In this study, a novel approach of the landslide numerical risk factor(LNRF) bivariate model was used in ensemble with linear multivariate regression(LMR) and boosted regression tree(BRT) models, coupled with radar re...In this study, a novel approach of the landslide numerical risk factor(LNRF) bivariate model was used in ensemble with linear multivariate regression(LMR) and boosted regression tree(BRT) models, coupled with radar remote sensing data and geographic information system(GIS), for landslide susceptibility mapping(LSM) in the Gorganroud watershed, Iran. Fifteen topographic, hydrological, geological and environmental conditioning factors and a landslide inventory(70%, or 298 landslides) were used in mapping. Phased array-type L-band synthetic aperture radar data were used to extract topographic parameters. Coefficients of tolerance and variance inflation factor were used to determine the coherence among conditioning factors. Data for the landslide inventory map were obtained from various resources, such as Iranian Landslide Working Party(ILWP), Forestry, Rangeland and Watershed Organisation(FRWO), extensive field surveys, interpretation of aerial photos and satellite images, and radar data. Of the total data, 30% were used to validate LSMs, using area under the curve(AUC), frequency ratio(FR) and seed cell area index(SCAI).Normalised difference vegetation index, land use/land cover and slope degree in BRT model elevation, rainfall and distance from stream were found to be important factors and were given the highest weightage in modelling. Validation results using AUC showed that the ensemble LNRF-BRT and LNRFLMR models(AUC = 0.912(91.2%) and 0.907(90.7%), respectively) had high predictive accuracy than the LNRF model alone(AUC = 0.855(85.5%)). The FR and SCAI analyses showed that all models divided the parameter classes with high precision. Overall, our novel approach of combining multivariate and machine learning methods with bivariate models, radar remote sensing data and GIS proved to be a powerful tool for landslide susceptibility mapping.展开更多
In this study, we proposed a rapid and sensitive method for quantification and spatial distribution of salicylic acid in film tablets using FT-Raman spectroscopy with multivariate curve resolution(MCR). For this purpo...In this study, we proposed a rapid and sensitive method for quantification and spatial distribution of salicylic acid in film tablets using FT-Raman spectroscopy with multivariate curve resolution(MCR). For this purpose, the constituents of film tablets were identified by using FT-Raman spectroscopy, and then eight different concentrations of salicylic acid tablets were visualized by Raman mapping. MCR was applied to mapping data to expose the active pharmaceutical ingredients in the presence of other excipients by monitoring distribution maps and combination of FT-Raman mapping with MCR enabled the determination of lower salicylic acid concentrations. In addition, the distribution of major excipient, lactose, was examined in the tablet form. A calibration curve was obtained by plotting the intensity of the Raman signal at 1635 cm^(-1) versus the concentration of salicylic acid and the correlation was found to be linear within the range of 0.5%–3.9% with a correlation coefficient of 0.99. The limit of detection for the technique was determined 0.35%. The ability of the technique to quantify salicylic acid in tablet test samples was also investigated.展开更多
Simple linear regression analysis has been used to map QTL for quantitative traits. Many traits of biological interest and/or economical importance in various species show binary phenotypic distributions (e.g., presen...Simple linear regression analysis has been used to map QTL for quantitative traits. Many traits of biological interest and/or economical importance in various species show binary phenotypic distributions (e.g., presence or absence). It has been shown that such a binary trait also can be analyzed with the simple linear regression, subject to virtually no loss in power compared to the generalized linear model analysis. Binary trait is a special case of a multiple categorical trait (e.g., low, medium or high). We propose a mechanism to decompose a multiple categorical trait into an array of correlated binary variables. The categorical trait turned multiple binary traits are analyzed with a multivariate linear regression method. Turning the problem of categorical trait mapping into that of multivariate mapping allows the exploration of pleiotropic effects of QTL for different categories. Efficiency of the method is verified through a series of simulation experiments.展开更多
