Investigating the blast effects and mechanisms on typical finite-sized obstacles is essential for optimizing defense strategies and designing more robust barriers to deter terrorists and protect critical locations.Thi...Investigating the blast effects and mechanisms on typical finite-sized obstacles is essential for optimizing defense strategies and designing more robust barriers to deter terrorists and protect critical locations.This study investigates the blasting effects and underlying mechanisms of concrete frustums subjected to contact explosions,employing both numerical simulations and field tests.It focuses on the effects of top and side blasting,with particular emphasis on fracture modes,damage patterns,and fragment sizes,as well as the causes of different failure modes and the propagation of stress waves.The study also explores the blasting effects of detonating explosives at varying positions along the side and with different charge amounts.The results show that side-blasting leads to complete fragmentation,with tensile waves playing a significant role in creating extensive damage zones that propagate parallel to the frustum's outer surface,concentrating damage near the surface.During top-blasting,the upper half of the frustum undergoes fragmentation,while the lower half experiences cracking.Tensile waves propagate from the top to the bottom surface,forming larger blocks in regions with lower wave intensity.Three distinct damage zones within the frustum were identified,and a series of mathematical formulas were derived to describe the relationship between the maximum fragment size and charge mass.As the charge mass increased from 1.0 kg to 4.0 kg,the maximum fragment size decreased.Detonation at the center of the frustum's side resulted in the most severe fragmentation,with a 51.8%reduction in fragment size compared to other detonation positions.Finally,four broken modes were classified,each influenced by charge mass and explosive location.This study provides valuable insights for optimizing civil blasting operations and designing protective engineering structures.展开更多
In the Upper Silesian Coal Basin(USCB),coal seams are exploited under progressively more difficult geological and mining conditions(greater depth,higher horizontal stress,more frequent occurrence of competent rock lay...In the Upper Silesian Coal Basin(USCB),coal seams are exploited under progressively more difficult geological and mining conditions(greater depth,higher horizontal stress,more frequent occurrence of competent rock layers,etc.).Mining depth,dislocations and mining remnants in coal seams are the most important factors responsible for the occurrence of rockburst hazards.Longwall mining next to the mining edges of neighbouring coal seams is particularly disadvantageous.The levels of rockburst hazards are minimised via the use of rockburst prevention methods.One active prevention method is torpedo blasting in roof rocks.Torpedo blastings are performed in order to decrease local stress concentrations in rock masses and to fracture the roof rocks to prevent or minimise the impact of high-energy tremors on excavations.The estimation of the effectiveness of torpedo blasting is particularly important when mining is under difficult geological and mining conditions.Torpedo blasting is the main form of active rockburst prevention in the assigned colliery in the Polish part of the USCB.The effectiveness of blasting can be estimated using the seismic effect method,in which the seismic monitoring data and the mass of explosives are taken into consideration.The seismic effect method was developed in the Czech Republic and is always being used in collieries in the Czech part of the coal basin.Now,this method has been widely adopted for our selected colliery in the Polish part of the coal basin.The effectiveness of torpedo blastings in the faces and galleries of the assigned longwall in coal seam 506 has been estimated.The results show that the effectiveness of torpedo blastings for this longwall was significant in light of the seismic effect method,which corresponds to the in situ observations.The seismic effect method is regularly applied to estimating the blasting effectiveness in the selected colliery.展开更多
The desired economics of hard rock surface mining is mainly determined by the parameters of process design which minimize the overall cost per tonne of the rock mined in drilling, blasting, handling and primary crushi...The desired economics of hard rock surface mining is mainly determined by the parameters of process design which minimize the overall cost per tonne of the rock mined in drilling, blasting, handling and primary crushing in given rockmass conditions. The most effective parameters of process design could be established based on the regression models of the cumulative influence of rockmass and mine design parameters on the overall cost per tonne of the rock drilled, blasted, handled and crushed. These models could be developed from the huge data accumulated worldwide on the costs per tonne of hard rock surface mining in drilling, blasting, handling and primary crushing vs the parameters of rockmass and mine design. This paper only dwelt on the development of regression models for oversize generation, blasthole productivity and blasting cost for iron ore surface mines, whose data is available. The SPSS standard statistical correlation – regression analysis software was used in the analysis. Interpretation of the models generated shows that the individual effects of the determinant rockmass and blast design parameters on oversize generation, blasthole productivity and blasting cost are all in compliance with the findings of other researchers and the theory of explosive rock fragmentation and could be used for the estimation of oversize generation, blasthole productivity and blasting cost in rockmass and blast design conditions similar to those of the iron ore surface mines examined in this study. However, the regression models obtained here could not be used alone for the optimization of blast design because most of the determinant parameters also have conflicting effect on the other processes of drilling, handling and primary crushing the blasted rock. Also, the quality and content of the regression models could be enhanced further by increasing the content of rockmass and blast design parameters and the volume of data considered in the regression analysis.展开更多
