期刊文献+
共找到1,410篇文章
< 1 2 71 >
每页显示 20 50 100
Destructive potential of the Chamoli rock-ice avalanche-induced air blasts
1
作者 Yueping Yin Aiguo Xing +1 位作者 Yu Zhuang Qiankuan Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第10期6111-6119,共9页
Air blasts induced by rock-ice avalanches are common natural phenomena known for their far-field destructive impact.In this study,remote sensing images,eyewitness videos and numerical modelling were comprehensively ap... Air blasts induced by rock-ice avalanches are common natural phenomena known for their far-field destructive impact.In this study,remote sensing images,eyewitness videos and numerical modelling were comprehensively applied to analyze the initiation and propagation of the 2021 Chamoli avalancheinduced air blast.Our findings indicate that air blasts are observed from the avalanche source area to the Rishiganga valley,but nearly disappear in the Dhauliganga valley.The most intense air blast is concentrated on the left side of Ronti Gad valley,with maximum velocity and pressure estimated at over 70 m/s and 20 kPa,respectively.Such high pressure results in widespread tree breakage in the area.Based on the analysis of the Chamoli event,we further discussed the potential contribution of the avalanche flow regime,avalanche dynamics and geomorphology to the destructive potential of air blasts.Rapidly moved sliding mass can impart the air blast a high initial momentum,and this process will be exaggerated when the avalanche impacts valley walls at bends.However,when the rock-ice avalanche transforms into a debris-enriched flash flood,free water within the flowing mass can displace air,inhibiting the generation of air blasts.Our work offers new insights into the generation and propagation of rock-ice avalanche-induced air blasts,underscoring the importance of including this type of hazard during avalanche risk assessment in high-altitude glacial regions. 展开更多
关键词 Chamoli avalanche Rock-ice avalanche-induced air blast Initiation and propagation Destructive potential RAMMS
在线阅读 下载PDF
Discrimination of quarry blasts and microearthquakes using adaptive neuro-fuzzy inference systems in the Tehran region
2
作者 Jamileh Vasheghani Farahani 《Episodes》 2015年第3期162-168,共7页
The purpose of this research is to demonstrate the use of Adaptive Neuro-Fuzzy Inference System(ANFIS)for discrimination between quarry blasts and microearthquakes in the Tehran region using data from the Broadband Ir... The purpose of this research is to demonstrate the use of Adaptive Neuro-Fuzzy Inference System(ANFIS)for discrimination between quarry blasts and microearthquakes in the Tehran region using data from the Broadband Iranian National Network Center(BIN).In the south and southeast of Tehran,a large number of quarry blasts“contaminate”the earthquake catalog.In order to identify the real seismicity(tectonic earthquakes)in the region,we need to discriminate quarry blasts from natural earthquakes in the catalog. 展开更多
关键词 quarry blasts quarry blasts contaminate adaptive neuro fuzzy inference system MICROEARTHQUAKES ANFIS identify real seismicity tectonic earthquakes discriminate quarry blasts broadband iranian national network
在线阅读 下载PDF
Classification of mine blasts and microseismic events using starting-up features in seismograms 被引量:11
3
作者 赵国彦 马举 +3 位作者 董陇军 李夕兵 陈光辉 张楚旋 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第10期3410-3420,共11页
To find discriminating features in seismograms for the classification of mine seismic events,signal databases of blasts and microseismic events were established based on manual identification.Criteria including the re... To find discriminating features in seismograms for the classification of mine seismic events,signal databases of blasts and microseismic events were established based on manual identification.Criteria including the repetition of waveforms,tail decreasing,dominant frequency and occurrence time of day were considered in the establishment of the databases.Signals from databases of different types were drawn into a unified coordinate system.It is noticed that the starting-up angles of the two types tend to be concentrated into two different intervals.However,it is difficult to calculate the starting-up angle directly due to the inaccuracy of the P-wave arrival's picking.The slope value of the starting-up trend line,which was obtained by linear regression,was proposed to substitute the angle.Two slope values associated with the coordinates of the first peak and the maximum peak were extracted as the characteristic parameters.A statistical model with correct discrimination rate of greater than 97.1% was established by applying the Fisher discriminant analysis. 展开更多
关键词 microseismic event mine blast starting-up feature Fisher discriminant analysis