Background: Vegetation distribution maps are of great significance for nature protection and management. In diverse tropical forests, accurate spatial mapping of vegetation types is challenging;the high species divers...Background: Vegetation distribution maps are of great significance for nature protection and management. In diverse tropical forests, accurate spatial mapping of vegetation types is challenging;the high species diversity and abundance of rare species challenge classification concepts, while remote sensing signals may not vary systematically with species composition, complicating the technical capability for delineating vegetation types in the landscape.Methods: We used a combination of field-based compositional data and their relations to environmental variables to predict the distribution of forest types in the Wuzhishan National Natural Reserve(WNNR), Hainan Island,China, using multivariate regression trees(MRT). The MRT was based on arboreal vegetation composition in 132plots of 20 m×20 m with a regular spacing of 1 km. Apart from the MRT, non-metric multidimensional scaling(NMDS) was used to evaluate vegetation-environment relationships.Results: The MRT model worked best when using 14 key environmental variables including topography, climate,latitude and soil, although the difference with the simpler model including only topographical variables was small. The full model classified the 132 plots into 3 vegetation types, 6 formation groups, 20 formations and 65associations at different hierarchical syntaxonomic levels. This model was the basis for forest vegetation maps for the WNNR. MRT and NMDS showed that elevation was the main driving force for the distribution of vegetation types and formation groups. Climate, latitude, and soil(especially available P), together with topographic variables, all influenced the distribution of formations and associations.Conclusions: While elevation determines forest-type distributions, lower-level syntaxonomic forest classes respond to the topographic diversity typical for mountains. Apart from providing the first detailed forest vegetation map for any part of WNNR, we show how, in spite of limitations, MRT with existing environmental data can be a useful method for mapping diverse and remote tropical forests.展开更多
Surface sediment data acquired by the grab sampling technique were used in the present study to produce a high-resolution and full coverage surface grain-size mapping. The objective is to test whether the hypothetical...Surface sediment data acquired by the grab sampling technique were used in the present study to produce a high-resolution and full coverage surface grain-size mapping. The objective is to test whether the hypothetically natural relationship between the surface sediment distribution and complex bathymetry could be used to improve the quality of surface sediment patches mapping. This is based on our hypothesis that grain-size characteristics of the ridge surface sediments must be intrinsically related to the hydrodynamic condition, i.e. storm-induced currents and the geometry of the seabed morphology. The median grain-size data were obtained from grab samples with inclusive bathymetric point recorded at 713 locations on the high-energy and shallow shelf of the Spiekeroog Barrier Island at the German Bight of the Southern North Sea. The area features two-parallel shoreface-connected ridges which is situated obliquely WNW-SSE oriented and mostly sandy in texture. We made use the median grain-size (d50) as the predictand and the bathymetry as the covariable to produce a high-resolution raster map of median grain-size distribution using the Cokriging interpolation. From the cross-validation of the estimated median grain-size data with the measured ones, it is clear that the gradient of the linear regression line for Cokriging is leaning closer towards the theoretical perfect-correlation line (45°) compared to that for Anisotropy Kriging. The interpolation result with Cokriging shows more realistic estimates on the unknown points of the median grain-size and gave detail to surface sediment patchiness, which spatial scale is more or less in agreement with previous studies. In addition to the moderate correlation obtained from the Pearson correlation (r = 0.44), the cross-variogram shows a more precise nature of their spatial correlation, which is physically meaningful for the interpolation process. The present study partially contributes to the framework of habitat mapping and nature protection that is to fill the gaps in physical information in a high-energetic and shallow coastal shelf.展开更多
This study aims to investigate the hydrochemical characteristics of shallow aquifer in a semi-arid region situated in northwest Algeria,and to understand the major factors governing groundwater quality.The study area ...This study aims to investigate the hydrochemical characteristics of shallow aquifer in a semi-arid region situated in northwest Algeria,and to understand the major factors governing groundwater quality.The study area is suffering from recurring droughts,groundwater resource over-exploitation and groundwater quality degradation.The approach used is a combination of traditional hydrochemical analysis methods of multivariate statistical techniques,principal component analysis(PCA),and ratios of major ions,based on the data derived from 33 groundwater samples collected in February 2014.Results show that groundwater in the study area are highly mineralized and collectively has a high concentration of chloride(as Cl^(−)).The dominant water types are Na-Cl(27%),Mg-HCO_(3)(24%)and Mg-Cl(24%).According to the(PCA)approach,salinization