solution and the subsequent carbonization at 900~C.The resultant mNC/rGO nanosheets have an average pore size of 19 nm,a high specific surface of 812 m^(2)'g^(-1)and a nitrogen content of 2.2 wt%.As an oxygen reduction reaction(ORR)catalyst,the unique structural features render the metal-free nanosheets excellent electrocatalytic performance.In a 0.1 mol.L-~KOH alkaline medium,mNC/rGO exhibits a four-electron transfer pathway with a high half-wave-potential(El/2)of+0.77 V versus reversible hydrogen electrode(RHE)and a limiting current density(JL)of 5.2 mA'cm^(-2),which are well comparable with those of the commercial Pt/C catalysts.展开更多
A novel fluorinated triblock copolymer incorporating 2-ethylhexyl methacrylate (EHMA), tert-butyl methacrylate (tBMA) and 1H,1H,2H,2H-perfluorodecyl acrylate (FA) (PEHMA-b-PtBMA-b-PFA) was first synthesized us...A novel fluorinated triblock copolymer incorporating 2-ethylhexyl methacrylate (EHMA), tert-butyl methacrylate (tBMA) and 1H,1H,2H,2H-perfluorodecyl acrylate (FA) (PEHMA-b-PtBMA-b-PFA) was first synthesized using three successive reversible addition fragmentation chain transfer (RAFT) polymerization and the subsequent hydrolyzing at acidic condition. The as-fabricated triblock copolymer exhibited an interesting morphology evolution from the multi-compartment rod-like structure to spherical structure along with the addition of a selective solution. At the same time, a visible phase separation domain could be seen in the core area due to the existence of fluorocarbon segments. Furthermore, the self- assembly behavior of the triphilic copolymer at different pH was also verified by transmission electron microscopy, as well as the dynamic light scattering. These stimuli-responsive multi-compartment nanostructures may have potential applications in drug delivery.展开更多
This feature article summarizes the synthesis of novel olefin block copolymers using fast syndiospecific living homo- and copolymerization of propylene, higher 1-alkene, and norbornene with ansa-fluorenylamidodimethyl...This feature article summarizes the synthesis of novel olefin block copolymers using fast syndiospecific living homo- and copolymerization of propylene, higher 1-alkene, and norbornene with ansa-fluorenylamidodimethyltitanium- based catalyst according to the authors' recent results. The catalytic synthesis of monodisperse polyolefin and olefin block copolymer was also described using this living system.展开更多
Block copolymer lithography is emerging as one of the leading technologies for patteming nanoscale dense features. In almost all potential applications of this technology, control over the orientation of cylindrical a...Block copolymer lithography is emerging as one of the leading technologies for patteming nanoscale dense features. In almost all potential applications of this technology, control over the orientation of cylindrical and lamellar domains is required for pattern transfer from the block copolymer film. This review highlights the state-of-art development of brushes to modify the substrates to control the assembly behaviors of block copolymers in films. Selected important contributions to the development of self-assembled monolayers, polymer brushes and mats, and chemically patterned brushes are discussed.展开更多
Solid polymer electrolytes have been considered as the promising candidates to improve the safety and stability of high-energy lithium metal batteries.However,the practical applications of solid polymer electrolytes a...Solid polymer electrolytes have been considered as the promising candidates to improve the safety and stability of high-energy lithium metal batteries.However,the practical applications of solid polymer electrolytes are still limited by the low ionic conductivity,poor interfacial contact with electrodes,narrow electrochemical window and weak mechanical strength.Here,a series of novel block copolymer electrolytes with three-dimensional networks are designed by cross-linked copolymerization of the polyethylene glycol soft segments and hexamethylene diisocyanate trimer hard segments.Their ionic migration performances and interface compatibilities with Li metal anode have been optimized delicately by tailoring the ratio of these functional units.The optimized block copolymer electrolyte has shown an amorphous crystalline structure,a high ionic conductivity of ~5.7×10^(-4)S cm^(-1),high lithium ion transference number(~0.49),wide electrochemical window up to ~4.65 V(vs.Li+/Li) and favorable mechanical strength at 55℃.Furthermore,the enhanced interface compatibility can well support the normal operations of lithium metal batteries using both LiFePO4 and LiNi0.8Co0.15Al0.05O2 cathodes.This study not only paves a new way to develop solid polymer electrolyte with optimizing functional units,but also provides a polymer electrolyte design strategy for the application demand of lithium metal battery.展开更多
