The deformation mechanism of C5191 phosphor bronze sheet under ultra-high-speed blanking was investigated.By virtue of a DOBBY-OMEGA F1 ultra-high-speed press,the ultra-high-speed blanking test was conducted on C5191 ...The deformation mechanism of C5191 phosphor bronze sheet under ultra-high-speed blanking was investigated.By virtue of a DOBBY-OMEGA F1 ultra-high-speed press,the ultra-high-speed blanking test was conducted on C5191 phosphor bronze sheets with a thickness of 0.12 mm at 3000 strokes per minute.The microstructures of the blanked edges were characterized and analyzed separately by electron back-scatter diffraction(EBSD)and transmission electron microscopy(TEM).The results show that grains in the blanked edges are stretched along the blanking direction.Strong{001}<100>cube textures(maximum pole densities of 9 and 12,respectively)and secondarily strong{011}<011>textures(maximum pole densities of 4 and 7,respectively)are formed in local zones.Additionally,deformation twins are found in the shear zone of the blanked edges which are rotated and coarsened due to the blanking-induced extrusion and local thermal effect which can further form into sub-grains with clear and high-angle boundaries.The C5191 phosphor bronze sheet is subjected to adiabatic shear during ultra-high-speed blanking,accompanied with dynamic recrystallization.展开更多
The application of fine blanking to the manufacturing of helical gears directly from a strip has been restricted due to the traditional linear cutting stroke of the punch and die.In this work,rotational fine blanking ...The application of fine blanking to the manufacturing of helical gears directly from a strip has been restricted due to the traditional linear cutting stroke of the punch and die.In this work,rotational fine blanking which combined the linear and rotational motion of punch and counterpunch was applied for the forming of helical gears.A three-dimensional(3D) rigid-plastic finite element model was developed on the DEFORM-3D platform.By finite element simulation and analysis,the influences of key parameters on the punch load and cut surface were investigated.It is shown that: 1) with increasing the counterforce or helical angle,the punch load and the depth of die roll increase; 2) with increasing blank holder force,the punch load increases while the depth of die roll decreases; 3) V-ring indenter facilitates an improvement in the quality.The results of this research reveal the deformation mechanism of rotational fine blanking of helical gears,and provide valuable guidelines for further experimental studies.展开更多
Based on the Curson Tvergaard void damage plastic potential equation and by using orthogonal rules of plastic material, the influence of void volume fraction on stress and strain fields was introduced into Levy Mises ...Based on the Curson Tvergaard void damage plastic potential equation and by using orthogonal rules of plastic material, the influence of void volume fraction on stress and strain fields was introduced into Levy Mises flow rules. The variation principle of rigid plastic material with void degradation was demonstrated. Furthermore, FEM equations coupled with damage factor were presented to study the void growth and the criterion to judge the damage was also given. Using the developed system, the fine blanking process was simulated and the sheared surface of the part edge was predicted. Meanwhile, the influence of process parameters, such as punch die clearance, V ring force, counter force, radius of punch and die edges, on the height and quality of the sheared surface was analyzed. The calculation results were compared with the experiments, which can be used to guide the design of fine blanking process.展开更多
Both experiment and simulation are made on the AlMg4 . 5Mn0 .4 sheet blanking with 1 % , 10% and 20% relative clearance respectively. The cutting force curves and the cutting surface parameters which can be used to de...Both experiment and simulation are made on the AlMg4 . 5Mn0 .4 sheet blanking with 1 % , 10% and 20% relative clearance respectively. The cutting force curves and the cutting surface parameters which can be used to describe the quality of the blankings are measured. Simulation is accomplished by MARC Autoforge software package. Calculated cutting forces are always bigger than measured ones. All difference between experiment and simulation is not greater than 20% . It is feasible making virtual experiment on workstation to estimate the cutting force and to predict the quality of the workpiece for new material using certain blanking technical parameters.展开更多