is the main process that controls the hydrochemical variability.The PCA analysis reveal the impact of anthropogenic factor especially the agricultural activities on the groundwater quality.The PCA highlighted two types of recharge:Superficial recharge from effective rainfall and excess irrigation water distinguished by the presence of nitrate and lateral recharge or vertical leakage from carbonate formations marked by the omnipresence of HCO_(3)^(−).Additionally,three categories of samples were identified:(1)samples characterized by good water quality and receiving notable recharge from carbonate formations;(2)samples impacted by the natural salinization process;and(3)samples contaminated by anthropogenic activities.The major natural processes influencing water chemistry are the weathering of carbonate and silicate rocks,dissolution of evaporite as halite,evaporation and cation exchange.The study results can provide the basis for local decision makers to ensure the sustainable management of groundwater and the safety of drinking water.展开更多
Despite many studies on land degradation in the Highlands of Northern Ethiopia, quantitative information regarding long-term changes in land use/cover(LUC) is rare. Hence, this study aims to investigate the LUC change...Despite many studies on land degradation in the Highlands of Northern Ethiopia, quantitative information regarding long-term changes in land use/cover(LUC) is rare. Hence, this study aims to investigate the LUC changes in the Geba catchment(5142 km2), Northern Ethiopia, over 80 years(1935–2014). Aerial photographs(APs) of the 1930 s and Google Earth(GE) images(2014) were used. The point-count technique was utilized by overlaying a grid on APs and GE images. The occurrence of cropland, forest, grassland, shrubland, bare land, built-up areas and water body was counted to compute their fractions. A multivariate adaptive regression spline was applied to identify the explanatory factors of LUC and to create fractional maps of LUC. The results indicate significant changes of most types, except for forest and cropland. In the 1930 s, shrubland(48%) was dominant, followed by cropland(39%). The fraction of cropland in 2014(42%) remained approximately the same as in the 1930 s, while shrubland significantly dropped to 37%. Forests shrank further from a meagre 6.3% in the 1930 s to 2.3% in 2014. High overall accuracies(93% and 83%) and strong Kappa coefficients(89% and 72%) for point counts and fractional maps respectively indicate the validity of the techniques used for LUC mapping.展开更多
A comprehensive understanding of spatial distribution and clustering patterns of gravels is of great significance for ecological restoration and monitoring.However,traditional methods for studying gravels are low-effi...A comprehensive understanding of spatial distribution and clustering patterns of gravels is of great significance for ecological restoration and monitoring.However,traditional methods for studying gravels are low-efficiency and have many errors.This study researched the spatial distribution and cluster characteristics of gravels based on digital image processing technology combined with a self-organizing map(SOM)and multivariate statistical methods in the grassland of northern Tibetan Plateau.Moreover,the correlation of morphological parameters of gravels between different cluster groups and the environmental factors affecting gravel distribution were analyzed.The results showed that the morphological characteristics of gravels in northern region(cluster C)and southern region(cluster B)of the Tibetan Plateau were similar,with a low gravel coverage,small gravel diameter,and elongated shape.These regions were mainly distributed in high mountainous areas with large topographic relief.The central region(cluster A)has high coverage of gravels with a larger diameter,mainly distributed in high-altitude plains with smaller undulation.Principal component analysis(PCA)results showed that the gravel distribution of cluster A may be mainly affected by vegetation,while those in clusters B and C could be mainly affected by topography,climate,and soil.The study confirmed that the combination of digital image processing technology and SOM could effectively analyzed the spatial distribution characteristics of gravels,providing a new mode for gravel research.展开更多
To detect genes underlying anxiety-related traits in mice,we performed univariate and multivariate QTL mapping analyses of phenotypes obtained from 71 mice of the BXD recombinant inbred (RI) strains (n=528 mice) and t...To detect genes underlying anxiety-related traits in mice,we performed univariate and multivariate QTL mapping analyses of phenotypes obtained from 71 mice of the BXD recombinant inbred (RI) strains (n=528 mice) and their parental strains (C57BL/6J and DBA/2J).Separate and joint mapping analyses were carried out using a linkage map composed of 506 simple sequence repeats (SSRs).The main QTL effects,interactions between pairs of QTLs (epistasis),and their environmental interactions were estimated.The results showed that anxiety-related traits were influenced by multiple QTLs (five main effect QTLs and three epistatic QTLs).Ten potential anxiety-related candidate genes within the QTL intervals on chromosomes 5,13 and 15 were identified.Some of these genes have been reported previously to be associated with the anxiety response.Based on our results,it is suggested that the multivariate QTL mapping approach improves the statistical power for detecting QTL and the precision of parameter estimation.Moreover,multivariate mapping can also detect pleiotropic QTL effects.展开更多