在线阅读 下载PDF
Discrimination of mining microseismic events and blasts using convolutional neural networks and original waveform 被引量:24
4
作者 DONG Long-jun TANG Zheng +2 位作者 LI Xi-bing CHEN Yong-chao XUE Jin-chun 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第10期3078-3089,共12页
Microseismic monitoring system is one of the effective methods for deep mining geo-stress monitoring.The principle of microseismic monitoring system is to analyze the mechanical parameters contained in microseismic ev... Microseismic monitoring system is one of the effective methods for deep mining geo-stress monitoring.The principle of microseismic monitoring system is to analyze the mechanical parameters contained in microseismic events for providing accurate information of rockmass.The accurate identification of microseismic events and blasts determines the timeliness and accuracy of early warning of microseismic monitoring technology.An image identification model based on Convolutional Neural Network(CNN)is established in this paper for the seismic waveforms of microseismic events and blasts.Firstly,the training set,test set,and validation set are collected,which are composed of 5250,1500,and 750 seismic waveforms of microseismic events and blasts,respectively.The classified data sets are preprocessed and input into the constructed CNN in CPU mode for training.Results show that the accuracies of microseismic events and blasts are 99.46%and 99.33%in the test set,respectively.The accuracies of microseismic events and blasts are 100%and 98.13%in the validation set,respectively.The proposed method gives superior performance when compared with existed methods.The accuracies of models using logistic regression and artificial neural network(ANN)based on the same data set are 54.43%and 67.9%in the test set,respectively.Then,the ROC curves of the three models are obtained and compared,which show that the CNN gives an absolute advantage in this classification model when the original seismic waveform are used in training the model.It not only decreases the influence of individual differences in experience,but also removes the errors induced by source and waveform parameters.It is proved that the established discriminant method improves the efficiency and accuracy of microseismic data processing for monitoring rock instability and seismicity. 展开更多
关键词 microseismic monitoring waveform classification microseismic events blasts convolutional neural network
在线阅读 下载PDF
Detection of Quarry Blasts in the Koyna-Warna Region, Western India
5
作者 D. Shashidhar K. Mallika +2 位作者 N. Purnachandra Rao H. V. S. Satyanarayana H. K. Gupta 《Open Journal of Earthquake Research》 2014年第4期162-169,共8页
Koyna-Warna is a seismically active region, characterized by earthquakes triggered by loading of artificial water reservoirs. In this region quarrying is ongoing and sometimes the quarry blasts are confused with trigg... Koyna-Warna is a seismically active region, characterized by earthquakes triggered by loading of artificial water reservoirs. In this region quarrying is ongoing and sometimes the quarry blasts are confused with triggered seismic events. About 410 events around a known mining area were ob-served during January 2007-October 2013. In general the quarry blasts are carried out mostly during the day time. Based on this fact a well known method of [1] is implemented, which has the capability of detecting the areas of quarry blast activity. Also, discrimination of quarry blasts from earthquakes has been achieved by studying waveforms at key seismic stations located close to the quarrying area. Further, distinction is achieved through spectral analysis in the frequency band of 3 - 15 Hz. Ratio of day-time to night-time events, waveform pattern and spectral analysis approach confirm the presence of quarry blasts aligned south-east of the Warna reservoir. 展开更多
关键词 QUARRY blasts Koyna RESERVOIR SEISMICITY Warna FREQUENCY
暂未订购
A simplified approach to modelling blasts in computational fluid dynamics (CFD) 被引量:2
6
作者 D.Mohotti K.Wijesooriya S.Weckert 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第5期19-34,共16页