Blanking is a major process and has a wide range of usage in manufacturing industry. The general concept of blanking seems a simple one but governing parameters are many and have a complex relationship which directly ...Blanking is a major process and has a wide range of usage in manufacturing industry. The general concept of blanking seems a simple one but governing parameters are many and have a complex relationship which directly affect the quality of the produced parts (blanks) and also the energy efficiency of the process. The main problem is the lack of prediction capabilities of the effect of these parameters that lead to time, money and labor consuming trial and error procedures in experimental studies. Usage of FEM based programs to simulate blanking to obtain numerical results and observe the shearing mechanism is a cheap and a detailed way for industrial applications. In this study five different clearances (1%, 3%, 5%, 10% and 20%) and three different thicknesses (t = 2 mm, t = 3 mm and t = 4 mm) were used for simulation and experimental studies of the blanking process. Simulations were executed by using the FEM program, Deform 2-D. Investigations were made on the parameters related to crack progression like crack initiation and crack propagation angles, indentation angle, rollover angle and depth and also the related blanking energy values. The results of the present paper are in agreement with the results of experimental studies.展开更多
The application of fracture in three-point bending to blanking of bearing steel is studied in this paper. Several mechanical models of stress blanking are discussed at first. And then the experiments have been made in...The application of fracture in three-point bending to blanking of bearing steel is studied in this paper. Several mechanical models of stress blanking are discussed at first. And then the experiments have been made in special equipment of three-point bending designed by us. Several problems, such as the suitable span, the relations between bending and tension bending complex, the ratio of blanking length to the diameter, the relations of blank length to force, the feature of fracture, are studied through the experiments. The suitable parameters of three-point bending to blanking, depth and tip radius of notch and the ratio between blanking length and stick diameter have been proposed.展开更多
Strain hardening,strain rate strengthening and thermal softening data of C5191 phosphor bronze at highspeed blanking are not easy to be obtained with a general measure method,therefore,it is quite difficult to establi...Strain hardening,strain rate strengthening and thermal softening data of C5191 phosphor bronze at highspeed blanking are not easy to be obtained with a general measure method,therefore,it is quite difficult to establish the dynamic constitutive model.To solve this problem,the tensile properties at a strain rate of 1 s^(-1) by GLEEBLE-3500,and dynamic tensile conditions at strain rates of 500,1 000 and 1 500 s^(-1) by split Hopkinson tensile bar (SHTB) apparatus are studied.According to these test data,the classic Johnson-Cook equation is modified.Furthermore,the modified Johnson-Cook equation is validated in the physical simulation model of high-speed blanking.The results show that the strength of C5191 phosphor bronze maintains a certain degree of increase as the strain rate increasing and presents a clear sensitivity to strain rate.The modified Johnson-Cook equation,which has better description accuracy than the classical Johnson-Cook equation,can provide important material parameters for physical simulation models of its high-speed blanking process.展开更多
This paper studies the effects of break through state and system rigidity on vibration and noise in blanking, suggests the describtion of the generation state of breakthrough by the unloading gradient obtained from t...This paper studies the effects of break through state and system rigidity on vibration and noise in blanking, suggests the describtion of the generation state of breakthrough by the unloading gradient obtained from the force stroke curve, discusses the effect of the relation between the unloading gradient and the vibration system rigidity on vibration, and gives the optimal relationship between these two factors to efficiently reduce the vibration, and this conclusion is verified by noise experiments done by using two presses of unequal rigidity to carry out the same blanking.展开更多
A coupled electrical-thermal-mechanical analysis is conducted for electrical/laser heating assisted blanking. Two novel localized-heating methods, electrical heating and laser-heating, recently proposed for small-part...A coupled electrical-thermal-mechanical analysis is conducted for electrical/laser heating assisted blanking. Two novel localized-heating methods, electrical heating and laser-heating, recently proposed for small-part blanking, are investigated with FE simulations. Results show that electrical heating would result in an advantageous distribution of temperature in a 316 stainless steel work-material. A desired temperature distribution may also be achievable for a copper work-material, if laser beam is used. Both electrical heating and laser-heating enable to reduce the blanking force and increase the aspect ratio achievable by blanking. The simulation also demonstrates that both electrical heating and laser-heating can result in desired temperature-distributions at sufficiently high heating-rates, ease of implementation and application. Comparatively, electrical heating could generate more favorable temperature distribution for small-part blanking.展开更多