Quantitative descriptions of geochemical patterns and providing geochemical anomaly map are important in applied geochemistry. Several statistical methodologies are presented in order to identify and separate geochemi...Quantitative descriptions of geochemical patterns and providing geochemical anomaly map are important in applied geochemistry. Several statistical methodologies are presented in order to identify and separate geochemical anomalies. The U-statistic method is one of the most important structural methods and is a kind of weighted mean that surrounding points of samples are considered in U value determination. However, it is able to separate the different anomalies based on only one variable. The main aim of the presented study is development of this method in a multivariate mode. For this purpose, U-statistic method should be combined with a multivariate method which devotes a new value to each sample based on several variables. Therefore, at the first step, the optimum p is calculated in p-norm distance and then U-statistic method is applied on p-norm distance values of the samples because p-norm distance is calculated based on several variables. This method is a combination of efficient U-statistic method and p-norm distance and is used for the first time in this research. Results show that p-norm distance of p=2(Euclidean distance) in the case of a fact that Au and As can be considered optimized p-norm distance with the lowest error. The samples indicated by the combination of these methods as anomalous are more regular, less dispersed and more accurate than using just the U-statistic or other nonstructural methods such as Mahalanobis distance. Also it was observed that the combination results are closely associated with the defined Au ore indication within the studied area. Finally, univariate and bivariate geochemical anomaly maps are provided for Au and As, which have been respectively prepared using U-statistic and its combination with Euclidean distance method.展开更多
To solve the shortest path planning problems on grid-based map efficiently,a novel heuristic path planning approach based on an intelligent swarm optimization method called Multivariant Optimization Algorithm( MOA) an...To solve the shortest path planning problems on grid-based map efficiently,a novel heuristic path planning approach based on an intelligent swarm optimization method called Multivariant Optimization Algorithm( MOA) and a modified indirect encoding scheme are proposed. In MOA,the solution space is iteratively searched through global exploration and local exploitation by intelligent searching individuals,who are named as atoms. MOA is employed to locate the shortest path through iterations of global path planning and local path refinements in the proposed path planning approach. In each iteration,a group of global atoms are employed to perform the global path planning aiming at finding some candidate paths rapidly and then a group of local atoms are allotted to each candidate path for refinement. Further,the traditional indirect encoding scheme is modified to reduce the possibility of constructing an infeasible path from an array. Comparative experiments against two other frequently use intelligent optimization approaches: Genetic Algorithm( GA) and Particle Swarm Optimization( PSO) are conducted on benchmark test problems of varying complexity to evaluate the performance of MOA. The results demonstrate that MOA outperforms GA and PSO in terms of optimality indicated by the length of the located path.展开更多
The elevated-temperature deformation behavior of Ti2AlNb superalloy was observed by isothermal compression experiments in a wide range of temperatures(950–1200°C)and strain rates(0.001–10 s^(-1)).The flow behav...The elevated-temperature deformation behavior of Ti2AlNb superalloy was observed by isothermal compression experiments in a wide range of temperatures(950–1200°C)and strain rates(0.001–10 s^(-1)).The flow behavior is nonlinear,strongly coupled,and multivariable.The constitutive models,namely the double multivariate nonlinear regression model,artificial neural network model,and modified artificial neural network model with an explicit expression,were applied to describe the Ti2AlNb superalloy plastic deformation behavior.The comparative predictability of those constitutive models was further evaluated by considering the correlation coefficient and average absolute relative error.The comparative results show that the modified artificial network model can describe the flow stress of Ti2AlNb superalloy more accurately than the other developed constitutive models.The explicit expression obtained from the modified artificial neural network model can be directly used for finite element simulation.The modified artificial neural network model solves the problems that the double multivariate nonlinear regression model cannot describe the nonlinear,strongly coupled,and multivariable flow behavior of Ti2AlNb superalloy accurately,and the artificial neural network model cannot be embedded into the finite element software directly.However,the modified artificial neural network model is mainly dependent on the quantity of high-quality experimental data and characteristic variables,and the modified artificial neural network model has not physical meanings.Besides,the processing maps were applied to obtain the optimum processing parameters.展开更多