pH-sensitive wettability of polystyrene-b-poly(4-vinylpyridine) (PS-b-P4VP) self assembled films, exhibiting superoleophobicity under water and hydrophilicity at low pH value, and oleophobicity under water and hyd...pH-sensitive wettability of polystyrene-b-poly(4-vinylpyridine) (PS-b-P4VP) self assembled films, exhibiting superoleophobicity under water and hydrophilicity at low pH value, and oleophobicity under water and hydrophobicity at neutral condition, has been realized. The wettability properties resulted from the surface topological and chemical transition, which were confirmed by in situ AFM measurements under water at different pH. At low pH, P4VP chains, which were confined in the hexagonal-packed nanodomains, got protonated into a swollen state, while at high pH, P4VP chains were deprotonated into a collapsed state. The reversible protonation/deprotonation procedure on the molecular scale leads to surface topological and chemical transition, thereby pH-sensitive wettability.展开更多
The asymmetric amphiphilic block copolymer polystyrene962-block-poly(ethylene oxide)227 (PS962-b-PEO227) eanforms mieelles with N, N-dimethylforrnamide (DMF) as co-solvent and water as selected solvent, and when...The asymmetric amphiphilic block copolymer polystyrene962-block-poly(ethylene oxide)227 (PS962-b-PEO227) eanforms mieelles with N, N-dimethylforrnamide (DMF) as co-solvent and water as selected solvent, and when the water content of the mixed solvent is higher than 4.5 wt%, the vesicle will be dominated. This work finds that once vesicles are formed in the DMF-water mixed solvent, the vesicle size and membrane thickness can be tuned by further increasing water content. As the water fraction elevated from 4.8 wt% to 13.0 wt%, the vesicle size dercreases from 246 nm to 150 nm, while the membrane thickness increases from 28 nm to 42 nm. In addition, the block copolymer packing and the free energy are analyzed as the vesicle size becomes small and the membrane becomes thick.展开更多
Shape control of mesoporous carbon microparticles(MCMPs)is of critical importance;in particular,asymmetric shapes that can yield unique properties have attracted significant attention.However,the tailored synthesis of...Shape control of mesoporous carbon microparticles(MCMPs)is of critical importance;in particular,asymmetric shapes that can yield unique properties have attracted significant attention.However,the tailored synthesis of asymmetric MCMPs with ordered structures remains challenging.Herein,we report a facile route to prepare asymmetric MCMPs by dynamic neutral interface-guided 3D-confined self-assembly(3D-CSA)of block copolymer/homopolymer(BCP/hP)blends,followed by a self-templated selective direct carbonization strategy.BCP/h P Janus microparticles with ordered hierarchical mesostructures were prepared with emulsion solvent evaporation-induced 3D-CSA.The continuous phase of BCP domains was then crosslinked.Composite asymmetric MCMPs are successfully generated after selective carbonization of the crosslinked continuous phase.This method allows tuning the shape of MCMPs easily by varying the blending ratio of BCP/h P.The composite asymmetric MCMPs combine the advantages of asymmetric shape,ordered structure,high specific surface area,chemical inertness and thermal stability and could provide great possibilities for applications in catalysis,drug delivery,energy conversion and storage.展开更多
H-type amphiphilic liquid crystalline block copolymers containing azobenzene were synthesized by atom transfer radical polymerization (ATRP). Macroinitiators prepared by the esterification between poly(ethylene ox...H-type amphiphilic liquid crystalline block copolymers containing azobenzene were synthesized by atom transfer radical polymerization (ATRP). Macroinitiators prepared by the esterification between poly(ethylene oxide) (PEG) and 2,2-dichloroacetyl chloride were utilized to initiate the polymerization of 6-[4-(4-ethoxyphenylazo)phenoxy]hexyl rnethacrylate (M6C). The resulting macroinitiators and block copolymers were characterized by ^1H NMR, gel permeation chromatography (GPC). Polarizing optical microscopy (POM) and differential scanning calorimetry (DSC) preliminarily revealed the liquid crystalline property of these block copolymers. This series of liquid crystalline block copolymers are promising in some areas, such as optical data storage, optical switch, and molecular devices.展开更多
