期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Radiation heat transfer model for complex superalloy turbine blade in directional solidification process based on finite element method 被引量:5
1
作者 Dun-ming Liao Liu Cao +4 位作者 Tao Chen Fei Sun Yong-zhen Jia Zi-hao Teng Yu-long Tang 《China Foundry》 SCIE 2016年第2期123-132,共10页
For the sake of a more accurate shell boundary and calculation of radiation heat transfer in the Directional Solidification(DS) process, a radiation heat transfer model based on the Finite Element Method(FEM)is develo... For the sake of a more accurate shell boundary and calculation of radiation heat transfer in the Directional Solidification(DS) process, a radiation heat transfer model based on the Finite Element Method(FEM)is developed in this study. Key technologies, such as distinguishing boundaries automatically, local matrix and lumped heat capacity matrix, are also stated. In order to analyze the effect of withdrawing rate on DS process,the solidification processes of a complex superalloy turbine blade in the High Rate Solidification(HRS) process with different withdrawing rates are simulated; and by comparing the simulation results, it is found that the most suitable withdrawing rate is determined to be 5.0 mm·min^(-1). Finally, the accuracy and reliability of the radiation heat transfer model are verified, because of the accordance of simulation results with practical process. 展开更多
关键词 directional solidification radiation heat transfer finite element method numerical simulation local matrix superalloy turbine blade
在线阅读 下载PDF
Aerodynamic analysis of rotor-to-rotor interactions in different octocopter configurations
2
作者 Aqib AZIZ Yongjie SHI +1 位作者 Yang LIU Guohua XU 《Chinese Journal of Aeronautics》 2025年第3期292-315,共24页
Rotor-to-rotor interaction among neighboring rotors of a multirotor has great significance for aerodynamically efficient multirotor design. Current research is conducted to analyze aerodynamic performance of different... Rotor-to-rotor interaction among neighboring rotors of a multirotor has great significance for aerodynamically efficient multirotor design. Current research is conducted to analyze aerodynamic performance of different octocopter configurations amid hover and forward flight. Conventional and coaxial configurations are studied and a hybrid configuration is also proposed to rectify the disadvantages associated with the earlier two. Comparison is carried out for the aforementioned configurations along with comparison of coaxial and hybrid octocopters with bigger diameter rotors in the same confined space for high thrust requirement missions. Vertical spacing of coaxial configuration is also studied. Virtual Blade Method (VBM) is considered herein due to its great computational efficiency. The results show that there are 11.89% and 14.22% loss in thrust for coaxial octocopter compared to conventional and hybrid configurations with normal size rotors and 15.61% loss compared to hybrid configuration with bigger rotors in hover, whereas coaxial square configuration performs the worst in forward flight with a lift loss of 9.1%, 14.77% and 18.8% compared to coaxial diamond, conventional and hybrid configurations with normal size rotors and 9.96% and 17.82% loss compared to coaxial diamond and hybrid configurations with bigger rotors. Combined FM shows that hybrid configuration outperforms other octocopter configurations in overall aerodynamic performance. 展开更多
关键词 Rotor-to-rotor interaction Virtual blade method Octocopter configurations Aerodynamically efficient HOVER Forward f1ight
原文传递
Aerodynamic adjoint optimization of turbomachinery with direct control on blade design parameters
3
作者 Xin LI Tongtong MENG +2 位作者 Weiwei LI Ling ZHOU Lucheng JI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第11期119-134,共16页
Nowadays,the adjoint method has become a popular approach in the optimization of turbomachinery to further improve its aerodynamic performance.However,design variables in these adjoint optimization applications are ge... Nowadays,the adjoint method has become a popular approach in the optimization of turbomachinery to further improve its aerodynamic performance.However,design variables in these adjoint optimization applications are generally not direct design parameters of blade(such as wedge angles or maximum thickness),making the geometric variation by adjoint optimization can hardly be re-extracted as the change of each design parameter.By giving considerations to the G1 continuity constraint of adjoint method on its parameterization method,this manuscript shows how to apply a parameterization method in 3D blade design process into adjoint optimization.Nearly all design parameters can therefore be treated as design variables in the adjoint method and then participate in the sensitivity-based optimization.Finally,a fitted Rotor 67 blade is optimized and the adiabatic efficiency is significantly improved by nearly 0.91%. 展开更多