基金supported by the Centre for Advanced Modelling and Geospatial Information Systems(CAMGIS),UTS under grant numbers 321740.2232335,323930,and 321740.2232357
文摘In this study, a novel approach of the landslide numerical risk factor(LNRF) bivariate model was used in ensemble with linear multivariate regression(LMR) and boosted regression tree(BRT) models, coupled with radar remote sensing data and geographic information system(GIS), for landslide susceptibility mapping(LSM) in the Gorganroud watershed, Iran. Fifteen topographic, hydrological, geological and environmental conditioning factors and a landslide inventory(70%, or 298 landslides) were used in mapping. Phased array-type L-band synthetic aperture radar data were used to extract topographic parameters. Coefficients of tolerance and variance inflation factor were used to determine the coherence among conditioning factors. Data for the landslide inventory map were obtained from various resources, such as Iranian Landslide Working Party(ILWP), Forestry, Rangeland and Watershed Organisation(FRWO), extensive field surveys, interpretation of aerial photos and satellite images, and radar data. Of the total data, 30% were used to validate LSMs, using area under the curve(AUC), frequency ratio(FR) and seed cell area index(SCAI).Normalised difference vegetation index, land use/land cover and slope degree in BRT model elevation, rainfall and distance from stream were found to be important factors and were given the highest weightage in modelling. Validation results using AUC showed that the ensemble LNRF-BRT and LNRFLMR models(AUC = 0.912(91.2%) and 0.907(90.7%), respectively) had high predictive accuracy than the LNRF model alone(AUC = 0.855(85.5%)). The FR and SCAI analyses showed that all models divided the parameter classes with high precision. Overall, our novel approach of combining multivariate and machine learning methods with bivariate models, radar remote sensing data and GIS proved to be a powerful tool for landslide susceptibility mapping.
基金supported by grant from Gazi University, Project no: 02/2012-27
文摘In this study, we proposed a rapid and sensitive method for quantification and spatial distribution of salicylic acid in film tablets using FT-Raman spectroscopy with multivariate curve resolution(MCR). For this purpose, the constituents of film tablets were identified by using FT-Raman spectroscopy, and then eight different concentrations of salicylic acid tablets were visualized by Raman mapping. MCR was applied to mapping data to expose the active pharmaceutical ingredients in the presence of other excipients by monitoring distribution maps and combination of FT-Raman mapping with MCR enabled the determination of lower salicylic acid concentrations. In addition, the distribution of major excipient, lactose, was examined in the tablet form. A calibration curve was obtained by plotting the intensity of the Raman signal at 1635 cm^(-1) versus the concentration of salicylic acid and the correlation was found to be linear within the range of 0.5%–3.9% with a correlation coefficient of 0.99. The limit of detection for the technique was determined 0.35%. The ability of the technique to quantify salicylic acid in tablet test samples was also investigated.
基金Item supported by national natural sciencefoundation( No.30471236)
文摘Simple linear regression analysis has been used to map QTL for quantitative traits. Many traits of biological interest and/or economical importance in various species show binary phenotypic distributions (e.g., presence or absence). It has been shown that such a binary trait also can be analyzed with the simple linear regression, subject to virtually no loss in power compared to the generalized linear model analysis. Binary trait is a special case of a multiple categorical trait (e.g., low, medium or high). We propose a mechanism to decompose a multiple categorical trait into an array of correlated binary variables. The categorical trait turned multiple binary traits are analyzed with a multivariate linear regression method. Turning the problem of categorical trait mapping into that of multivariate mapping allows the exploration of pleiotropic effects of QTL for different categories. Efficiency of the method is verified through a series of simulation experiments.
基金financially supported by National Key R&D Program of China(2021YFD220040403 and 2021YFD220040304)the China Scholarship Council(202107565021).