The cutting force under a slanting cutter is discussed.It is not only related to the sheet to be cut and the slanting cutter height,but also to the shape of the cutter.It is from this point of view that the question o...The cutting force under a slanting cutter is discussed.It is not only related to the sheet to be cut and the slanting cutter height,but also to the shape of the cutter.It is from this point of view that the question of optimizing the cutter for slanting knife cutting operation is addressed.Then the general differential equations for the optimum cutter are obtained,and analytic solutions for the workpiece,the contour of which consists of straight lines and arcs,are obtained.A method for solving the general equations is also presented.The cutting force and breaking noise will be minimized for a given slanting cutter height and workpiece if the optimum cutter is employed.展开更多
To design a stepping-mode laser blanking process,in this study,CAD software was redeveloped based on VBA and a computer interface was established in the process design system. The program employs the modularization me...To design a stepping-mode laser blanking process,in this study,CAD software was redeveloped based on VBA and a computer interface was established in the process design system. The program employs the modularization method to perform functions including one-key initialization of the process planning environment,creation and deletion of blanking steps,automatic identification of belt coordinates,recognition of the number of blanking steps in each domain,and the output and import of process data. The difficult problem of recognizing CAD block references with the same name in the automatic acquisition of belt coordinates is solved using the selection sets method,which greatly improves the efficiency of the process design,while also guaranteeing rapid development of the flexible data mold in stepping-mode laser blanking.展开更多
Fine blanking parts with sharp corners produce collapse angles in the fine blanking process,and larger collapse angles can affect the parts’ performance and lifetime. In this paper,a fine blanking part with sharp cor...Fine blanking parts with sharp corners produce collapse angles in the fine blanking process,and larger collapse angles can affect the parts’ performance and lifetime. In this paper,a fine blanking part with sharp corners was taken as an example to analyze the forming mechanism of the collapse angles by DEFORM 3 D,then studying the influence of the position of the V-ring indenter of die on the collapse angle. It was concluded that the material’s metal flow line was intensive near the blanking clearance;The equivalent stress area of the material was mainly concentrated around the blanking clearance,and then gradually shrinked to joint of part and scrap;the closer the distance L was,and the smaller equivalent stress area was mainly concentrated around the blanking clearance was,and the smaller collapse angle was.展开更多
The big-tapered profiled ring disk is a key component of engines for rockets and missiles.A new forming technology,as called spinning-rolling process,has been proposed previously for the high performance,high efficien...The big-tapered profiled ring disk is a key component of engines for rockets and missiles.A new forming technology,as called spinning-rolling process,has been proposed previously for the high performance,high efficiency and low-cost manufacturing of the component.Blank design is the key part of plastic forming process design.For spinning-rolling process,the shape and size of the blank play a crucial role in process stability,deformation behavior and dimensional accuracy.So this work proposes a blank design method to determine the geometry structure and sizes of the blank.The mathematical model for calculating the blank size has been deduced based on volume conservation and neutral layer length invariance principle.The FE simulation and corresponding trial production of an actual big-tapered profiled ring disk show that the proposed blank design method is applicative.In order to obtain a preferred blank,the influence rules of blank size determined by different deformation degrees(rolling ratio k)on the spinning-rolling process are revealed by comprehensive FE simulations.Overall considering the process stability,circularity of the deformed ring disk and forming forces,a reasonable range of deformation degree(rolling ratio k)is recommended for the blank design of the new spinning-rolling process.展开更多
Accurately characterizing the storage space of fractured-vuggy carbonate reservoirs is a major technical challenge in the efficient exploration and development of the petroleum industry.Electrical image logs are an ef...Accurately characterizing the storage space of fractured-vuggy carbonate reservoirs is a major technical challenge in the efficient exploration and development of the petroleum industry.Electrical image logs are an effective technique for identifying and evaluating dissolution vugs in carbonate reservoirs.However,due to limitations in the wellbore structure and the design of instruments,the images of electrical image logs often contain numerous blank strips,which affects the accuracy of subsequent vug processing and interpretation.To finely evaluate the pore structu re of karst reservoirs and quantitatively characterize reservoir parameters,this study proposes an automatic identification method for dissolution vugs in electrical image logs,integrating image inpainting and regional segme ntation based on an improved deep