This work uses a block copolymer architecture[(A′B)nA2]m to unify the scattering function and spinodal transition of typical AB-type block copolymers.The key roles of block number,junction points and asymmetry ratios...This work uses a block copolymer architecture[(A′B)nA2]m to unify the scattering function and spinodal transition of typical AB-type block copolymers.The key roles of block number,junction points and asymmetry ratios of block length are(1)to determine the form factor of each block copolymer at the molecular scale;(2)to affect the entropy loss across the spinodal transition and may result in deflection of spinodal curves.The common features are validated in typical linear and nonlinear block copolymers,including AB diblock,asymmetric A′BA triblock,miktoarm stars of ABn,AnBn,(AB)n,(A′B)nA,A′BAm,and multi-graft combs of(BnA2)m and[(A′B)nA2]m.The explicit scattering functions and form factors of various block copolymers can be directly applied in radiation experiments(i.e.neutron or X-ray scattering)to unravel the effect of molecular architecture in solution and microphase separation in disordered melt.The molecular model used in this study is also helpful to guide the chemical synthesis to explore more potentially interesting block copolymers.展开更多
文摘The kinetics of ultrasonic degradation of aqueous solution of polyacrylamide(PAM)and poly(ethyleneoxide)(PEO)as well as ultrasonic block copolymerization of aqueous solution of the mixture of PAM/PEOwere studied respectively.The degradation reaction of PEO follows a linear relationship between(P1-P∞)-1and irradiation time,while that of PAM follows a linear relationship between(P1-P∞)-1/2and irradiation time.The structure of the copolymer was identified by IR,NMR and DTA,and the copolymer prepared is a blockone.The copolymer formed by irradiating 1% aqueous solution of PEO/PAM mixture(1:1)for a period of40min.at 18.2 kHz with a sonic intensity corresponding to 2.OA input current on the reversed main circuitamounts to 61.8%.
基金National Natural Science Foundation of China,Grant/Award Number:52022031Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates,Grant/Award Number:2023B1212060003Hunan Provincial Natural Science Foundation of China,Grant/Award Number:2023JJ40620。
文摘Polyolefin-b-poly(ethylene oxide)(PEO)represents the most widely investigated amphiphilic block copolymers.So far,one-pot continuous synthesis of such hybrid block copolymers has only been fulfilled by anionic polymerization through sequen-tial addition of vinyl monomers and ethylene oxide(EO).It still remains challenging to achieve altogether high block efficiency,high polymerization efficiency,and high molar mass for PEO.Here,we report a one-pot hybrid block copolymerization approach to polyisoprene/polystyrene(PI/PS)-b-PEO,in which PI/PS are formed by sBuLi-initiated anionic vinyl-addition polymerization,then in situ employed as macroinitiators for the anionic ring-opening polymerization(ROP)of EO aided by an organic Lewis pair.The cooperative(dual-ion-complexing)catalytic effect of organobase and triethylborane is proven,for thefirst time,effective for lithium alkoxide initiator system,allowing to achieve at room temperature high ROP activity(complete EO conversion and PEO of 3–64 kg/mol reached in 1–6 h),narrow molar mass distribution,controlled block lengths and composition.Density functional the-ory calculation shows that phosphazene bases are particularly effective,compared with N-heterocyclic bases,for complexing with Li+and enhancing the nucleophilicity of oxyanion.The rate of ROP is also affected by Li^(+)-induced aggregation of the chain-end ion pairs,which though can be offset by adequate catalyst loadings.The versatility of this approach is further demonstrated in the one-pot synthesis of tri-/tetrablock ter-/quaterpolymers constituted by PI,PS,PEO,and poly(propylene oxide).Of great interest,PS-b-PI-b-PEO triblock terpolymer with a specific com-position is found to form internally microphase-separated micellar aggregates when dispersed in water.
基金This work was supported by 863 Programme of China No.715-002-0210 and the National Natural Science Foundation of China(No.59773022).
文摘Po ly(ethylene terephthalate)-polycaprolactone block copolymer (PCL-b-PET) is a polyester with improved biodegradability. In the present paper, a new direct copolymerization method of epsilon-caprolactone (epsilon-CL) and bishydroxyethylene terephthalate (BHET) in the presence of Ti(OBu)(4) was proposed for the synthesis of PCL-b-PET. The PCL-b-PET copolymer was characterized by IR, GPC and H-1-NMR techniques, and the effects of synthesis conditions, such as temperature, reaction time and concentration of catalyst on the copolymerization were discussed.