文摘Background: Vegetation distribution maps are of great significance for nature protection and management. In diverse tropical forests, accurate spatial mapping of vegetation types is challenging;the high species diversity and abundance of rare species challenge classification concepts, while remote sensing signals may not vary systematically with species composition, complicating the technical capability for delineating vegetation types in the landscape.Methods: We used a combination of field-based compositional data and their relations to environmental variables to predict the distribution of forest types in the Wuzhishan National Natural Reserve(WNNR), Hainan Island,China, using multivariate regression trees(MRT). The MRT was based on arboreal vegetation composition in 132plots of 20 m×20 m with a regular spacing of 1 km. Apart from the MRT, non-metric multidimensional scaling(NMDS) was used to evaluate vegetation-environment relationships.Results: The MRT model worked best when using 14 key environmental variables including topography, climate,latitude and soil, although the difference with the simpler model including only topographical variables was small. The full model classified the 132 plots into 3 vegetation types, 6 formation groups, 20 formations and 65associations at different hierarchical syntaxonomic levels. This model was the basis for forest vegetation maps for the WNNR. MRT and NMDS showed that elevation was the main driving force for the distribution of vegetation types and formation groups. Climate, latitude, and soil(especially available P), together with topographic variables, all influenced the distribution of formations and associations.Conclusions: While elevation determines forest-type distributions, lower-level syntaxonomic forest classes respond to the topographic diversity typical for mountains. Apart from providing the first detailed forest vegetation map for any part of WNNR, we show how, in spite of limitations, MRT with existing environmental data can be a useful method for mapping diverse and remote tropical forests.
文摘Surface sediment data acquired by the grab sampling technique were used in the present study to produce a high-resolution and full coverage surface grain-size mapping. The objective is to test whether the hypothetically natural relationship between the surface sediment distribution and complex bathymetry could be used to improve the quality of surface sediment patches mapping. This is based on our hypothesis that grain-size characteristics of the ridge surface sediments must be intrinsically related to the hydrodynamic condition, i.e. storm-induced currents and the geometry of the seabed morphology. The median grain-size data were obtained from grab samples with inclusive bathymetric point recorded at 713 locations on the high-energy and shallow shelf of the Spiekeroog Barrier Island at the German Bight of the Southern North Sea. The area features two-parallel shoreface-connected ridges which is situated obliquely WNW-SSE oriented and mostly sandy in texture. We made use the median grain-size (d50) as the predictand and the bathymetry as the covariable to produce a high-resolution raster map of median grain-size distribution using the Cokriging interpolation. From the cross-validation of the estimated median grain-size data with the measured ones, it is clear that the gradient of the linear regression line for Cokriging is leaning closer towards the theoretical perfect-correlation line (45°) compared to that for Anisotropy Kriging. The interpolation result with Cokriging shows more realistic estimates on the unknown points of the median grain-size and gave detail to surface sediment patchiness, which spatial scale is more or less in agreement with previous studies. In addition to the moderate correlation obtained from the Pearson correlation (r = 0.44), the cross-variogram shows a more precise nature of their spatial correlation, which is physically meaningful for the interpolation process. The present study partially contributes to the framework of habitat mapping and nature protection that is to fill the gaps in physical information in a high-energetic and shallow coastal shelf.
文摘This study aims to investigate the hydrochemical characteristics of shallow aquifer in a semi-arid region situated in northwest Algeria,and to understand the major factors governing groundwater quality.The study area is suffering from recurring droughts,groundwater resource over-exploitation and groundwater quality degradation.The approach used is a combination of traditional hydrochemical analysis methods of multivariate statistical techniques,principal component analysis(PCA),and ratios of major ions,based on the data derived from 33 groundwater samples collected in February 2014.Results show that groundwater in the study area are highly mineralized and collectively has a high concentration of chloride(as Cl^(−)).The dominant water types are Na-Cl(27%),Mg-HCO_(3)(24%)and Mg-Cl(24%).According to the(PCA)approach,salinization is the main process that controls the hydrochemical variability.The PCA analysis reveal the impact of anthropogenic factor especially the agricultural activities on the groundwater quality.The PCA highlighted two types of recharge:Superficial recharge from effective rainfall and excess irrigation water distinguished by the presence of nitrate and lateral recharge or vertical leakage from carbonate formations marked by the omnipresence of HCO_(3)^(−).Additionally,three categories of samples were identified:(1)samples characterized by good water quality and receiving notable recharge from carbonate formations;(2)samples impacted by the natural salinization process;and(3)samples contaminated by anthropogenic activities.The major natural processes influencing water chemistry are the weathering of carbonate and silicate rocks,dissolution of evaporite as halite,evaporation and cation exchange.The study results can provide the basis for local decision makers to ensure the sustainable management of groundwater and the safety of drinking water.