The connection between blasting cost and comprehensive cost is the main concern.Some blasting effect factors (such as unit explosive consumption,uniformity of blockness,shape and porosity of blasting heap),which had a...The connection between blasting cost and comprehensive cost is the main concern.Some blasting effect factors (such as unit explosive consumption,uniformity of blockness,shape and porosity of blasting heap),which had an influence on electric shove loading efficiency,were analyzed.In the end a project to properly increase in blasting cost to decrease the comprehensive cost was put forward.At the same time,the hole-by-hole blasting is effective technology to improve blasting effect.展开更多
Model test studies based on the similarity theory were conducted to investigate vibration effect and damage evolution characteristics of tunnel surrounding rock under push-type cyclic blasting excavation.The model was...Model test studies based on the similarity theory were conducted to investigate vibration effect and damage evolution characteristics of tunnel surrounding rock under push-type cyclic blasting excavation.The model was constructed with a ratio of 1∶15.By simulating the tunnel excavation of push-type cyclic blasting,the influence of the blasting parameter change on vibration effect was explored.The damage degree of tunnel surrounding rock was evaluated by the change of the acoustic wave velocity at the same measuring point after blasting.The relationship between the damage evolution of surrounding rock and blasting times was established.The research results show that:(1)In the same geological environment,the number of delay initiation is larger,the main vibration frequency of blasting seismic wave is higher,and the attenuation of high frequency signal in the rock and soil is faster.The influence of number of delay initiation on blasting vibration effect cannot be ignored;(2)Under push-type cyclic blasting excavation,there were great differences in the decreasing rates of acoustic wave velocity of the measuring points which have the same distance to the blasting region at the same depth,and the blasting damage ranges of surrounding rock were typically anisotropic at both depth and breadth;(3)When blasting parameters were basically kept as the same,the growth trend of the cumulative acoustic wave velocity decreasing rate at the measuring point was nonlinear under different cycle blasting excavations;(4)There were nonlinear evolution characteristics between the blasting cumulative damage(D)of surrounding rock and blasting times(n)under push-type cyclic blasting loading,and different measuring points had corresponding blasting cumulative damage propagation models,respectively.The closer the measuring point was away from the explosion source,the faster the cumulative damage extension.Blasting cumulative damage effect of surrounding rock had typically nonlinear evolution properties and anisotropic characteristics.展开更多
Based on the theories of shock wave and energy,this paper inquires into the effect range of shock wave in rock blasting with cylindrical coupling charges, and a new method for calculating the effect range is developed...Based on the theories of shock wave and energy,this paper inquires into the effect range of shock wave in rock blasting with cylindrical coupling charges, and a new method for calculating the effect range is developed. A calculation example sbows that the new method is reasonable.展开更多
基金the support provided by the Technology Innovation Project (Grant No. KYGYZB002201) for the research work
文摘Investigating the blast effects and mechanisms on typical finite-sized obstacles is essential for optimizing defense strategies and designing more robust barriers to deter terrorists and protect critical locations.This study investigates the blasting effects and underlying mechanisms of concrete frustums subjected to contact explosions,employing both numerical simulations and field tests.It focuses on the effects of top and side blasting,with particular emphasis on fracture modes,damage patterns,and fragment sizes,as well as the causes of different failure modes and the propagation of stress waves.The study also explores the blasting effects of detonating explosives at varying positions along the side and with different charge amounts.The results show that side-blasting leads to complete fragmentation,with tensile waves playing a significant role in creating extensive damage zones that propagate parallel to the frustum's outer surface,concentrating damage near the surface.During top-blasting,the upper half of the frustum undergoes fragmentation,while the lower half experiences cracking.Tensile waves propagate from the top to the bottom surface,forming larger blocks in regions with lower wave intensity.Three distinct damage zones within the frustum were identified,and a series of mathematical formulas were derived to describe the relationship between the maximum fragment size and charge mass.As the charge mass increased from 1.0 kg to 4.0 kg,the maximum fragment size decreased.Detonation at the center of the frustum's side resulted in the most severe fragmentation,with a 51.8%reduction in fragment size compared to other detonation positions.Finally,four broken modes were classified,each influenced by charge mass and explosive location.This study provides valuable insights for optimizing civil blasting operations and designing protective engineering structures.
