期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
A Novel Black-Winged Kite Algorithm with Deep Learning for Autism Detection of Privacy Preserved Data
1
作者 Kalyani Nagarajan Sasikumar Rajagopalan 《Journal of Bionic Engineering》 2025年第4期1985-2011,共27页
Autism Spectrum Disorder(ASD)is a complex neurodevelopmental condition that causes multiple challenges in behavioral and communication activities.In the medical field,the data related to ASD,the security measures are ... Autism Spectrum Disorder(ASD)is a complex neurodevelopmental condition that causes multiple challenges in behavioral and communication activities.In the medical field,the data related to ASD,the security measures are integrated in this research responsibly and effectively to develop the Mobile Neuron Attention Stage-by-Stage Network(MNASNet)model,which is the integration of both Mobile Network(MobileNet)and Neuron Attention Stage-by-Stage.The steps followed to detect ASD with privacy-preserved data are data normalization,data augmentation,and K-Anonymization.The clinical data of individuals are taken initially and preprocessed using the Z-score Normalization.Then,data augmentation is performed using the oversampling technique.Subsequently,K-Anonymization is effectuated by utilizing the Black-winged Kite Algorithm to ensure the privacy of medical data,where the best fitness solution is based on data utility and privacy.Finally,after improving the data privacy,the developed approach MNASNet is implemented for ASD detection,which achieves highly accurate results compared to traditional methods to detect autism behavior.Hence,the final results illustrate that the proposed MNASNet achieves an accuracy of 92.9%,TPR of 95.9%,and TNR of 90.9%at the k-samples of 8. 展开更多
关键词 Mobile network Neuron attention stage-by-stage Z-score normalization K-ANONYMIZATION black-winged kite algorithm
在线阅读 下载PDF
Improved Multi-Fusion Black-Winged Kite Algorithm for Optimizing Stochastic Configuration Networks for Lithium Battery Remaining Life Prediction
2
作者 Yuheng Yin Lin Wang 《Energy Engineering》 2025年第7期2845-2864,共20页
The accurate estimation of lithium battery state of health(SOH)plays an important role in the health management of battery systems.In order to improve the prediction accuracy of SOH,this paper proposes a stochastic co... The accurate estimation of lithium battery state of health(SOH)plays an important role in the health management of battery systems.In order to improve the prediction accuracy of SOH,this paper proposes a stochastic configuration network based on a multi-converged black-winged kite search algorithm,called SBKA-CLSCN.Firstly,the indirect health index(HI)of the battery is extracted by combining it with Person correlation coefficients in the battery charging and discharging cycle point data.Secondly,to