基金supported by the National Natural Science Foundation of China (Grant Nos.U20A20168 and 62404120)the National Key R&D Program (Grant No.2022YFB3204100)+2 种基金the Postdoctoral Fellowship Program of CPSF (Grant Nos.GZB20240335 and GZC20231216)the China Postdoctoral Science Foundation (Grant No.2025T180151)the Initiative Scientific Research Program of the School of Integrated Circuits,Tsinghua University。
文摘Block copolymer(BCP) nanolithography offers potential beyond traditional photolithographic limits, yet reliably producing low-defect, perpendicular domains remains challenging. We introduce a microenvironmentdriven isothermal annealing method for directed self-assembly of BCP thin films. By annealing films at stable temperature in a quasi-sealed, inert-gas chamber, our approach promotes highly uniform perpendicular lamellar nanopatterns over large areas, effectively mitigating environmental fluctuations and emulating solvent-vapor annealing without solvent exposure. Resulting BCP structures demonstrate enhanced spatial coherence and notably low defect density. Furthermore, we successfully transfer these nanopatterns into precise metal nano-line arrays,confirming the method's capability for high-fidelity pattern replication. This scalable, solvent-free technique provides a robust, reliable route for high-resolution nanopatterning in advanced semiconductor manufacturing.
基金supported by the National Natural Science Foundation of China(Nos.52394272,22333002,22203018,22303017).
文摘The self-assembly of block copolymers serves as an effective approach for fabricating various periodic ordered nanostructures. By employing self-consistent field theory (SCFT) to calculate the phase diagrams of block copolymers, one can accurately predict their self-assembly behaviors, thus providing guidance for the fabrication of various novel structures. However, SCFT is highly sensitive to initial conditions because it finds the free energy minima through an iterative process. Consequently, constructing phase diagrams using SCFT typically requires predefined candidate structures based on the experience of researchers. Such experience-dependent strategies often miss some structures and thus result in inaccurate phase diagrams. Recently, artificial intelligence (AI) techniques have demonstrated significant potential across diverse fields of science and technology. By leveraging AI methods, it is possible to reduce reliance on human experience, thereby constructing more robust and reliable phase diagrams. In this work, we demonstrate how to combine AI with SCFT to automatically search for self-assembled structures of block copolymers and construct phase diagrams. Our aim is to realize automatic construction of block copolymer phase diagrams while minimizing reliance on human prior knowledge.
基金financially supported by the National Natural Science Foundation of China(Nos.22171055 and 52222301)the Guangdong Natural Science Foundation for Distinguished Young Scholar(No.2022B1515020078)the Science and Technology Program of Guangzhou(No.2024A04J2821)。
文摘Polymerization-induced self-assembly(PISA)has become one of the most versatile approaches for scalable preparation of linear block copolymer nanoparticles with various morphologies.However,the controlled introduction of branching into the core-forming block and the effect on the morphologies of block copolymer nanoparticles under PISA conditions have rarely been explored.Herein,a series of multifunctional macromolecular chain transfer agents(macro-CTAs)were first synthesized by a two-step green light-activated photoiniferter polymerization using two types of chain transfer monomers(CTMs).These macro-CTAs were then used to mediate reversible addition-fragmentation chain transfer(RAFT)dispersion polymerization of styrene(St)to prepare block copolymers with different core-forming block structures and the assemblies.The effect of the core-forming block structure on the morphology of block copolymer nanoparticles was investigated in detail.Transmission electron microscopy(TEM)analysis indicated that the brush-like core-forming block structure facilitated the formation of higher-order morphologies,while the branched core-forming block structure favored the formation of lower-order morphologies.Moreover,it was found that using macroCTAs with a shorter length also promoted the formation of higher-order morphologies.Finally,structures of block copolymers and the assemblies were further controlled by changing the structure of macro-CTA or using a binary mixture of two different macro-CTAs.We expect that this work not only sheds light on the synthesis of block copolymer nanoparticles but also provide important mechanistic insights into PISA of nonlinear block copolymers.
