期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Cumulative damage characteristics of fully grouted GFRP bolts in rock under blasting dynamic loads
1
作者 WANG Wenjie SONG Jiale +2 位作者 LIU Chao YU Longzhe KABILA Kevin 《Journal of Mountain Science》 2025年第5期1871-1887,共17页
In the civil and mining industries,bolts are critical components of support systems,playing a vital role in ensuring their stability.Glass fibre reinforced polymer(GFRP)bolts are widely used because they are corrosion... In the civil and mining industries,bolts are critical components of support systems,playing a vital role in ensuring their stability.Glass fibre reinforced polymer(GFRP)bolts are widely used because they are corrosion-resistant and cost-effective.However,the damage mechanisms of GFRP bolts under blasting dynamic loads are still unclear,especially compared to metal bolts.This study investigates the cumulative damage of fully grouted GFRP bolts under blasting dynamic loads.The maximum axial stress at the tails of the bolts is defined as the damage variable,based on the failure characteristics of GFRP bolts.By combining this with Miner's cumulative damage theory,a comprehensive theoretical and numerical model is established to calculate cumulative damage.Field data collected from the Jinchuan No.3 Mining Area,including GFRP bolts parameters and blasting vibration data are used for further analysis of cumulative damage in fully grouted GFRP bolts.Results indicate that with an increasing number of blasts,axial stress increases in all parts of GFRP bolts.The tail exhibits the most significant rise,with stress extending deeper into the anchorage zone.Cumulative damage follows an exponential trend with the number of blasts,although the incremental damage per blast decelerates over time.Higher dynamic load intensities accelerate damage accumulation,leading to an exponential decline in the maximum loading cycles before failure.Additionally,stronger surrounding rock and grout mitigate damage accumulation,with the effect of surrounding rock strength being more pronounced than that of grout.In contrast,the maximum axial stress of metal bolts increases quickly to a certain point and then stabilizes.This shows a clear difference between GFRP and metal bolts.This study presents a new cumulative damage theory that underpins the design of GFRP bolt support systems under blasting conditions,identifies key damage factors,and suggests mitigation measures to enhance system stability. 展开更多
关键词 blasting dynamic load Fully grouted GFRP bolt Cumulative damage Axial stress
原文传递
Analysis of blasting damage in adjacent mining excavations 被引量:6
2
作者 Nick Yugo Woo Shin 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2015年第3期282-290,共9页
Following a small-scale wedge failure at Yukon Zinc's Wolverine Mine in Yukon, Canada, a vibration monitoring program was added to the existing rockbolt pull testing regime. The failure in the 1150 drift occurred aft... Following a small-scale wedge failure at Yukon Zinc's Wolverine Mine in Yukon, Canada, a vibration monitoring program was added to the existing rockbolt pull testing regime. The failure in the 1150 drift occurred after numerous successive blasts in an adjacent tunnel had loosened friction bolts passing through an unmapped fault. Analysis of blasting vibration revealed that support integrity is not compromised unless there is a geological structure to act as a failure plane. The peak particle velocity(PPV) rarely exceeded 250 mm/s with a frequency larger than 50 Hz. As expected, blasting more competent rock resulted in higher PPVs. In such cases, reducing the round length from 3.5 m to 2.0 m was an effective means of limiting potential rock mass and support damage. 展开更多
关键词 blasting damage Vibration monitoring Adjacent tunnel development dynamic loading of friction bolts Jinduicheng Molybdenum Wolver
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部