This paper presents a time-efficient numerical approach to modelling high explosive(HE)blastwave propagation using Computational Fluid Dynamics(CFD).One of the main issues of using conventional CFD modelling in high e... This paper presents a time-efficient numerical approach to modelling high explosive(HE)blastwave propagation using Computational Fluid Dynamics(CFD).One of the main issues of using conventional CFD modelling in high explosive simulations is the ability to accurately define the initial blastwave properties that arise from the ignition and consequent explosion.Specialised codes often employ Jones-Wilkins-Lee(JWL)or similar equation of state(EOS)to simulate blasts.However,most available CFD codes are limited in terms of EOS modelling.They are restrictive to the Ideal Gas Law(IGL)for compressible flows,which is generally unsuitable for blast simulations.To this end,this paper presents a numerical approach to simulate blastwave propagation for any generic CFD code using the IGL EOS.A new method known as the Input Cavity Method(ICM)is defined where input conditions of the high explosives are given in the form of pressure,velocity and temperature time-history curves.These time history curves are input at a certain distance from the centre of the charge.It is shown that the ICM numerical method can accurately predict over-pressure and impulse time history at measured locations for the incident,reflective and complex multiple reflection scenarios with high numerical accuracy compared to experimental measurements.The ICM is compared to the Pressure Bubble Method(PBM),a common approach to replicating initial conditions for a high explosive in Finite Volume modelling.It is shown that the ICM outperforms the PBM on multiple fronts,such as peak values and overall overpressure curve shape.Finally,the paper also presents the importance of choosing an appropriate solver between the Pressure Based Solver(PBS)and Density-Based Solver(DBS)and provides the advantages and disadvantages of either choice.In general,it is shown that the PBS can resolve and capture the interactions of blastwaves to a higher degree of resolution than the DBS.This is achieved at a much higher computational cost,showing that the DBS is much preferred for quick turnarounds. 展开更多
关键词 Blast loads Computational fluid dynamics Explosions Numerical simulations
在线阅读 下载PDF
From genotype to phenotype:decoding mutations in blasts by holo-tomographic flow cytometry
7
作者 Daniele Pirone Concetta Di Natale +9 位作者 Maria Di Summa Nicola Mosca Giusy Giugliano Michela Schiavo Daniele Florio Daniela Marasco Pier Luca Maffettone Lisa Miccio Pasquale Memmolo Pietro Ferraro 《Light(Science & Applications)》 2025年第9期2445-2462,共18页
Cup-like nuclear morphological alterations in acute myeloid leukemia(AML)blasts have been widely correlated with Nucleophosmin 1(NPM1)mutations.NPM1-mutated AML has earned recognition as a distinct entity among myeloi... Cup-like nuclear morphological alterations in acute myeloid leukemia(AML)blasts have been widely correlated with Nucleophosmin 1(NPM1)mutations.NPM1-mutated AML has earned recognition as a distinct entity among myeloid tumors,but the absence of a thoroughly established tool for its morphological analysis remains a notable gap.Holographic tomography(HT)can offer a label-free solution for quantitatively assessing the 3D shape of the nucleus based on the volumetric variations of its refractive indices(RIs).However,traditional HT methods analyze adherent cells in a 2D layer,leading to non-isotropic reconstructions due to missing cone artifacts.Here we show for the first time that holo-tomographic flow cytometry(HTFC)achieves quantitative specificity and precise capture of the nucleus volumetric shape in AML cells in suspension.To retrieve nucleus specificity in label-free RI tomograms of flowing AML cells,we conceive and demonstrate in a real-world clinical case a novel strategy for segmenting 3D concave nuclei.This method implies that the correlation between the"phenotype"and"genotype"of nuclei is demonstrated through HTFC by creating a challenging link not yet explored between the aberrant morphological features of AML nuclei and NPM1 mutations.We conduct an ensemble-level statistical characterization of NPM1-wild type and NPM1-mutated blasts to discern their complex morphological and biophysical variances.Our findings suggest that characterizing cup-like nuclei in NPM1-related AML cells by HTFC may enhance the diagnostic approach for these tumors.Furthermore,we integrate virtual reality to provide an immersive fruition of morphological changes in AML cells within a true 3D environment. 展开更多
关键词 acute myeloid leukemia aml blasts holo tomographic flow cytometry volumetric variations blasts MUTATIONS PHENOTYPE cup nuclear morphological alterations morphological analysis
暂未订购
Analysis of the dynamic response and damage characteristic for the tunnel under near-field blasts and far-field earthquakes 被引量:1
8
作者 Hao Luo Ming Tao +2 位作者 Zhixian Hong Gongliang Xiang Chengqing Wu 《Underground Space》 2025年第2期331-351,共21页
