A new adaptive filtering principle based on capability control and semi-blind method is presented. A new semi-blind space-time equalizer based on constant modulus characteristic and structure risk minimum (SRM) crit...A new adaptive filtering principle based on capability control and semi-blind method is presented. A new semi-blind space-time equalizer based on constant modulus characteristic and structure risk minimum (SRM) criterion is also proposed. The equalizer sufficiently exploits the learning information of communication signals by using the structure information of filter itself through capability control technique. Namely, it maximizes the amount of learning information to im- prove filter tracking performance. Simulations are carried out and the result is compared with that of typical recursive least squares space-time equalizer (RLS-STE) and constant modulus semi-blind space-time equalizer ( CM-SB-STE ). The results show that, even if with insufficient training data, the SRM constant modulus semi-blind space-time equalizer (SCM-SB-STE) keeps good tracking per- formance, showing promises in mobile wireless communications.展开更多
A modal identification algorithm is developed, combining techniques from Second Order Blind Source Separation (SOBSS) and State Space Realization (SSR) theory. In this hybrid algorithm, a set of correlation matrices i...A modal identification algorithm is developed, combining techniques from Second Order Blind Source Separation (SOBSS) and State Space Realization (SSR) theory. In this hybrid algorithm, a set of correlation matrices is generated using time-shifted, analytic data and assembled into several Hankel matrices. Dissimilar left and right matrices are found, which diagonalize the set of nonhermetian Hankel matrices. The complex-valued modal matrix is obtained from this decomposition. The modal responses, modal auto-correlation functions and discrete-time plant matrix (in state space modal form) are subsequently identified. System eigenvalues are computed from the plant matrix to obtain the natural frequencies and modal fractions of critical damping. Joint Approximate Diagonalization (JAD) of the Hankel matrices enables the under determined (more modes than sensors) problem to be effectively treated without restrictions on the number of sensors required. Because the analytic signal is used, the redundant complex conjugate pairs are eliminated, reducing the system order (number of modes) to be identified half. This enables smaller Hankel matrix sizes and reduced computational effort. The modal auto-correlation functions provide an expedient means of screening out spurious computational modes or modes corresponding to noise sources, eliminating the need for a consistency diagram. In addition, the reduction in the number of modes enables the modal responses to be identified when there are at least as many sensors as independent (not including conjugate pairs) modes. A further benefit of the algorithm is that identification of dissimilar left and right diagonalizers preclude the need for windowing of the analytic data. The effectiveness of the new modal identification method is demonstrated using vibration data from a 6 DOF simulation, 4-story building simulation and the Heritage court tower building.展开更多
When T/2 Fractionally Spaced blind Equalization Algorithm based Constant Modulus Algorithm (T/2-FSE- CMA) is employed for equalizing higher order Quadrature Amplitude Modulation signals (QAM), it has disadvantages of ...When T/2 Fractionally Spaced blind Equalization Algorithm based Constant Modulus Algorithm (T/2-FSE- CMA) is employed for equalizing higher order Quadrature Amplitude Modulation signals (QAM), it has disadvantages of low convergence speed and large Mean Square Error (MSE). For overcoming these disadvantages, a Modified T/2 Fractionally Spaced blind Equalization algorithm based on Coordinate Transformation and CMA (T/2-FSE-MCTCMA) was proposed by analyzing the character of 16QAM signal constellations. In the proposed algorithm, real and imaginary parts of input signal of T/2 fractionally spaced blind equalizer are equalized, respectively, and output signals of equalizer are transformed to the same unit circle by coordinate transformation method, a new error function is defined after making coordinate transformation and used to adjust weight vector of T/2 fractionally spaced blind equalizer. The proposed algorithm can overcome large misjudgments of T/2 fractionally spaced blind equalization algorithm for equalizing multi-modulus higher order QAM. Simulation results with underwater acoustic channel models demonstrate that the proposed T/2-FSE-MCTCMA algorithm outperforms T/2 Fractionally Spaced blind Equalization algorithm bas-ed on Coordinate Transformation and CMA (T/2-FSE-CTCMA) and the T/2-FSE-CMA in convergence rate and MSE.展开更多
An orthogonal wavelet transform fractionally spaced blind equalization algorithm based on the optimization of genetic algorithm(WTFSE-GA) is proposed in viewof the lowconvergence rate,large steady-state mean square er...An orthogonal wavelet transform fractionally spaced blind equalization algorithm based on the optimization of genetic algorithm(WTFSE-GA) is proposed in viewof the lowconvergence rate,large steady-state mean square error and local convergence of traditional constant modulus blind equalization algorithm(CMA).The proposed algorithm can reduce the signal autocorrelation through the orthogonal wavelet transform of input signal of fractionally spaced blind equalizer,and decrease the possibility of CMA local convergence by using the global random search characteristics of genetic algorithm to optimize the equalizer weight vector.The proposed algorithm has the faster convergence rate and smaller mean square error compared with FSE and WT-FSE.The efficiency of the proposed algorithm is proved by computer simulation of underwater acoustic channels.展开更多