关键词 Adjoint method Parameterization method Aerodynamic optimization Customized blading method COMPRESSOR TURBOMACHINERY
原文传递
Study on the Rotor Design Method for a Small Propeller-Type Wind Turbine 被引量:1
4
作者 Yasuyuki Nishi Yusuke Yamashita Terumi Inagaki 《Journal of Thermal Science》 SCIE EI CAS CSCD 2016年第4期355-362,共8页
Small propeller-type wind turbines have a low Reynolds number,limiting the number of usable airfoil materials.Thus,their design method is not sufBciently established,and their performance is often low.The ultimate goa... Small propeller-type wind turbines have a low Reynolds number,limiting the number of usable airfoil materials.Thus,their design method is not sufBciently established,and their performance is often low.The ultimate goal of this research is to establish high-performance design guidelines and design methods for small propeller-type wind turbines.To that end,we designed two rotors:Rotor A,based on the rotor optimum design method from the blade element momentum theory,and Rotor B,in which the chord length of the tip is extended and the chord length distribution is linearized.We examined performance characteristics and flow fields of the two rotors through wind tunnel experiments and numerical analysis.Our results revealed that the maximum output tip speed ratio of Rotor B shifted lower than that of Rotor A,but the maximum output coefficient increased by approximately 38.7%.Rotors A and B experienced a large-scale separation on the hub side,which extended to the mean in Rotor A.This difference in separation had an impact on the significant decrease in Rotor A's output compared to the design value and the increase in Rotor B's output compared to Rotor A. 展开更多
关键词 Wind Turbine Propeller-Type Horizontal Axis Blade Element Momentum Theory Rotor Design method
原文传递
Flow Structure and Heat Exchange Analysis in Internal Cooling Channel of Gas Turbine Blade 被引量:3
5
作者 Ryszard Szwaba Piotr Kaczynski +1 位作者 Piotr Doerffer Janusz Telega 《Journal of Thermal Science》 SCIE EI CAS CSCD 2016年第4期336-341,共6页
This paper presents the study of the flow structure and heat transfer,and also their correlations on the four walls of a radial cooling passage model of a gas turbine blade.The investigations focus on heat transfer an... This paper presents the study of the flow structure and heat transfer,and also their correlations on the four walls of a radial cooling passage model of a gas turbine blade.The investigations focus on heat transfer and aerodynamic measurements in the channel,which is an accurate representation of the configuration used in aeroengines.Correlations for the heat transfer coefficient and the pressure drop used in the design of radial cooling passages are often developed from simplified models.It is important to note that real engine passages do not have perfect rectangular cross sections,but include coiner fillet,ribs with fillet radii and special orientation.Therefore,this work provides detailed fluid flow and heat transfer data for a model of radial cooling geometry which possesses very realistic features. 展开更多
关键词 cooling internal blade channels heat exchange transient liquid crystal method
原文传递
Investigation of the Compressible Flow through the Tip-Section Turbine Blade Cascade with Supersonic Inlet 被引量:2
6
作者 Martin Luxa Jaromír Príhoda +2 位作者 David Simurda Petr Straka Jaroslav Synác 《Journal of Thermal Science》 SCIE EI CAS CSCD 2016年第2期138-144,共7页
The contribution deals with the experimental and numerical investigation of compressible flow through the tip-section turbine blade cascade with the blade 54″ long. Experimental investigations by means of optical(int... The contribution deals with the experimental and numerical investigation of compressible flow through the tip-section turbine blade cascade with the blade 54″ long. Experimental investigations by means of optical(interferometry and schlieren method) and pneumatic measurements provide more information about the behaviour and nature of basic phenomena occurring in the profile cascade flow field. The numerical simulation was carried out by means of the EARSM turbulence model according to Hellsten [5] completed by the bypass transition model with the algebraic equation for the intermittency coefficient proposed by Straka and P?íhoda [6] and implemented into the in-house numerical code. The investigation was focused particularly on the effect of shock waves on the shear layer development including the laminar/turbulent transition. Interactions of shock waves with shear layers on both sides of the blade result usually in the transition in attached and/ or separated flow and so to the considerable impact to the flow structure and energy losses in the blade cascade. 展开更多
关键词 long turbine rotor blade supersonic tip section optical methods transition modelling CFD
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部