文摘In the Upper Silesian Coal Basin(USCB),coal seams are exploited under progressively more difficult geological and mining conditions(greater depth,higher horizontal stress,more frequent occurrence of competent rock layers,etc.).Mining depth,dislocations and mining remnants in coal seams are the most important factors responsible for the occurrence of rockburst hazards.Longwall mining next to the mining edges of neighbouring coal seams is particularly disadvantageous.The levels of rockburst hazards are minimised via the use of rockburst prevention methods.One active prevention method is torpedo blasting in roof rocks.Torpedo blastings are performed in order to decrease local stress concentrations in rock masses and to fracture the roof rocks to prevent or minimise the impact of high-energy tremors on excavations.The estimation of the effectiveness of torpedo blasting is particularly important when mining is under difficult geological and mining conditions.Torpedo blasting is the main form of active rockburst prevention in the assigned colliery in the Polish part of the USCB.The effectiveness of blasting can be estimated using the seismic effect method,in which the seismic monitoring data and the mass of explosives are taken into consideration.The seismic effect method was developed in the Czech Republic and is always being used in collieries in the Czech part of the coal basin.Now,this method has been widely adopted for our selected colliery in the Polish part of the coal basin.The effectiveness of torpedo blastings in the faces and galleries of the assigned longwall in coal seam 506 has been estimated.The results show that the effectiveness of torpedo blastings for this longwall was significant in light of the seismic effect method,which corresponds to the in situ observations.The seismic effect method is regularly applied to estimating the blasting effectiveness in the selected colliery.
文摘The desired economics of hard rock surface mining is mainly determined by the parameters of process design which minimize the overall cost per tonne of the rock mined in drilling, blasting, handling and primary crushing in given rockmass conditions. The most effective parameters of process design could be established based on the regression models of the cumulative influence of rockmass and mine design parameters on the overall cost per tonne of the rock drilled, blasted, handled and crushed. These models could be developed from the huge data accumulated worldwide on the costs per tonne of hard rock surface mining in drilling, blasting, handling and primary crushing vs the parameters of rockmass and mine design. This paper only dwelt on the development of regression models for oversize generation, blasthole productivity and blasting cost for iron ore surface mines, whose data is available. The SPSS standard statistical correlation – regression analysis software was used in the analysis. Interpretation of the models generated shows that the individual effects of the determinant rockmass and blast design parameters on oversize generation, blasthole productivity and blasting cost are all in compliance with the findings of other researchers and the theory of explosive rock fragmentation and could be used for the estimation of oversize generation, blasthole productivity and blasting cost in rockmass and blast design conditions similar to those of the iron ore surface mines examined in this study. However, the regression models obtained here could not be used alone for the optimization of blast design because most of the determinant parameters also have conflicting effect on the other processes of drilling, handling and primary crushing the blasted rock. Also, the quality and content of the regression models could be enhanced further by increasing the content of rockmass and blast design parameters and the volume of data considered in the regression analysis.
文摘The connection between blasting cost and comprehensive cost is the main concern.Some blasting effect factors (such as unit explosive consumption,uniformity of blockness,shape and porosity of blasting heap),which had an influence on electric shove loading efficiency,were analyzed.In the end a project to properly increase in blasting cost to decrease the comprehensive cost was put forward.At the same time,the hole-by-hole blasting is effective technology to improve blasting effect.
基金Supported by the National Natural Science Foundation of China(51064009,51464015)the Natural Science Foundation of Guangdong Province of China(2016A030313121)+1 种基金the Higher School Talent Introduction Project of Guangdong Province(A413.0210)the Science and Technology Project of Huizhou City of Guangdong Province of China(2014B020004018)
文摘Model test studies based on the similarity theory were conducted to investigate vibration effect and damage evolution characteristics of tunnel surrounding rock under push-type cyclic blasting excavation.The model was constructed with a ratio of 1∶15.By simulating the tunnel excavation of push-type cyclic blasting,the influence of the blasting parameter change on vibration effect was explored.The damage degree of tunnel surrounding rock was evaluated by the change of the acoustic wave velocity at the same measuring point after blasting.The relationship between the damage evolution of surrounding rock and blasting times was established.The research results show that:(1)In the same geological environment,the number of delay initiation is larger,the main vibration frequency of blasting seismic wave is higher,and the attenuation of high frequency signal in the rock and soil is faster.The influence of number of delay initiation on blasting vibration effect cannot be ignored;(2)Under push-type cyclic blasting excavation,there were great differences in the decreasing rates of acoustic wave velocity of the measuring points which have the same distance to the blasting region at the same depth,and the blasting damage ranges of surrounding rock were typically anisotropic at both depth and breadth;(3)When blasting parameters were basically kept as the same,the growth trend of the cumulative acoustic wave velocity decreasing rate at the measuring point was nonlinear under different cycle blasting excavations;(4)There were nonlinear evolution characteristics between the blasting cumulative damage(D)of surrounding rock and blasting times(n)under push-type cyclic blasting loading,and different measuring points had corresponding blasting cumulative damage propagation models,respectively.The closer the measuring point was away from the explosion source,the faster the cumulative damage extension.Blasting cumulative damage effect of surrounding rock had typically nonlinear evolution properties and anisotropic characteristics.
文摘Based on the theories of shock wave and energy,this paper inquires into the effect range of shock wave in rock blasting with cylindrical coupling charges, and a new method for calculating the effect range is developed. A calculation example sbows that the new method is reasonable.