基金Yunfu 2023 Innovation Team Project,China(CYRC202305)。
文摘Mechanochromic materials respond to external stimuli and provide early warnings of material damage.Perylene diimide(PDI)-based materials have attracted attention because of their outstanding fluorescence performance.However,the application of PDI in mechanochromism is limited by the difficulty for mechanical forces to disrupt the aggregation of PDI and its derivatives,as well as the fluorescence quenching caused by continuousπ-πstacking between PDI molecules.To eliminate the fluorescence quenching effect caused by the aggregation of PDI and broaden its application fields,polyhedral oligomeric silsesquioxane(POSS)-PDI-POSS(PPP)was screened as PDI doping.The photophysical properties of PPP in both monomeric and aggregated states in different solvents were studied.Then,PPP and styrene-butadiene-styrene block copolymer(SBS)were mixed to prepare the PPP/SBS film.The mechanochromic properties of PPP/SBS film were explored.The fluorescence emission spectra confirmed that when the PPP mass fraction increased to 0.30%,the PPP/SBS film exhibited mechanochromic behavior under uniaxial deformation due to the changes in the molecular packing.
文摘Poly(isoprene-b-butyl methacrylate) block copolymer with a high molecular weight was synthesized in the presence of rare earth coordination catalyst [RE(P 204 ) 3-Al( i Bu) 3 DBE]. The block copolymer was characterized by means of GPC,IR,DSC,NMR and elemental analysis. The block copolymer prepared has two glass transition temperatures: -75 6 ℃ and 32 2 ℃. The microstructure of the diblock copolymer possessed 96 8% cis 1,4 addition for the isoprene segment and a 70% syndiotacticity for the butyl methacrylate segment.
文摘Diblock copolymers containing polystyrene (PSt) andpolybutyl methacrylate (PBMA)segnents and random coplymer of styrene (St) and butyl methacrylate (BMA) havebeen prepared by atom transfer radical polymerizanon (ATRP). Diblock copolymers ofBAN and St with predetermined molecular weight (1× 104ed.5 × 104)and narrowermolecular weight distribution(1.25~1.5) were obained The random copolymercompositions were determined by 1HNMR spectroscopy and the reactivity ratios wereevaluated by the extended Kelen-Tudos method to be γst=0.91, γBMA=0.32.
基金financially supported by the National Natural Science Foundation of China(Nos.21622402,51673057 and 21574036)1000 plan Program for Young Talents of China
文摘Conjugated block copolymers have gained increasing interests in recent years. Development of a novel method for facile synthesis of conjugated block copolymers with desired structures and functions is greatly desired. In this mini review, we summarized the recent advances in one-pot synthesis of conjugated block copolymers containing π-conjugated polythiophene and helical polyisocyanide segments by using a nickel(Ⅱ) complex as single catalyst. The sequential living polymerization of the two monomers proceeded in a controlled manner, affording expected block copolymers in high yields with controlled molecular weights(Mns) and narrow molecular weight distributions(Mw/Mns). By using this method, a family of block copolymers with expected structure and tunable compositions can be facilely prepared. Introducing functional groups onto the pendant, these block copolymers can exhibit interesting self-assembly property, tunable light emission and multi-responsiveness.
基金financially supported by the National Natural Science Foundation of China(Nos.51573091,21774076,21320102006 and 91527304)Program of the Shanghai Committee of Science and Technology(Nos.17JC1403200 and 16JC1400703)Program for Shanghai Eastern Scholar
文摘The self-assembly of block copolymer in solution has proven to be an effective strategy for building up a wide range of nanomaterials with diverse structures and applications.This paper reports a facile self-assembly approach towards two-dimensional(2D)sandwich-like mesoporous nitrogen-doped carbon/reduced graphene oxide nanocomposites(denoted as mNC/rGO)with well-defined large mesopores.The strategy involves the synergistic self-assembly ofpolystyrene-block-poly(ethylene oxide)(PS-b-PEO)spherical micelles,m-phenylenediamine(mPD)monomers and GO in solution and the subsequent carbonization at 900~C.The resultant mNC/rGO nanosheets have an average pore size of 19 nm,a high specific surface of 812 m^(2)'g^(-1)and a nitrogen content of 2.2 wt%.As an oxygen reduction reaction(ORR)catalyst,the unique structural features render the metal-free nanosheets excellent electrocatalytic performance.In a 0.1 mol.L-~KOH alkaline medium,mNC/rGO exhibits a four-electron transfer pathway with a high half-wave-potential(El/2)of+0.77 V versus reversible hydrogen electrode(RHE)and a limiting current density(JL)of 5.2 mA'cm^(-2),which are well comparable with those of the commercial Pt/C catalysts.