基金a scholarship of the Special Research Fund (BOF) obtained from Ghent University, Belgiumpartially covered by the RIP-MU (VLIR, Belgium) project
文摘Despite many studies on land degradation in the Highlands of Northern Ethiopia, quantitative information regarding long-term changes in land use/cover(LUC) is rare. Hence, this study aims to investigate the LUC changes in the Geba catchment(5142 km2), Northern Ethiopia, over 80 years(1935–2014). Aerial photographs(APs) of the 1930 s and Google Earth(GE) images(2014) were used. The point-count technique was utilized by overlaying a grid on APs and GE images. The occurrence of cropland, forest, grassland, shrubland, bare land, built-up areas and water body was counted to compute their fractions. A multivariate adaptive regression spline was applied to identify the explanatory factors of LUC and to create fractional maps of LUC. The results indicate significant changes of most types, except for forest and cropland. In the 1930 s, shrubland(48%) was dominant, followed by cropland(39%). The fraction of cropland in 2014(42%) remained approximately the same as in the 1930 s, while shrubland significantly dropped to 37%. Forests shrank further from a meagre 6.3% in the 1930 s to 2.3% in 2014. High overall accuracies(93% and 83%) and strong Kappa coefficients(89% and 72%) for point counts and fractional maps respectively indicate the validity of the techniques used for LUC mapping.
基金funded by the National Natural Science Foundation of China(41971226,41871357)the Major Research and Development and Achievement Transformation Projects of Qinghai,China(2022-QY-224)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA28110502,XDA19030303).
文摘A comprehensive understanding of spatial distribution and clustering patterns of gravels is of great significance for ecological restoration and monitoring.However,traditional methods for studying gravels are low-efficiency and have many errors.This study researched the spatial distribution and cluster characteristics of gravels based on digital image processing technology combined with a self-organizing map(SOM)and multivariate statistical methods in the grassland of northern Tibetan Plateau.Moreover,the correlation of morphological parameters of gravels between different cluster groups and the environmental factors affecting gravel distribution were analyzed.The results showed that the morphological characteristics of gravels in northern region(cluster C)and southern region(cluster B)of the Tibetan Plateau were similar,with a low gravel coverage,small gravel diameter,and elongated shape.These regions were mainly distributed in high mountainous areas with large topographic relief.The central region(cluster A)has high coverage of gravels with a larger diameter,mainly distributed in high-altitude plains with smaller undulation.Principal component analysis(PCA)results showed that the gravel distribution of cluster A may be mainly affected by vegetation,while those in clusters B and C could be mainly affected by topography,climate,and soil.The study confirmed that the combination of digital image processing technology and SOM could effectively analyzed the spatial distribution characteristics of gravels,providing a new mode for gravel research.
基金supported by National Basic Research Program of China(2011CB109306)National Key Technologies R&D Program in China(2009ZX08009-004B)+1 种基金CNTC(110200701023)YNTC(08A05)
文摘To detect genes underlying anxiety-related traits in mice,we performed univariate and multivariate QTL mapping analyses of phenotypes obtained from 71 mice of the BXD recombinant inbred (RI) strains (n=528 mice) and their parental strains (C57BL/6J and DBA/2J).Separate and joint mapping analyses were carried out using a linkage map composed of 506 simple sequence repeats (SSRs).The main QTL effects,interactions between pairs of QTLs (epistasis),and their environmental interactions were estimated.The results showed that anxiety-related traits were influenced by multiple QTLs (five main effect QTLs and three epistatic QTLs).Ten potential anxiety-related candidate genes within the QTL intervals on chromosomes 5,13 and 15 were identified.Some of these genes have been reported previously to be associated with the anxiety response.Based on our results,it is suggested that the multivariate QTL mapping approach improves the statistical power for detecting QTL and the precision of parameter estimation.Moreover,multivariate mapping can also detect pleiotropic QTL effects.