A blind adaptive scheme is proposed for joint maximum likelihood (ML) channel estimation and data detection of singleinput multiple-output (SIMO) systems. The joint ML optimisation over channel and data is decompo...A blind adaptive scheme is proposed for joint maximum likelihood (ML) channel estimation and data detection of singleinput multiple-output (SIMO) systems. The joint ML optimisation over channel and data is decomposed into an iterative optimisation loop. An efficient global optimisation algorithm called the repeated weighted boosting search is employed at the upper level to optimally identify the unknown SIMO channel model, and the Viterbi algorithm is used at the lower level to produce the maximum likelihood sequence estimation of the unknown data sequence. A simulation example is used to demonstrate the effectiveness of this joint ML optimisation scheme for blind adaptive SIMO systems.展开更多
A new semi-blind adaptive beamforming scheme is proposed for multi-input multi-output (MIMO) induced and spacedivision multiple-access based wireless systems that employ high order phase shift keying signaling. A mi...A new semi-blind adaptive beamforming scheme is proposed for multi-input multi-output (MIMO) induced and spacedivision multiple-access based wireless systems that employ high order phase shift keying signaling. A minimum number of training symbols, very close to the number of receiver antenna elements, are used to provide a rough initial least squares estimate of the beamformer's weight vector. A novel cost function combining the constant modulus criterion with decision-directed adaptation is adopted to adapt the beamformer weight vector. This cost function can be approximated as a quadratic form with a closed-form solution, based on which we then derive the recursive least squares (RLS) semi-blind adaptive beamforming algorithm. This semi-blind adaptive beamforming scheme is capable of converging fast to the minimum mean-square-error beamforming solution, as demonstrated in our simulation study. Our proposed semi-blind RLS beamforming algorithm therefore provides an efficient detection scheme for the future generation of MIMO aided mobile communication systems.展开更多
基金Supported by the National Natural Science Foundation of China(60772056)
文摘A new adaptive filtering principle based on capability control and semi-blind method is presented. A new semi-blind space-time equalizer based on constant modulus characteristic and structure risk minimum (SRM) criterion is also proposed. The equalizer sufficiently exploits the learning information of communication signals by using the structure information of filter itself through capability control technique. Namely, it maximizes the amount of learning information to im- prove filter tracking performance. Simulations are carried out and the result is compared with that of typical recursive least squares space-time equalizer (RLS-STE) and constant modulus semi-blind space-time equalizer ( CM-SB-STE ). The results show that, even if with insufficient training data, the SRM constant modulus semi-blind space-time equalizer (SCM-SB-STE) keeps good tracking per- formance, showing promises in mobile wireless communications.
文摘A modal identification algorithm is developed, combining techniques from Second Order Blind Source Separation (SOBSS) and State Space Realization (SSR) theory. In this hybrid algorithm, a set of correlation matrices is generated using time-shifted, analytic data and assembled into several Hankel matrices. Dissimilar left and right matrices are found, which diagonalize the set of nonhermetian Hankel matrices. The complex-valued modal matrix is obtained from this decomposition. The modal responses, modal auto-correlation functions and discrete-time plant matrix (in state space modal form) are subsequently identified. System eigenvalues are computed from the plant matrix to obtain the natural frequencies and modal fractions of critical damping. Joint Approximate Diagonalization (JAD) of the Hankel matrices enables the under determined (more modes than sensors) problem to be effectively treated without restrictions on the number of sensors required. Because the analytic signal is used, the redundant complex conjugate pairs are eliminated, reducing the system order (number of modes) to be identified half. This enables smaller Hankel matrix sizes and reduced computational effort. The modal auto-correlation functions provide an expedient means of screening out spurious computational modes or modes corresponding to noise sources, eliminating the need for a consistency diagram. In addition, the reduction in the number of modes enables the modal responses to be identified when there are at least as many sensors as independent (not including conjugate pairs) modes. A further benefit of the algorithm is that identification of dissimilar left and right diagonalizers preclude the need for windowing of the analytic data. The effectiveness of the new modal identification method is demonstrated using vibration data from a 6 DOF simulation, 4-story building simulation and the Heritage court tower building.