The dynamic response and failure characteristics of tunnels vary significantly under various dynamic disturbances.These characteristics are crucial for assessing structural stability and designing effective support fo... The dynamic response and failure characteristics of tunnels vary significantly under various dynamic disturbances.These characteristics are crucial for assessing structural stability and designing effective support for surrounding rock.In this study,the theoretical solution for the dynamic stress concentration factor(DSCF)of a circular tunnel subjected to cylindrical and plane P-waves was derived using the wave function expansion method.The existing equivalent blast stress wave was optimized and the Ricker wavelet was introduced to represent the seismic stress waves.By combining Fourier transform and Duhamel’s integral,the transient response of the underground tunnel under near-field blasts and far-field earthquakes was determined in both the frequency and time domains.The theoretical results were validated by comparing them with those obtained from numerical simulations using ANSYS LS-DYNA software.Numerical simulations were conducted to further investigate the damage characteristics of the underground tunnel and evaluate the effect of initial stress on structural failure under both types of disturbances.The theoretical and numerical simulation results indicated that the differences in the dynamic response and damage characteristics of the underground tunnel were primarily due to the curvature of the stress waves and transient load waveform.The locations of the maximum DSCF values differed between near-field blasts and far-field earthquakes,whereas the minimum DSCF values occurred at the same positions.Without initial stress,the blast stress waves caused spalling damage to the rock mass on the wave-facing side.Shear failure occurred near the areas with maximum DSCF values,and tensile failure occurred near the areas with minimum DSCF values.In contrast,damage occurred only near the areas with maximum DSCF values under seismic stress waves.Furthermore,the initial stress exacerbated spalling and shear damage while suppressing tensile failure.Hence,the blast stress waves no longer induced tensile failure on the tunnel sidewalls under initial stress. 展开更多
关键词 Dynamic response Damage characteristics Underground tunnel Near-field blasts Far-field earthquakes Initial stress
在线阅读 下载PDF
从瑞士雅典表2025年新款Blast陀飞轮 谈钟表专利创新的创造、保护和利用 被引量:1
9
作者 王雷 《钟表》 2025年第4期100-101,共2页
2025年7月,瑞士Ulysse Nardin雅典表推出了BLAST的陀飞轮腕表,这块腕表盘脸设计非常漂亮让人眼前一亮,八枚齿轮与飞行陀飞轮在表盘正面凌空悬浮。机心仍为UN-176,结构与2018年首发的Executive/Blast Free Wheel相同,主要变化在材质与视... 2025年7月,瑞士Ulysse Nardin雅典表推出了BLAST的陀飞轮腕表,这块腕表盘脸设计非常漂亮让人眼前一亮,八枚齿轮与飞行陀飞轮在表盘正面凌空悬浮。机心仍为UN-176,结构与2018年首发的Executive/Blast Free Wheel相同,主要变化在材质与视觉呈现。 展开更多
关键词 专利创新 机心 雅典表 陀飞轮腕表 BLAST UN-176
在线阅读 下载PDF
序列数据库搜索系统BLAST简介
10
作者 罗静初 《生物信息学》 2025年第3期165-174,共10页
基于局部序列相似性比对的数据库搜索系统BLAST是生物信息学领域常用工具之一。本文首先介绍数据库相似性搜索的基本概念,包括计分矩阵、空位罚分,以及灵敏度和特异度等;以血红蛋白alpha和beta亚基为例,说明BLAST搜索基本策略,包括分割... 基于局部序列相似性比对的数据库搜索系统BLAST是生物信息学领域常用工具之一。本文首先介绍数据库相似性搜索的基本概念,包括计分矩阵、空位罚分,以及灵敏度和特异度等;以血红蛋白alpha和beta亚基为例,说明BLAST搜索基本策略,包括分割种子串、确定近邻串、搜索高分对、延伸高分对、计算期望值等。讨论种子序列字长、计分矩阵、空位罚分等对搜索结果的影响。介绍blastp,blastx,blastn和tblastn四个BLAST通用程序,以及SmartBlast,Primer-Blast和Global Align等专用程序。文末简述BLAST主要用途,列举几个国际国内BLAST网站,介绍FASTA,BLAT,HMMER等其它数据库搜索程序。 展开更多
关键词 序列相似性 数据库搜索 BLAST搜索策略 计分矩阵 空位罚分 BLAST通用程序 BLAST专用程序
在线阅读 下载PDF
The percentage of peripheral blood blasts on day 7 of induction chemotherapy predicts response to therapy and survival in patients with acute myeloid leukemia 被引量:2
11
作者 Gao Sujun Tan Yehui Liu Xiaoliang Su Long Yu Ping Han Wei Cui Jiuwei Li Wei 《Chinese Medical Journal》 SCIE CAS CSCD 2014年第2期290-293,共4页
Background Rapid clearance of peripheral blood blasts (PBBs) predicts complete remission (CR) and survival in patients with acute myeloid leukemia (AML).We aimed to explore the correlation between induction ther... Background Rapid clearance of peripheral blood blasts (PBBs) predicts complete remission (CR) and survival in patients with acute myeloid leukemia (AML).We aimed to explore the correlation between induction therapy response,outcome,and the PBB percentage.Methods Forty-six consecutive patients with de novo AML (excluding acute promyelocytic leukemia) were enrolled in this study.Flow cytometry was performed to identify cells with a leukemia-associated aberrant immunophenotype in the initial bone marrow aspirate and in peripheral blood on day 7 of induction therapy.Results The PBB percentage on day 7 (D7PBBP) was significantly lower in patients who achieved CR (0.03% (0.0%,0.45%)) than in those who did not (10.85% (1.13%,19.38%); u =-3.92,P 〈0.001).The CR rate was significantly higher among patients with a D7PBBP of 〈0.945% (84.62%,22/26) than among those with a D7PBBP of 〉0.945% (25.0%,5/20;Х^2 =16.571,P 〈0.001).D7PBBP was significantly correlated with overall survival (OS; r=-0.437,P=0.003) and relapsefree survival (RFS; r=-0.388,P=0.007).OS and RFS were significantly higher in patients with a D7PBBP of 〈0.43% than in those with a D7PBBP of 〉0.43% (P 〈0.001 and P=0.039,respectively).D7PBBP was also found to be an independent prognostic indicator in multivariate analysis for both OS (P=-0.036) and RFS (P=0.035).Conclusion D7PBBP may be an important risk factor for the achievement of complete remission,for overall survival,and for relapse-free survival. 展开更多