address the problem that the black-winged kite optimization algorithm(BKA)falls into the local optimum problem and improve the convergence speed,the Sine chaotic black-winged kite search algorithm(SBKA)is designed,which mainly utilizes the Sine mapping and the golden-sine strategy to enhance the algorithm’s global optimality search ability;secondly,the Cauchy distribution and Laplace regularization techniques are used in the SCN model,which is referred to as CLSCN,thereby improving the model’s overall search capability and generalization ability.Finally,the performance of SBKA and SBKA-CLSCN is evaluated using eight benchmark functions and the CALCE battery dataset,respectively,and compared in comparison with the Long Short-Term Memory(LSTM)model and the Gated Recurrent Unit(GRU)model,and the experimental results demonstrate the feasibility and effectiveness of the SBKA-CLSCN algorithm. 展开更多
关键词 Random configuration networks black-winged kite algorithm sine chaotic mapping laplace transform
在线阅读 下载PDF
基于混沌映射与光学现象改进的黑翅鸢优化算法
3
作者 王伟 广家和 +2 位作者 徐兴国 孙渝景 夏毅强 《科学技术与工程》 北大核心 2025年第25期10800-10809,共10页
针对黑翅鸢优化算法(black-winged kite optimization algorithm,BKA)在全局探索与局部开发能力之间存在的不平衡,以及易陷入局部最优解的问题,提出了一种改进的黑翅鸢优化算法(improved BKA,IBKA)。首先,采用Tent混沌映射策略对种群进... 针对黑翅鸢优化算法(black-winged kite optimization algorithm,BKA)在全局探索与局部开发能力之间存在的不平衡,以及易陷入局部最优解的问题,提出了一种改进的黑翅鸢优化算法(improved BKA,IBKA)。首先,采用Tent混沌映射策略对种群进行初始化,提高种群的多样性。其次,在BKA的捕食行为中引入了一种动态透镜成像学习策略,以提高算法摆脱局部最优解的概率。最后,在BKA的迁移过程中集成了夫琅禾费衍射搜索策略,旨在提升算法的性能,实现快速寻优。实验结果表明,所提出的改进方法能够有效增强算法性能,经过改进后的IBKA具有更高的搜索精度、更快的收敛速度,并且展现出较强的实用性。 展开更多
关键词 黑翅鸢优化算法 Tent混沌映射策略 动态透镜成像学习策略 夫琅禾费衍射搜索策略
在线阅读 下载PDF
基于VMD-IBKA-ELM的电力电子电路软故障诊断 被引量:1
4
作者 陈苗 姜媛媛 《天津科技大学学报》 CAS 2024年第6期57-65,共9页
针对传统电力电子电路在软故障诊断领域的特征区分度低、诊断效率低等一系列问题,提出一种变分模态分解(VMD)结合改进的黑翅鸢搜索算法(IBKA)优化极限学习机(ELM)的故障诊断方法。首先,利用VMD技术将采集到的故障信号进行分解重构,并得... 针对传统电力电子电路在软故障诊断领域的特征区分度低、诊断效率低等一系列问题,提出一种变分模态分解(VMD)结合改进的黑翅鸢搜索算法(IBKA)优化极限学习机(ELM)的故障诊断方法。首先,利用VMD技术将采集到的故障信号进行分解重构,并得到故障诊断的特征向量。其次,用改进后的黑翅鸢搜索算法对ELM的参数进行优化,得到IBKA-ELM分类模型;IBKA采用Sine映射初始化种群,随机选择3个不同的个体进行差分变异操作,更新领导者位置,在领导者位置更新处引入自适应惯性权重因子,可有效提高算法的寻优能力和收敛速度。最后,通过150W的Boost电路对本文方法进行实验验证。实验结果显示,VMD结合IBKA-ELM的故障诊断方法在实际诊断中的精度均达到99%以上。 展开更多
关键词 软故障诊断 变分模态分解 黑翅鸢搜索算法 极限学习机 DC–DC电路
在线阅读 下载PDF
基于改进离散黑翅鸢算法的变电站摄像头巡检任务调度方法研究
5
作者 李海丰 陈庆 +3 位作者 黄悦华 陈曦 文斌 吴喜春 《计算机科学》 2025年第S2期207-216,共10页
针对变电站摄像头巡检中任务分配不均、灵活性不足,导致摄像头工作效率较低的问题,提出一种基于改进离散黑翅鸢算法的摄像头巡检任务调度方法。首先,考虑摄像头、变电设备和巡检任务之间的复杂映射关系,构建以巡检完工时间、偏转角度和... 针对变电站摄像头巡检中任务分配不均、灵活性不足,导致摄像头工作效率较低的问题,提出一种基于改进离散黑翅鸢算法的摄像头巡检任务调度方法。首先,考虑摄像头、变电设备和巡检任务之间的复杂映射关系,构建以巡检完工时间、偏转角度和负载均衡为目标的摄像头巡检任务优化调度模型;然后,基于实际巡检特定信息设计启发式联合规则对优化求解的初始种群进行生成,有效解决随机初始化不确定性的问题;进一步地,引入离散差分变异操作和螺旋搜索迁徙机制对黑翅鸢算法进行多策略搜索混合改进,增加算法适应性和搜索能力。场景测试结果表明,提出的方法有效提升了变电站摄像头巡检的效率,可使摄像头在大规模、长周期巡检任务中具有更好的稳定性。 展开更多
关键词 摄像头巡检 巡检任务调度 改进离散黑翅鸢算法 启发式联合规则 多策略搜索
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部