基金financially supported by the National Natural Science Foundation of China(Nos.51622301 and 51573046)Fundamental Research Funds for the Central Universities(Nos.B14018,WD1616010 and 222201717001)
文摘A novel fluorinated triblock copolymer incorporating 2-ethylhexyl methacrylate (EHMA), tert-butyl methacrylate (tBMA) and 1H,1H,2H,2H-perfluorodecyl acrylate (FA) (PEHMA-b-PtBMA-b-PFA) was first synthesized using three successive reversible addition fragmentation chain transfer (RAFT) polymerization and the subsequent hydrolyzing at acidic condition. The as-fabricated triblock copolymer exhibited an interesting morphology evolution from the multi-compartment rod-like structure to spherical structure along with the addition of a selective solution. At the same time, a visible phase separation domain could be seen in the core area due to the existence of fluorocarbon segments. Furthermore, the self- assembly behavior of the triphilic copolymer at different pH was also verified by transmission electron microscopy, as well as the dynamic light scattering. These stimuli-responsive multi-compartment nanostructures may have potential applications in drug delivery.
文摘This feature article summarizes the synthesis of novel olefin block copolymers using fast syndiospecific living homo- and copolymerization of propylene, higher 1-alkene, and norbornene with ansa-fluorenylamidodimethyltitanium- based catalyst according to the authors' recent results. The catalytic synthesis of monodisperse polyolefin and olefin block copolymer was also described using this living system.
基金financially supported by the National Natural Science Foundation of China(Nos.51173181 and 51373166)“The Hundred Talents Program”from the Chinese Academy of Sciences and the International S&T Cooperation Program from Department of Science and Technology of Jilin Province(No.20160414032GH)
文摘Block copolymer lithography is emerging as one of the leading technologies for patteming nanoscale dense features. In almost all potential applications of this technology, control over the orientation of cylindrical and lamellar domains is required for pattern transfer from the block copolymer film. This review highlights the state-of-art development of brushes to modify the substrates to control the assembly behaviors of block copolymers in films. Selected important contributions to the development of self-assembled monolayers, polymer brushes and mats, and chemically patterned brushes are discussed.
基金supported financially by the National Key R&D Program of China (Grant No. 2018YFB0104300)Beijing Natural Science Foundation (JQ19003, KZ201910005002 and L182009)+1 种基金National Natural Science Foundation of China (Grants 21875007, 51622202, and 21974007)the Project of Youth Talent Plan of Beijing Municipal Education Commission (CIT&TCD201804013)。
文摘Solid polymer electrolytes have been considered as the promising candidates to improve the safety and stability of high-energy lithium metal batteries.However,the practical applications of solid polymer electrolytes are still limited by the low ionic conductivity,poor interfacial contact with electrodes,narrow electrochemical window and weak mechanical strength.Here,a series of novel block copolymer electrolytes with three-dimensional networks are designed by cross-linked copolymerization of the polyethylene glycol soft segments and hexamethylene diisocyanate trimer hard segments.Their ionic migration performances and interface compatibilities with Li metal anode have been optimized delicately by tailoring the ratio of these functional units.The optimized block copolymer electrolyte has shown an amorphous crystalline structure,a high ionic conductivity of ~5.7×10^(-4)S cm^(-1),high lithium ion transference number(~0.49),wide electrochemical window up to ~4.65 V(vs.Li+/Li) and favorable mechanical strength at 55℃.Furthermore,the enhanced interface compatibility can well support the normal operations of lithium metal batteries using both LiFePO4 and LiNi0.8Co0.15Al0.05O2 cathodes.This study not only paves a new way to develop solid polymer electrolyte with optimizing functional units,but also provides a polymer electrolyte design strategy for the application demand of lithium metal battery.
基金financially supported by the National Natural Science Foundation of China(No.21204002)Specialized Research Fund for the Doctoral Program of Higher Education(No.20111102120050)+1 种基金Program for New Century Excellent Talents in Universities(2010)the Fundamental Research Funds for the Central Universities
文摘pH-sensitive wettability of polystyrene-b-poly(4-vinylpyridine) (PS-b-P4VP) self assembled films, exhibiting superoleophobicity under water and hydrophilicity at low pH value, and oleophobicity under water and hydrophobicity at neutral condition, has been realized. The wettability properties resulted from the surface topological and chemical transition, which were confirmed by in situ AFM measurements under water at different pH. At low pH, P4VP chains, which were confined in the hexagonal-packed nanodomains, got protonated into a swollen state, while at high pH, P4VP chains were deprotonated into a collapsed state. The reversible protonation/deprotonation procedure on the molecular scale leads to surface topological and chemical transition, thereby pH-sensitive wettability.