关键词 acute myeloid leukemia peripheral blood blasts induction therapy complete remission OUTCOME
原文传递
Performance evaluation of rock fragmentation prediction based on RF-BOA,AdaBoost-BOA,GBoost-BOA,and ERT-BOA hybrid models 被引量:2
12
作者 Junjie Zhao Diyuan Li +2 位作者 Jian Zhou Danial JArmaghani Aohui Zhou 《Deep Underground Science and Engineering》 2025年第1期3-17,共15页
Rock fragmentation is an important indicator for assessing the quality of blasting operations.However,accurate prediction of rock fragmentation after blasting is challenging due to the complicated blasting parameters ... Rock fragmentation is an important indicator for assessing the quality of blasting operations.However,accurate prediction of rock fragmentation after blasting is challenging due to the complicated blasting parameters and rock properties.For this reason,optimized by the Bayesian optimization algorithm(BOA),four hybrid machine learning models,including random forest,adaptive boosting,gradient boosting,and extremely randomized trees,were developed in this study.A total of 102 data sets with seven input parameters(spacing-to-burden ratio,hole depth-to-burden ratio,burden-to-hole diameter ratio,stemming length-to-burden ratio,powder factor,in situ block size,and elastic modulus)and one output parameter(rock fragment mean size,X_(50))were adopted to train and validate the predictive models.The root mean square error(RMSE),the mean absolute error(MAE),and the coefficient of determination(R^(2))were used as the evaluation metrics.The evaluation results demonstrated that the hybrid models showed superior performance than the standalone models.The hybrid model consisting of gradient boosting and BOA(GBoost-BOA)achieved the best prediction results compared with the other hybrid models,with the highest R^(2)value of 0.96 and the smallest values of RMSE and MAE of 0.03 and 0.02,respectively.Furthermore,sensitivity analysis was carried out to study the effects of input variables on rock fragmentation.In situ block size(XB),elastic modulus(E),and stemming length-to-burden ratio(T/B)were set as the main influencing factors.The proposed hybrid model provided a reliable prediction result and thus could be considered an alternative approach for rock fragment prediction in mining engineering. 展开更多
关键词 Bayesian optimization BLASTING machine learning rock fragmentation
原文传递
Mitigation strategies for blasting-induced cracks and vibrations in twin-arch tunnel structures 被引量:1
13
作者 Xianshun Zhou Jin Chen +4 位作者 Xuemin Zhang Kai Zhu Yanyong Zhang Jianbo Fei Muhammad Irslan Khalid 《Defence Technology(防务技术)》 2025年第7期242-259,共18页
Due to space constraints in mountainous areas,twin tunnels are sometimes constructed very close to each other or even overlap.This proximity challenges the structural stability of tunnels built with the drill-and-blas... Due to space constraints in mountainous areas,twin tunnels are sometimes constructed very close to each other or even overlap.This proximity challenges the structural stability of tunnels built with the drill-and-blast method,as the short propagation distance amplifies blasting vibrations.A case of blasting damage is reported in this paper,where concrete cracks crossed construction joints in the twin-arch lining.To identify the causes of these cracks and develop effective vibration mitigation measures,field monitoring and numerical analysis were conducted.Specifically,a restart method was used to simulate the second peak particle velocity(PPV)of MS3 delays occurring 50 ms after the MS1 delays.The study found that the dynamic tensile stress in the tunnel induced by the blast wave has a linear relationship with the of the product of the concrete wave impedance and the PPV.A blast vibration velocity exceeding 23.3 cm/s resulted in tensile stress in the lining surpassing the ultimate tensile strength of C30 concrete,leading to tensile cracking on the blast-facing arch of the constructed tunnel.To control excessive vi-bration velocity,a mitigation trench was implemented to reduce blast wave impact.The trench,approximately 15 m in length,50 cm in width,and 450 cm in height,effectively lowered vibration ve-locities,achieving an average reduction rate of 52%according to numerical analysis.A key innovation of this study is the on-site implementation and validation of the trench's effectiveness in mitigating vi-brations.A feasible trench construction configuration was proposed to overcome the limitations of a single trench in fully controlling vibrations.To further enhance protection,zoned blasting and an auxiliary rock pillar,80 cm in width,were incorporated to reinforce the mid-wall.This study introduces novel strategies for vibration protection in tunnel blasting,offering innovative solutions to address blasting-induced vibrations and effectively minimize their impact,thereby enhancing safety and struc-tural stability. 展开更多