image prior(I DIP)framework.Firstly,the I DIP neural network model,leveraging its structural characteristics,uses a random mask and image data as input to iteratively learn low-level features at known pixel points and extend these features to blank areas of the image.This approach allows clear capture of the structure and texture information of vugs in blank strips,even in the absence of sufficient training samples.Subsequently,based on the inpainted images,the Otsu algorithm is used to determine the optimal global threshold,and then the watershed algorithm is applied to segment and label the vug targets,which addresses the problem of over-segmentation when separating the vug information from the stratigraphic background.Finally,the Freeman chain code is used to store and calculate vug parameters,converting the picked vug area into areal porosity to quantitatively assess the develo p ment degree of fractures and vugs in the reservoir.The results show a good correlation with core porosity and are superior to calculations without image inpainting.This study presents a method based on image processing for vug identification and evaluation of karst re servoirs,demonstrating high consistency with actual field data and providing theoretical support and methodological refe rence for the classification and evaluation of similar reservoirs.展开更多
The forming defects, including thinning, rupture, wrinkling and springback, usually arising in producing a side-door impact beam, were investigated by trial and numerical simulation. A temperature-related constitutive...The forming defects, including thinning, rupture, wrinkling and springback, usually arising in producing a side-door impact beam, were investigated by trial and numerical simulation. A temperature-related constitutive model specific to the temperature range from 350 °C to 500 °C was established and used for the numerical simulation. The trial and numerical simulation were conducted to clarify the quantitative characteristics of forming defects and to analyze the effects of process parameters on the forming defects. Results show that the rupture situation is ameliorated and the springback is eliminated in the aluminum alloy hot stamping. The wrinkling severity decreases with increasing blank holder force (BHF), but the BHF greater than 15 kN causes the rupture at the deepest drawing position of workpiece. The forming defects are avoided with lubricant in the feasible ranges of process parameters: the BHF of 3 to 5 kN and the stamping speed of 50 to 200 mm/s.展开更多
This paper proposes a new approach to design pinion machine tool-settings for spiral bevel gears by controlling contact path and transmission errors. It is based on the satisfaction of contact condition of three given...This paper proposes a new approach to design pinion machine tool-settings for spiral bevel gears by controlling contact path and transmission errors. It is based on the satisfaction of contact condition of three given control points on the tooth surface. The three meshing points are controlled to be on a predesigned straight contact path that meets the pre-designed parabolic function of transmission errors. Designed separately, the magnitude of transmission errors and the orientation of the contact path are subjected to precise control. In addition, in order to meet the manufacturing requirements, we suggest to modify the values of blank offset, one of the pinion machine tool-settings, and redesign pinion ma- chine tool-settings to ensure that the magnitude and the geometry of transmission errors should not be influenced apart from minor effects on the predesigned straight contact path. The proposed approach together with its ideas has been proven by a numerical example and the manufacturing practice of a pair of spiral bevel gears.展开更多
基金The authors are grateful for the financial supports from Jiangsu Key Laboratory of Precision and Micro-manufacturing Technology of China(JSJMYWX2020-01)Zhejiang Provincial Natural Science Foundation of China(LY18E050005)the Startup Foundation for Introducing Talent of Nanjing Institute of Industry Technology(YK18-13-02)of China.
文摘The deformation mechanism of C5191 phosphor bronze sheet under ultra-high-speed blanking was investigated.By virtue of a DOBBY-OMEGA F1 ultra-high-speed press,the ultra-high-speed blanking test was conducted on C5191 phosphor bronze sheets with a thickness of 0.12 mm at 3000 strokes per minute.The microstructures of the blanked edges were characterized and analyzed separately by electron back-scatter diffraction(EBSD)and transmission electron microscopy(TEM).The results show that grains in the blanked edges are stretched along the blanking direction.Strong{001}<100>cube textures(maximum pole densities of 9 and 12,respectively)and secondarily strong{011}<011>textures(maximum pole densities of 4 and 7,respectively)are formed in local zones.Additionally,deformation twins are found in the shear zone of the blanked edges which are rotated and coarsened due to the blanking-induced extrusion and local thermal effect which can further form into sub-grains with clear and high-angle boundaries.The C5191 phosphor bronze sheet is subjected to adiabatic shear during ultra-high-speed blanking,accompanied with dynamic recrystallization.