文摘When T/2 Fractionally Spaced blind Equalization Algorithm based Constant Modulus Algorithm (T/2-FSE- CMA) is employed for equalizing higher order Quadrature Amplitude Modulation signals (QAM), it has disadvantages of low convergence speed and large Mean Square Error (MSE). For overcoming these disadvantages, a Modified T/2 Fractionally Spaced blind Equalization algorithm based on Coordinate Transformation and CMA (T/2-FSE-MCTCMA) was proposed by analyzing the character of 16QAM signal constellations. In the proposed algorithm, real and imaginary parts of input signal of T/2 fractionally spaced blind equalizer are equalized, respectively, and output signals of equalizer are transformed to the same unit circle by coordinate transformation method, a new error function is defined after making coordinate transformation and used to adjust weight vector of T/2 fractionally spaced blind equalizer. The proposed algorithm can overcome large misjudgments of T/2 fractionally spaced blind equalization algorithm for equalizing multi-modulus higher order QAM. Simulation results with underwater acoustic channel models demonstrate that the proposed T/2-FSE-MCTCMA algorithm outperforms T/2 Fractionally Spaced blind Equalization algorithm bas-ed on Coordinate Transformation and CMA (T/2-FSE-CTCMA) and the T/2-FSE-CMA in convergence rate and MSE.
基金Sponsored by the Nature Science Foundation of Jiangsu(BK2009410)
文摘An orthogonal wavelet transform fractionally spaced blind equalization algorithm based on the optimization of genetic algorithm(WTFSE-GA) is proposed in viewof the lowconvergence rate,large steady-state mean square error and local convergence of traditional constant modulus blind equalization algorithm(CMA).The proposed algorithm can reduce the signal autocorrelation through the orthogonal wavelet transform of input signal of fractionally spaced blind equalizer,and decrease the possibility of CMA local convergence by using the global random search characteristics of genetic algorithm to optimize the equalizer weight vector.The proposed algorithm has the faster convergence rate and smaller mean square error compared with FSE and WT-FSE.The efficiency of the proposed algorithm is proved by computer simulation of underwater acoustic channels.
文摘A blind adaptive scheme is proposed for joint maximum likelihood (ML) channel estimation and data detection of singleinput multiple-output (SIMO) systems. The joint ML optimisation over channel and data is decomposed into an iterative optimisation loop. An efficient global optimisation algorithm called the repeated weighted boosting search is employed at the upper level to optimally identify the unknown SIMO channel model, and the Viterbi algorithm is used at the lower level to produce the maximum likelihood sequence estimation of the unknown data sequence. A simulation example is used to demonstrate the effectiveness of this joint ML optimisation scheme for blind adaptive SIMO systems.
文摘A new semi-blind adaptive beamforming scheme is proposed for multi-input multi-output (MIMO) induced and spacedivision multiple-access based wireless systems that employ high order phase shift keying signaling. A minimum number of training symbols, very close to the number of receiver antenna elements, are used to provide a rough initial least squares estimate of the beamformer's weight vector. A novel cost function combining the constant modulus criterion with decision-directed adaptation is adopted to adapt the beamformer weight vector. This cost function can be approximated as a quadratic form with a closed-form solution, based on which we then derive the recursive least squares (RLS) semi-blind adaptive beamforming algorithm. This semi-blind adaptive beamforming scheme is capable of converging fast to the minimum mean-square-error beamforming solution, as demonstrated in our simulation study. Our proposed semi-blind RLS beamforming algorithm therefore provides an efficient detection scheme for the future generation of MIMO aided mobile communication systems.