关键词 Twin-arch tunnel Drill-and-blast Blasting vibration mitigation LS-DYNA Restart method
在线阅读 下载PDF
Effective implementation of controlled blasting methodology during excavation of hard rock in the close proximity of earthen dam and tunnel 被引量:1
14
作者 Prakash K.Palei Vijay K.Ghodake +5 位作者 S.Santhosh Kumar R.S.Gurjar Chaman Singh M.Meena Rizwan Ali R.S.Kankara 《Defence Technology(防务技术)》 2025年第6期306-316,共11页
The present technical paper outlines the details of the controlled blasting techniques used to optimize blasting pattern for excavation of hard rock near the Bhira Earthen Dam in Maharashtra,India.In this connection,a... The present technical paper outlines the details of the controlled blasting techniques used to optimize blasting pattern for excavation of hard rock near the Bhira Earthen Dam in Maharashtra,India.In this connection,a series of experimental blasts were conducted by adjusting various blast design parameters at project site.The safe charge weight per delay was kept between 0.125 and 0.375 kg.The outcomes of these experimental blasts were analyzed to recommend optimized blasting patterns and methods for the overall excavation process during actual blasting operations.Blast design parameters,including the maximum quantity of explosive per delay,hole depth,burden and spacing between holes were optimized by using a site-specific attenuation equation,taking into account the proximity of the dam and tunnel from the blasting area.Peak particle velocity(PPV)level of 10 mm/s and 50 mm/s respectively were adopted as the safe vibration level for ensuring safety of the Bhira Earthen Dam and the nearby tunnel from the adverse effects of blast vibrations by analyzing the dominant frequency of ground vibrations observed and also by reviewing various international standards.Frequency of the ground vibrations observed on the dam and tunnel from majority of the blasts was found to be more than 10 Hz and 50 Hz respectively.During the entire period of blasting,the blast vibrations were recorded to be far lower than the safe vibration level set for these structures.Maximum Vibration level of about 0.8 mm/s and 35 mm/s were observed on dam and tunnel respectively which are far lower than the safe vibration level adopted for these structures.Hence,the entire excavation work was completed successfully and safely,without endangering the safety of dam or tunnel. 展开更多
关键词 Controlled blasting Civil structure Ground vibration Attenuation relation
在线阅读 下载PDF
Optimizing Hybrid with Improved Resistance to Rice Blast and Superior Ratooning Ability 被引量:1
15
作者 LIANG Yi YI Zhaofeng +9 位作者 ZHUANG Wen PENG Teng XIAO Gui JIN Yunkai TANG Qiyuan XIONG Jiaojun DENG Qiyun ZHOU Bo LIU Xionglun WU Jun 《Rice science》 2025年第3期292-297,I0022-I0030,共15页
The ratooning system enhances agricultural efficiency by reducing secondary sowing and resource input while maintaining rice yield parity with double cropping.However,the prolonged growth duration of the rice ratoonin... The ratooning system enhances agricultural efficiency by reducing secondary sowing and resource input while maintaining rice yield parity with double cropping.However,the prolonged growth duration of the rice ratooning system extends the exposure window to Magnaporthe oryzae infection,thereby elevating the probability of disease incidence. 展开更多
关键词 ratooning system double croppinghoweverthe hybrid optimization disease incidence rice blast resistance agricultural efficiency enhances agricultural efficiency magnaporthe oryzae
在线阅读 下载PDF
Non-explosive directional fracturing blasting using coal-based solid waste expanding agent 被引量:1
16
作者 Quan Zhang Manchao He +7 位作者 Jiong Wang Shan Guo Chao Wang Chenjie Hong Kai Chen Rongzhou Yang Xuepeng Zhang Jianwei Yang 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第6期3691-3710,共20页