基金Project(51105287)supported by the National Natural Science Foundation of ChinaProject(2011-P05)supported by the State Key Laboratory of Materials Processing and Die&Mould Technology,Huazhong University of Science and Technology,ChinaProject(2011-IV-009)supported by the Fundamental Research Funds for the Central Universities,China
文摘The application of fine blanking to the manufacturing of helical gears directly from a strip has been restricted due to the traditional linear cutting stroke of the punch and die.In this work,rotational fine blanking which combined the linear and rotational motion of punch and counterpunch was applied for the forming of helical gears.A three-dimensional(3D) rigid-plastic finite element model was developed on the DEFORM-3D platform.By finite element simulation and analysis,the influences of key parameters on the punch load and cut surface were investigated.It is shown that: 1) with increasing the counterforce or helical angle,the punch load and the depth of die roll increase; 2) with increasing blank holder force,the punch load increases while the depth of die roll decreases; 3) V-ring indenter facilitates an improvement in the quality.The results of this research reveal the deformation mechanism of rotational fine blanking of helical gears,and provide valuable guidelines for further experimental studies.
文摘Based on the Curson Tvergaard void damage plastic potential equation and by using orthogonal rules of plastic material, the influence of void volume fraction on stress and strain fields was introduced into Levy Mises flow rules. The variation principle of rigid plastic material with void degradation was demonstrated. Furthermore, FEM equations coupled with damage factor were presented to study the void growth and the criterion to judge the damage was also given. Using the developed system, the fine blanking process was simulated and the sheared surface of the part edge was predicted. Meanwhile, the influence of process parameters, such as punch die clearance, V ring force, counter force, radius of punch and die edges, on the height and quality of the sheared surface was analyzed. The calculation results were compared with the experiments, which can be used to guide the design of fine blanking process.
文摘Both experiment and simulation are made on the AlMg4 . 5Mn0 .4 sheet blanking with 1 % , 10% and 20% relative clearance respectively. The cutting force curves and the cutting surface parameters which can be used to describe the quality of the blankings are measured. Simulation is accomplished by MARC Autoforge software package. Calculated cutting forces are always bigger than measured ones. All difference between experiment and simulation is not greater than 20% . It is feasible making virtual experiment on workstation to estimate the cutting force and to predict the quality of the workpiece for new material using certain blanking technical parameters.
文摘Blanking is a major process and has a wide range of usage in manufacturing industry. The general concept of blanking seems a simple one but governing parameters are many and have a complex relationship which directly affect the quality of the produced parts (blanks) and also the energy efficiency of the process. The main problem is the lack of prediction capabilities of the effect of these parameters that lead to time, money and labor consuming trial and error procedures in experimental studies. Usage of FEM based programs to simulate blanking to obtain numerical results and observe the shearing mechanism is a cheap and a detailed way for industrial applications. In this study five different clearances (1%, 3%, 5%, 10% and 20%) and three different thicknesses (t = 2 mm, t = 3 mm and t = 4 mm) were used for simulation and experimental studies of the blanking process. Simulations were executed by using the FEM program, Deform 2-D. Investigations were made on the parameters related to crack progression like crack initiation and crack propagation angles, indentation angle, rollover angle and depth and also the related blanking energy values. The results of the present paper are in agreement with the results of experimental studies.
文摘The application of fracture in three-point bending to blanking of bearing steel is studied in this paper. Several mechanical models of stress blanking are discussed at first. And then the experiments have been made in special equipment of three-point bending designed by us. Several problems, such as the suitable span, the relations between bending and tension bending complex, the ratio of blanking length to the diameter, the relations of blank length to force, the feature of fracture, are studied through the experiments. The suitable parameters of three-point bending to blanking, depth and tip radius of notch and the ratio between blanking length and stick diameter have been proposed.