文摘Quantitative descriptions of geochemical patterns and providing geochemical anomaly map are important in applied geochemistry. Several statistical methodologies are presented in order to identify and separate geochemical anomalies. The U-statistic method is one of the most important structural methods and is a kind of weighted mean that surrounding points of samples are considered in U value determination. However, it is able to separate the different anomalies based on only one variable. The main aim of the presented study is development of this method in a multivariate mode. For this purpose, U-statistic method should be combined with a multivariate method which devotes a new value to each sample based on several variables. Therefore, at the first step, the optimum p is calculated in p-norm distance and then U-statistic method is applied on p-norm distance values of the samples because p-norm distance is calculated based on several variables. This method is a combination of efficient U-statistic method and p-norm distance and is used for the first time in this research. Results show that p-norm distance of p=2(Euclidean distance) in the case of a fact that Au and As can be considered optimized p-norm distance with the lowest error. The samples indicated by the combination of these methods as anomalous are more regular, less dispersed and more accurate than using just the U-statistic or other nonstructural methods such as Mahalanobis distance. Also it was observed that the combination results are closely associated with the defined Au ore indication within the studied area. Finally, univariate and bivariate geochemical anomaly maps are provided for Au and As, which have been respectively prepared using U-statistic and its combination with Euclidean distance method.
基金Sponsored by the National Natural Science Foundation of China(Grant No.61261007,61002049)the Key Program of Yunnan Natural Science Foundation(Grant No.2013FA008)
文摘To solve the shortest path planning problems on grid-based map efficiently,a novel heuristic path planning approach based on an intelligent swarm optimization method called Multivariant Optimization Algorithm( MOA) and a modified indirect encoding scheme are proposed. In MOA,the solution space is iteratively searched through global exploration and local exploitation by intelligent searching individuals,who are named as atoms. MOA is employed to locate the shortest path through iterations of global path planning and local path refinements in the proposed path planning approach. In each iteration,a group of global atoms are employed to perform the global path planning aiming at finding some candidate paths rapidly and then a group of local atoms are allotted to each candidate path for refinement. Further,the traditional indirect encoding scheme is modified to reduce the possibility of constructing an infeasible path from an array. Comparative experiments against two other frequently use intelligent optimization approaches: Genetic Algorithm( GA) and Particle Swarm Optimization( PSO) are conducted on benchmark test problems of varying complexity to evaluate the performance of MOA. The results demonstrate that MOA outperforms GA and PSO in terms of optimality indicated by the length of the located path.
基金China National Science and Technology Major Project(Grant No.2017-VI-0004-0075).
文摘The elevated-temperature deformation behavior of Ti2AlNb superalloy was observed by isothermal compression experiments in a wide range of temperatures(950–1200°C)and strain rates(0.001–10 s^(-1)).The flow behavior is nonlinear,strongly coupled,and multivariable.The constitutive models,namely the double multivariate nonlinear regression model,artificial neural network model,and modified artificial neural network model with an explicit expression,were applied to describe the Ti2AlNb superalloy plastic deformation behavior.The comparative predictability of those constitutive models was further evaluated by considering the correlation coefficient and average absolute relative error.The comparative results show that the modified artificial network model can describe the flow stress of Ti2AlNb superalloy more accurately than the other developed constitutive models.The explicit expression obtained from the modified artificial neural network model can be directly used for finite element simulation.The modified artificial neural network model solves the problems that the double multivariate nonlinear regression model cannot describe the nonlinear,strongly coupled,and multivariable flow behavior of Ti2AlNb superalloy accurately,and the artificial neural network model cannot be embedded into the finite element software directly.However,the modified artificial neural network model is mainly dependent on the quantity of high-quality experimental data and characteristic variables,and the modified artificial neural network model has not physical meanings.Besides,the processing maps were applied to obtain the optimum processing parameters.