Aiming at mitigating the high risks associated with conventional explosive blasting,this study developed a safe directional fracturing technique,i.e.instantaneous expansion with a single fracture(IESF),using a coal-ba... Aiming at mitigating the high risks associated with conventional explosive blasting,this study developed a safe directional fracturing technique,i.e.instantaneous expansion with a single fracture(IESF),using a coal-based solid waste expanding agent.First,the mechanism of directional fracturing blasting by the IESF was analyzed,and the criterion of directional crack initiation was established.On this basis,laboratory experiments and numerical simulations were conducted to systematically evaluate the directional fracturing blasting performance of the IESF.The results indicate that the IESF presents an excellent directional fracturing effect,with average surface undulation differences ranging from 8.1 mm to 22.7 mm on the fracture surfaces.Moreover,during concrete fracturing tests,the stresses and strains in the fracturing direction are measured to be 2.16-3.71 times and 8 times larger than those in the nonfracturing direction,respectively.Finally,the IESF technique was implemented for no-pillar mining with gob-side entry retaining through roof cutting and pressure relief in an underground coal mine.The IESF technique effectively created directional cracks in the roof without causing severe roadway deformation,achieving an average cutting rate and maximum roadway deformation of 94%and 197 mm,respectively.These on-site test results verified its excellent directional rock fracturing performance.The IESF technique,which is safe,efficient,and green,has considerable application prospects in the field of rock mechanics and engineering. 展开更多
关键词 Coal-based solid waste expanding agent Directional fracturing blasting Non-explosive Crack initiation Stress-strain-damage evolution
在线阅读 下载PDF
Failure mechanisms of electronic detonators subjected to high impact loading in rock drilling and blasting 被引量:1
17
作者 Zhendong Leng Yong Fan +2 位作者 Wenbo Lu Qidong Gao Guangdong Yang 《International Journal of Coal Science & Technology》 2025年第1期214-227,共14页
In rock drilling and blasting,the misfire of electronic detonators will not only affect the rock fragmentation result but also bring serious potential safety hazards to engineering construction.An accurate and compreh... In rock drilling and blasting,the misfire of electronic detonators will not only affect the rock fragmentation result but also bring serious potential safety hazards to engineering construction.An accurate and comprehensive understanding of the failure mechanisms of electronic detonators subjected to impact loading is of great significance to the reliability design and field safety use of electronic detonators.The spatial distribution characteristics and failure modes of misfired electronic detonators under different application scenarios are statistically analysed.The results show that under high impact loads,electronic detonators will experience failure phenomena such as rupture of the fuse head,fracture of the bridge wire,falling off of the solder joint,chip module damage and insufficient initiation energy after deformation.The lack of impact resistance is the primary cause of misfire of electronic detonators.Combined with the underwater impact resistance test and the impact load test in the adjacent blasthole on site,the formulas of the impact failure probability of the electronic detonator under different stress‒strength distribution curves are deduced.The test and evaluation method of the impact resistance of electronic detonators based on stress‒strength interference theory is proposed.Furthermore,the impact failure model of electronic detonators considering the strength degradation effect under repeated random loads is established.On this basis,the failure mechanism of electronic detonators under different application environments,such as open-pit blasting and underground blasting,is revealed,which provides scientific theory and methods for the reliability analysis,design and type selection of electronic detonators in rock drilling and blasting. 展开更多
关键词 Rock blasting Electronic detonator Impact loading Stress‒strength interference theory Strength degradation effect
在线阅读 下载PDF
Flow field distribution and overpressure characteristics inside the crew compartment of a truck-mounted howitzer under the effect of muzzle blast 被引量:1
18
作者 Shengcheng Wei Linfang Qian +2 位作者 Yadong Xu Qiang Yin Xinyu Xiong 《Defence Technology(防务技术)》 2025年第2期190-205,共16页
The muzzle blast overpressure induces disturbances in the flow field inside the crew compartment(FFICC)of a truck-mounted howitzer during the artillery firing.This overpressure is the primary factor preventing personn... The muzzle blast overpressure induces disturbances in the flow field inside the crew compartment(FFICC)of a truck-mounted howitzer during the artillery firing.This overpressure is the primary factor preventing personnel from firing artillery within the cab.To investigate the overpressure characteristics of the FFICC,a foreign trade equipment model was used as the research object,and a numerical model was established to analyze the propagation of muzzle blast from the muzzle to the interior of the crew