基金supported by Zhejiang Provincial Natural Science Foundation of China(No.LY18E050005)
文摘Strain hardening,strain rate strengthening and thermal softening data of C5191 phosphor bronze at highspeed blanking are not easy to be obtained with a general measure method,therefore,it is quite difficult to establish the dynamic constitutive model.To solve this problem,the tensile properties at a strain rate of 1 s^(-1) by GLEEBLE-3500,and dynamic tensile conditions at strain rates of 500,1 000 and 1 500 s^(-1) by split Hopkinson tensile bar (SHTB) apparatus are studied.According to these test data,the classic Johnson-Cook equation is modified.Furthermore,the modified Johnson-Cook equation is validated in the physical simulation model of high-speed blanking.The results show that the strength of C5191 phosphor bronze maintains a certain degree of increase as the strain rate increasing and presents a clear sensitivity to strain rate.The modified Johnson-Cook equation,which has better description accuracy than the classical Johnson-Cook equation,can provide important material parameters for physical simulation models of its high-speed blanking process.
文摘This paper studies the effects of break through state and system rigidity on vibration and noise in blanking, suggests the describtion of the generation state of breakthrough by the unloading gradient obtained from the force stroke curve, discusses the effect of the relation between the unloading gradient and the vibration system rigidity on vibration, and gives the optimal relationship between these two factors to efficiently reduce the vibration, and this conclusion is verified by noise experiments done by using two presses of unequal rigidity to carry out the same blanking.
基金This project is supported by National Natural Science Foundation of China (No.10272119)European Community(No.BRPR-CT98-0742).
文摘A coupled electrical-thermal-mechanical analysis is conducted for electrical/laser heating assisted blanking. Two novel localized-heating methods, electrical heating and laser-heating, recently proposed for small-part blanking, are investigated with FE simulations. Results show that electrical heating would result in an advantageous distribution of temperature in a 316 stainless steel work-material. A desired temperature distribution may also be achievable for a copper work-material, if laser beam is used. Both electrical heating and laser-heating enable to reduce the blanking force and increase the aspect ratio achievable by blanking. The simulation also demonstrates that both electrical heating and laser-heating can result in desired temperature-distributions at sufficiently high heating-rates, ease of implementation and application. Comparatively, electrical heating could generate more favorable temperature distribution for small-part blanking.
文摘The cutting force under a slanting cutter is discussed.It is not only related to the sheet to be cut and the slanting cutter height,but also to the shape of the cutter.It is from this point of view that the question of optimizing the cutter for slanting knife cutting operation is addressed.Then the general differential equations for the optimum cutter are obtained,and analytic solutions for the workpiece,the contour of which consists of straight lines and arcs,are obtained.A method for solving the general equations is also presented.The cutting force and breaking noise will be minimized for a given slanting cutter height and workpiece if the optimum cutter is employed.
文摘To design a stepping-mode laser blanking process,in this study,CAD software was redeveloped based on VBA and a computer interface was established in the process design system. The program employs the modularization method to perform functions including one-key initialization of the process planning environment,creation and deletion of blanking steps,automatic identification of belt coordinates,recognition of the number of blanking steps in each domain,and the output and import of process data. The difficult problem of recognizing CAD block references with the same name in the automatic acquisition of belt coordinates is solved using the selection sets method,which greatly improves the efficiency of the process design,while also guaranteeing rapid development of the flexible data mold in stepping-mode laser blanking.
文摘Fine blanking parts with sharp corners produce collapse angles in the fine blanking process,and larger collapse angles can affect the parts’ performance and lifetime. In this paper,a fine blanking part with sharp corners was taken as an example to analyze the forming mechanism of the collapse angles by DEFORM 3 D,then studying the influence of the position of the V-ring indenter of die on the collapse angle. It was concluded that the material’s metal flow line was intensive near the blanking clearance;The equivalent stress area of the material was mainly concentrated around the blanking clearance,and then gradually shrinked to joint of part and scrap;the closer the distance L was,and the smaller equivalent stress area was mainly concentrated around the blanking clearance was,and the smaller collapse angle was.
基金the National Natural Science Foundation of China(No.52275378)the National Key Laboratory for Precision Hot Processing of Metals(6142909200208)。
文摘The big-tapered profiled ring disk is a key component of engines for rockets and missiles.A new forming technology,as called spinning-rolling process,has been proposed previously for the high performance,high efficiency and low-cost manufacturing of the component.Blank design is the key part of plastic forming process design.For spinning-rolling process,the shape and size of the blank play a crucial role in process stability,deformation behavior and dimensional accuracy.So this work proposes a blank design method to determine the geometry structure and sizes of the blank.The mathematical model for calculating the blank size has been deduced based on volume conservation and neutral layer length invariance principle.The FE simulation and corresponding trial production of an actual big-tapered profiled ring disk show that the proposed blank design method is applicative.In order to obtain a preferred blank,the influence rules of blank size determined by different deformation degrees(rolling ratio k)on the spinning-rolling process are revealed by comprehensive FE simulations.Overall considering the process stability,circularity of the deformed ring disk and forming forces,a reasonable range of deformation degree(rolling ratio k)is recommended for the blank design of the new spinning-rolling process.