基金financially supported by the National Natural Science Foundation of China(No.51103022)Science and Technology Commission of Shanghai Municipality(STCSM,Pujiang Talent Plan,No.12PJ1400100)Innovation Program of Shanghai Municipal Education Commission,Fundamental Research Funds for the Central University and DHU Distinguished Young Professor Program and Chinese Universities Scientific Fund(No.CUSF-DH-D-2013004)
文摘The asymmetric amphiphilic block copolymer polystyrene962-block-poly(ethylene oxide)227 (PS962-b-PEO227) eanforms mieelles with N, N-dimethylforrnamide (DMF) as co-solvent and water as selected solvent, and when the water content of the mixed solvent is higher than 4.5 wt%, the vesicle will be dominated. This work finds that once vesicles are formed in the DMF-water mixed solvent, the vesicle size and membrane thickness can be tuned by further increasing water content. As the water fraction elevated from 4.8 wt% to 13.0 wt%, the vesicle size dercreases from 246 nm to 150 nm, while the membrane thickness increases from 28 nm to 42 nm. In addition, the block copolymer packing and the free energy are analyzed as the vesicle size becomes small and the membrane becomes thick.
基金financially supported by the National Natural Science Foundation of China(Nos.52003094 and 52273010)。
文摘Shape control of mesoporous carbon microparticles(MCMPs)is of critical importance;in particular,asymmetric shapes that can yield unique properties have attracted significant attention.However,the tailored synthesis of asymmetric MCMPs with ordered structures remains challenging.Herein,we report a facile route to prepare asymmetric MCMPs by dynamic neutral interface-guided 3D-confined self-assembly(3D-CSA)of block copolymer/homopolymer(BCP/hP)blends,followed by a self-templated selective direct carbonization strategy.BCP/h P Janus microparticles with ordered hierarchical mesostructures were prepared with emulsion solvent evaporation-induced 3D-CSA.The continuous phase of BCP domains was then crosslinked.Composite asymmetric MCMPs are successfully generated after selective carbonization of the crosslinked continuous phase.This method allows tuning the shape of MCMPs easily by varying the blending ratio of BCP/h P.The composite asymmetric MCMPs combine the advantages of asymmetric shape,ordered structure,high specific surface area,chemical inertness and thermal stability and could provide great possibilities for applications in catalysis,drug delivery,energy conversion and storage.
基金financial support from the National Natural Science Foundation of China(No.20134020)the Science Research Fund of the Chinese Ministry of Education(No.104005)the Science Research Fund of Shandong Provincial Education Department of China(No.105D11).
文摘H-type amphiphilic liquid crystalline block copolymers containing azobenzene were synthesized by atom transfer radical polymerization (ATRP). Macroinitiators prepared by the esterification between poly(ethylene oxide) (PEG) and 2,2-dichloroacetyl chloride were utilized to initiate the polymerization of 6-[4-(4-ethoxyphenylazo)phenoxy]hexyl rnethacrylate (M6C). The resulting macroinitiators and block copolymers were characterized by ^1H NMR, gel permeation chromatography (GPC). Polarizing optical microscopy (POM) and differential scanning calorimetry (DSC) preliminarily revealed the liquid crystalline property of these block copolymers. This series of liquid crystalline block copolymers are promising in some areas, such as optical data storage, optical switch, and molecular devices.
基金by the Fundamental Research Funds for the Central Universities,Nankai University(No.000082)the National Natural Science Foundation of China(No.21973050).
文摘This work uses a block copolymer architecture[(A′B)nA2]m to unify the scattering function and spinodal transition of typical AB-type block copolymers.The key roles of block number,junction points and asymmetry ratios of block length are(1)to determine the form factor of each block copolymer at the molecular scale;(2)to affect the entropy loss across the spinodal transition and may result in deflection of spinodal curves.The common features are validated in typical linear and nonlinear block copolymers,including AB diblock,asymmetric A′BA triblock,miktoarm stars of ABn,AnBn,(AB)n,(A′B)nA,A′BAm,and multi-graft combs of(BnA2)m and[(A′B)nA2]m.The explicit scattering functions and form factors of various block copolymers can be directly applied in radiation experiments(i.e.neutron or X-ray scattering)to unravel the effect of molecular architecture in solution and microphase separation in disordered melt.The molecular model used in this study is also helpful to guide the chemical synthesis to explore more potentially interesting block copolymers.