compartment under extreme firing condition.For comparative verification,the muzzle blast experiment included overpressure data from both the flow field outside the crew compartment(FFOCC)and the FFICC,as well as the acceleration data of the crew compartment structure(Str-CC).The research findings demonstrate that the overpressure-time curves of the FFICC exhibit multi-peak characteristics,while the pressure wave shows no significant discontinuity.The enclosed nature of the cab hinders the dissipation of pressure wave energy within the FFICC,leading to sustained high-amplitude overpressure.The frameskin structure helps attenuate the impact of muzzle blast on the FFICC.Conversely,local high overpressure caused by the convex or concave features of the cab's exterior significantly amplifies the overpressure amplitude within the FFICC. 展开更多
关键词 Truck-mounted howitzer Muzzle blast Flow field inside the crew compartment(FFICC) Overpressure characteristics Flow-structure interaction
在线阅读 下载PDF
Ammonia-induced CuO/13X for H_(2)S removal from simulated blast furnace gas at low temperature
19
作者 Erping Cao Yuhua Zheng +6 位作者 Hao Zhang Jianshan Wang Yuran Li Tingyu Zhu Zhan-guo Zhang Guangwen Xu Yanbin Cui 《Green Energy & Environment》 SCIE EI CAS 2025年第1期139-149,共11页
Blast furnace gas(BFG)is an important by-product energy for the iron and steel industry and has been widely used for heating or electricity generation.However,the undesirable contaminants in BFG(especially H_(2)S)gene... Blast furnace gas(BFG)is an important by-product energy for the iron and steel industry and has been widely used for heating or electricity generation.However,the undesirable contaminants in BFG(especially H_(2)S)generate harmful environmental emissions.The desulfurization of BFG is urgent for integrated steel plants due to the stringent ultra-low emission standards.Compared with other desulfurization materials,zeolite-based adsorbents represent a viable option with low costs and long service life.In this study,an ammonia-induced CuO modified 13X adsorbent(NH_(3)–CuO/13X)was prepared for H_(2)S removal from simulated BFG at low temperature.The XRD,H_(2)-TPR and TEM analysis proved that smaller CuO particles were formed and the dispersion of Cu on the surface of 13X zeolite was improved via the induction of ammonia.Evaluation on H_(2)S adsorption performance of the adsorbent was carried out using simulated BFG,and the results showed that NH_(3)–CuO/13X-3 has better breakthrough sulfur capacity,which was more than twice the sulfur capacity of CuO/13X.It is proposed that the enhanced desulfurization performance of NH_(3)–CuO/13X is attributed to an abundant pore of 13X,and combined action of 13X and CuO.This work provided an effective way to improve the sulfur capacity of zeolite-based adsorbents via impregnation method by ammonia induction. 展开更多
关键词 Blast furnace gas DESULFURIZATION Ammonia-induced CUO 13X zeolite
在线阅读 下载PDF
Rock fracture mechanism of buffer blasting with cushion layer at the borehole bottom
20
作者 Xinguang Zhu Chenxi Ding +2 位作者 Zhe Sui Hong Su Xu Guo 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第2期325-334,共10页
This study primarily investigates the rock fracture mechanism of bottom cushion layer blasting and explores the effects of the bottom cushion layer on rock fragmentation.It involves analyses of the evolution patterns ... This study primarily investigates the rock fracture mechanism of bottom cushion layer blasting and explores the effects of the bottom cushion layer on rock fragmentation.It involves analyses of the evolution patterns of blasting stress,characteristics of crack distribution,and rock fracture features in the specimens.First,blasting model experiments were carried out using the dynamic caustics principle to investigate the influence of bottom cushion layers and initiation methods on the integrity of the bottom rock mass.The experimental results indicate that the combined use of bottom cushion layers and inverse initiation effectively protects the integrity of the bottom rock mass.Subsequently,the process of stress wave propagation and dynamic crack propagation in rocks was simulated using the continuum-discontinuum element method(CDEM)and the Landau explosion source model,with varying thicknesses of bottom cushion layers.The numerical simulation results indicate that with increasing cushion thickness,the absorption of energy generated by the explosion becomes more pronounced,resulting in fewer cracks in the bottom rock mass.This illustrates the positive role of the cushion layer in protecting the integrity of the bottom rock mass. 展开更多
关键词 bottom cushion layer BLASTING crack propagation continuum-discontinuum element method dynamic stress intensity factor
在线阅读 下载PDF
上一页 1 2 71 下一页 到第
使用帮助 返回顶部