Autism Spectrum Disorder(ASD)is a complex neurodevelopmental condition that causes multiple challenges in behavioral and communication activities.In the medical field,the data related to ASD,the security measures are ...Autism Spectrum Disorder(ASD)is a complex neurodevelopmental condition that causes multiple challenges in behavioral and communication activities.In the medical field,the data related to ASD,the security measures are integrated in this research responsibly and effectively to develop the Mobile Neuron Attention Stage-by-Stage Network(MNASNet)model,which is the integration of both Mobile Network(MobileNet)and Neuron Attention Stage-by-Stage.The steps followed to detect ASD with privacy-preserved data are data normalization,data augmentation,and K-Anonymization.The clinical data of individuals are taken initially and preprocessed using the Z-score Normalization.Then,data augmentation is performed using the oversampling technique.Subsequently,K-Anonymization is effectuated by utilizing the Black-winged Kite Algorithm to ensure the privacy of medical data,where the best fitness solution is based on data utility and privacy.Finally,after improving the data privacy,the developed approach MNASNet is implemented for ASD detection,which achieves highly accurate results compared to traditional methods to detect autism behavior.Hence,the final results illustrate that the proposed MNASNet achieves an accuracy of 92.9%,TPR of 95.9%,and TNR of 90.9%at the k-samples of 8.展开更多
The accurate estimation of lithium battery state of health(SOH)plays an important role in the health management of battery systems.In order to improve the prediction accuracy of SOH,this paper proposes a stochastic co...The accurate estimation of lithium battery state of health(SOH)plays an important role in the health management of battery systems.In order to improve the prediction accuracy of SOH,this paper proposes a stochastic configuration network based on a multi-converged black-winged kite search algorithm,called SBKA-CLSCN.Firstly,the indirect health index(HI)of the battery is extracted by combining it with Person correlation coefficients in the battery charging and discharging cycle point data.Secondly,to address the problem that the black-winged kite optimization algorithm(BKA)falls into the local optimum problem and improve the convergence speed,the Sine chaotic black-winged kite search algorithm(SBKA)is designed,which mainly utilizes the Sine mapping and the golden-sine strategy to enhance the algorithm’s global optimality search ability;secondly,the Cauchy distribution and Laplace regularization techniques are used in the SCN model,which is referred to as CLSCN,thereby improving the model’s overall search capability and generalization ability.Finally,the performance of SBKA and SBKA-CLSCN is evaluated using eight benchmark functions and the CALCE battery dataset,respectively,and compared in comparison with the Long Short-Term Memory(LSTM)model and the Gated Recurrent Unit(GRU)model,and the experimental results demonstrate the feasibility and effectiveness of the SBKA-CLSCN algorithm.展开更多
针对多变海况导致海上母船的吊放载荷产生升沉运动,进而影响水下作业安全的问题。基于主动式升沉补偿控制方法,以提高主动式升沉补偿系统的控制精度与稳定性为目标,提出一种基于混合策略改进的黑翅鸢算法(Improved Black Winged kite Al...针对多变海况导致海上母船的吊放载荷产生升沉运动,进而影响水下作业安全的问题。基于主动式升沉补偿控制方法,以提高主动式升沉补偿系统的控制精度与稳定性为目标,提出一种基于混合策略改进的黑翅鸢算法(Improved Black Winged kite Algorithm,IBKA)用来优化主动升沉补偿自抗扰控制系统。首先,构建主动升沉补偿系统模型并设计线性自抗扰控制器(Linear Active Disturbance Rejection Control,LADRC);然后,针对LADRC参数调优的困难性,利用IBKA实现LADRC参数自适应整定;最后,通过在不同工况下进行仿真实验,IBKA-LADRC控制器均表现出良好的升沉补偿控制效果,满足系统要求。展开更多
文摘Autism Spectrum Disorder(ASD)is a complex neurodevelopmental condition that causes multiple challenges in behavioral and communication activities.In the medical field,the data related to ASD,the security measures are integrated in this research responsibly and effectively to develop the Mobile Neuron Attention Stage-by-Stage Network(MNASNet)model,which is the integration of both Mobile Network(MobileNet)and Neuron Attention Stage-by-Stage.The steps followed to detect ASD with privacy-preserved data are data normalization,data augmentation,and K-Anonymization.The clinical data of individuals are taken initially and preprocessed using the Z-score Normalization.Then,data augmentation is performed using the oversampling technique.Subsequently,K-Anonymization is effectuated by utilizing the Black-winged Kite Algorithm to ensure the privacy of medical data,where the best fitness solution is based on data utility and privacy.Finally,after improving the data privacy,the developed approach MNASNet is implemented for ASD detection,which achieves highly accurate results compared to traditional methods to detect autism behavior.Hence,the final results illustrate that the proposed MNASNet achieves an accuracy of 92.9%,TPR of 95.9%,and TNR of 90.9%at the k-samples of 8.
文摘The accurate estimation of lithium battery state of health(SOH)plays an important role in the health management of battery systems.In order to improve the prediction accuracy of SOH,this paper proposes a stochastic configuration network based on a multi-converged black-winged kite search algorithm,called SBKA-CLSCN.Firstly,the indirect health index(HI)of the battery is extracted by combining it with Person correlation coefficients in the battery charging and discharging cycle point data.Secondly,to address the problem that the black-winged kite optimization algorithm(BKA)falls into the local optimum problem and improve the convergence speed,the Sine chaotic black-winged kite search algorithm(SBKA)is designed,which mainly utilizes the Sine mapping and the golden-sine strategy to enhance the algorithm’s global optimality search ability;secondly,the Cauchy distribution and Laplace regularization techniques are used in the SCN model,which is referred to as CLSCN,thereby improving the model’s overall search capability and generalization ability.Finally,the performance of SBKA and SBKA-CLSCN is evaluated using eight benchmark functions and the CALCE battery dataset,respectively,and compared in comparison with the Long Short-Term Memory(LSTM)model and the Gated Recurrent Unit(GRU)model,and the experimental results demonstrate the feasibility and effectiveness of the SBKA-CLSCN algorithm.
文摘针对多变海况导致海上母船的吊放载荷产生升沉运动,进而影响水下作业安全的问题。基于主动式升沉补偿控制方法,以提高主动式升沉补偿系统的控制精度与稳定性为目标,提出一种基于混合策略改进的黑翅鸢算法(Improved Black Winged kite Algorithm,IBKA)用来优化主动升沉补偿自抗扰控制系统。首先,构建主动升沉补偿系统模型并设计线性自抗扰控制器(Linear Active Disturbance Rejection Control,LADRC);然后,针对LADRC参数调优的困难性,利用IBKA实现LADRC参数自适应整定;最后,通过在不同工况下进行仿真实验,IBKA-LADRC控制器均表现出良好的升沉补偿控制效果,满足系统要求。