Micro aerial platforms face significant challenges in achieving long controlled endurance as most of the energy is consumed to overcome the weight of the body.In this study,we present a controllable micro blimp that a...Micro aerial platforms face significant challenges in achieving long controlled endurance as most of the energy is consumed to overcome the weight of the body.In this study,we present a controllable micro blimp that addresses this issue through the use of a helium-filled balloon.The micro blimp has a long axis of 23 cm and is propelled by four insect-sized flapping-wing thrusters,each weighing 80 mg and with a wingspan of 3.5 cm.These distributed thrusters enable controlled motions and provide the micro blimp with an advantage in flight endurance compared to multirotors or flapping-wing micro aerial vehicles at the same size scale.To enhance the performance of the controlled flight,we propose a wireless control module that enables manipulation from a distance of up to 100 m.Additionally,a smartphone application is developed to send instructions to the circuit board,allowing the blimp to turn left and right,ascend and descend,and achieve a combination of these movements separately.Our findings demonstrate that this micro blimp is one of the smallest controlled self-powered micro blimps to date.展开更多
In order to study omithopter flight and to improve a dynamic model of flapping propulsion, a series 0f tests are conducted on a flapping-wing blimp. The blimp is designed and constructed from mylar plastic and balsa w...In order to study omithopter flight and to improve a dynamic model of flapping propulsion, a series 0f tests are conducted on a flapping-wing blimp. The blimp is designed and constructed from mylar plastic and balsa wood as a test platform for aerodynamics and flight dynamics. The blimp, 2.3 meters long and 420 gram mass, is propelled by its flapping wings. Due to buoyancy the wings have no lift requirement so that the distinction between lift and propulsion can be analyzed in a flight platform at low flight speeds. The blimp is tested using a Vicon motion tracking system and various initial conditions are tested including accelerating flight from standstill, decelerating from an initial speed higher than its steady state, and from its steady-state speed but disturbed in pitch angle. Test results are used to estimate parameters in a coupled quasi-steady aerodynamics/Newtonian flight dynamics model. This model is then analyzed using Floquet theory to determine local dynamic modes and stability. It is concluded that the dynamic model adequately describes the vehicle's nonlinear behavior near the steady-state velocity and that the vehicle's linearized modes are akin to those of a fixed-wing aircraft.展开更多
基金co-supported by the Beijing Natural Science Foundation,China(No.3232010)the National Natural Science Foundation of China(No.12002017)the Ministry of Education of the People’s Republic of China 111 Project(No.B08009).
文摘Micro aerial platforms face significant challenges in achieving long controlled endurance as most of the energy is consumed to overcome the weight of the body.In this study,we present a controllable micro blimp that addresses this issue through the use of a helium-filled balloon.The micro blimp has a long axis of 23 cm and is propelled by four insect-sized flapping-wing thrusters,each weighing 80 mg and with a wingspan of 3.5 cm.These distributed thrusters enable controlled motions and provide the micro blimp with an advantage in flight endurance compared to multirotors or flapping-wing micro aerial vehicles at the same size scale.To enhance the performance of the controlled flight,we propose a wireless control module that enables manipulation from a distance of up to 100 m.Additionally,a smartphone application is developed to send instructions to the circuit board,allowing the blimp to turn left and right,ascend and descend,and achieve a combination of these movements separately.Our findings demonstrate that this micro blimp is one of the smallest controlled self-powered micro blimps to date.
文摘In order to study omithopter flight and to improve a dynamic model of flapping propulsion, a series 0f tests are conducted on a flapping-wing blimp. The blimp is designed and constructed from mylar plastic and balsa wood as a test platform for aerodynamics and flight dynamics. The blimp, 2.3 meters long and 420 gram mass, is propelled by its flapping wings. Due to buoyancy the wings have no lift requirement so that the distinction between lift and propulsion can be analyzed in a flight platform at low flight speeds. The blimp is tested using a Vicon motion tracking system and various initial conditions are tested including accelerating flight from standstill, decelerating from an initial speed higher than its steady state, and from its steady-state speed but disturbed in pitch angle. Test results are used to estimate parameters in a coupled quasi-steady aerodynamics/Newtonian flight dynamics model. This model is then analyzed using Floquet theory to determine local dynamic modes and stability. It is concluded that the dynamic model adequately describes the vehicle's nonlinear behavior near the steady-state velocity and that the vehicle's linearized modes are akin to those of a fixed-wing aircraft.