基金supported by the National Natural Science Foundation of China(Grant No.42272180)。
文摘Accurately characterizing the storage space of fractured-vuggy carbonate reservoirs is a major technical challenge in the efficient exploration and development of the petroleum industry.Electrical image logs are an effective technique for identifying and evaluating dissolution vugs in carbonate reservoirs.However,due to limitations in the wellbore structure and the design of instruments,the images of electrical image logs often contain numerous blank strips,which affects the accuracy of subsequent vug processing and interpretation.To finely evaluate the pore structu re of karst reservoirs and quantitatively characterize reservoir parameters,this study proposes an automatic identification method for dissolution vugs in electrical image logs,integrating image inpainting and regional segme ntation based on an improved deep image prior(I DIP)framework.Firstly,the I DIP neural network model,leveraging its structural characteristics,uses a random mask and image data as input to iteratively learn low-level features at known pixel points and extend these features to blank areas of the image.This approach allows clear capture of the structure and texture information of vugs in blank strips,even in the absence of sufficient training samples.Subsequently,based on the inpainted images,the Otsu algorithm is used to determine the optimal global threshold,and then the watershed algorithm is applied to segment and label the vug targets,which addresses the problem of over-segmentation when separating the vug information from the stratigraphic background.Finally,the Freeman chain code is used to store and calculate vug parameters,converting the picked vug area into areal porosity to quantitatively assess the develo p ment degree of fractures and vugs in the reservoir.The results show a good correlation with core porosity and are superior to calculations without image inpainting.This study presents a method based on image processing for vug identification and evaluation of karst re servoirs,demonstrating high consistency with actual field data and providing theoretical support and methodological refe rence for the classification and evaluation of similar reservoirs.
基金Project(P2014-15)supported by the State Key Laboratory of Materials Processing and Die&Mould Technology,Huazhong University of Science and Technology,ChinaProject supported by the Beijing Laboratory of Metallic Materials and Processing for Modern Transportation,China
文摘The forming defects, including thinning, rupture, wrinkling and springback, usually arising in producing a side-door impact beam, were investigated by trial and numerical simulation. A temperature-related constitutive model specific to the temperature range from 350 °C to 500 °C was established and used for the numerical simulation. The trial and numerical simulation were conducted to clarify the quantitative characteristics of forming defects and to analyze the effects of process parameters on the forming defects. Results show that the rupture situation is ameliorated and the springback is eliminated in the aluminum alloy hot stamping. The wrinkling severity decreases with increasing blank holder force (BHF), but the BHF greater than 15 kN causes the rupture at the deepest drawing position of workpiece. The forming defects are avoided with lubricant in the feasible ranges of process parameters: the BHF of 3 to 5 kN and the stamping speed of 50 to 200 mm/s.
基金National Natural Science Foundation of China (50475148)Aeronautical Science Foundation of China (04C53015)Areonautical Sci-tech Innovation Foundation of China (07B53004)
文摘This paper proposes a new approach to design pinion machine tool-settings for spiral bevel gears by controlling contact path and transmission errors. It is based on the satisfaction of contact condition of three given control points on the tooth surface. The three meshing points are controlled to be on a predesigned straight contact path that meets the pre-designed parabolic function of transmission errors. Designed separately, the magnitude of transmission errors and the orientation of the contact path are subjected to precise control. In addition, in order to meet the manufacturing requirements, we suggest to modify the values of blank offset, one of the pinion machine tool-settings, and redesign pinion ma- chine tool-settings to ensure that the magnitude and the geometry of transmission errors should not be influenced apart from minor effects on the predesigned straight contact path. The proposed approach together with its ideas has been proven by a numerical example and the manufacturing practice of a pair of spiral bevel gears.