Bistable beams,with their characteristic recoverable elastic large deformations,are widely utilized in reversible deformation designs.However,analytical modeling of bistable beams under third-order mode deformation re...Bistable beams,with their characteristic recoverable elastic large deformations,are widely utilized in reversible deformation designs.However,analytical modeling of bistable beams under third-order mode deformation remains a challenge.For example,theoretical research on bistable beams in existing energy-consuming materials has focused mainly on the deformation process of the second-order mode.To address this challenge,the present work establishes an analytical model for the deformation process of a bistable beam from the first-order mode to the third-order mode via the elliptic integral method.Additionally,judgment conditions for identifying the critical points of modal transitions are provided.Second,the analytical model allows for the calculation of the maximum instability force and the unstable equilibrium position when third-order mode deformation occurs in the bistable beam during the snap-through process.The unstable equilibrium position of the bistable beam during third-order mode deformation is significantly lower than the positions of the two fixed ends.The validity of the analytical model was confirmed through experiments and finite element modeling.In the compression experiments of bistable beams with identical dimensional parameters presented in the present work,the work done by the external force during the third-order mode deformation process is 2 times that of the second-order mode deformation process.This will provide a completely new approach for the design of energy-consuming materials based on bistable beams.展开更多
Pneumatic soft robots have undergone significant advancements in recent years.However,the majority of robot motion control still relies on electronic computers to regulate the valves and air pumps.Despite the potentia...Pneumatic soft robots have undergone significant advancements in recent years.However,the majority of robot motion control still relies on electronic computers to regulate the valves and air pumps.Despite the potential reduction in controller dependency by utilizing soft pneumatic oscillators,challenges such as low flow rates,complex manufacturing processes,and lack of adjustment ability persist.Inspired by the geckos'spine,we propose a Spinal Bistable Oscillator(SBO)that operates without discrete components or electronic control hardware,achieving stable oscillatory motion under constant air pressure.This oscillator employs a soft control valve and lagging pin,which can switch the direction of airflow conduction based on the oscillation angle of the spine.Different types of actuators can be controlled using a series connection.In this study,the effective working range of the soft control valve,influence of the spring pretension force on the torque during oscillation,and effect of different throttle tube lengths on the oscillation frequency were investigated.Furthermore,a self-crawling robot was developed.Experimental results demonstrate that the robot can crawl at speeds ranging from 3.6 to 5.7 mm/s(or 3.1 to 4.9 body length/min)and overcome its own gravity(with a weight of 165 g)to climb vertically.The SBO proposed in this study exhibits characteristics of lightweight,low cost,high oscillation torque,and tunable frequency.It holds promise for application in joint control of future pneumatic soft robots.展开更多
The AgTCNQ thin-film was prepared by vacuum vapor co-deposition and characterized by infrared spectral analysis,and then a uniform AgTCNQ (TCNQ-- 7,7,8,8-tetracyanoquinodimethane) thin-film layer was sandwiched in a...The AgTCNQ thin-film was prepared by vacuum vapor co-deposition and characterized by infrared spectral analysis,and then a uniform AgTCNQ (TCNQ-- 7,7,8,8-tetracyanoquinodimethane) thin-film layer was sandwiched in a Ti/AgTCNQ/Ati crossbar structure array as organic bistable devices (OBD).A reversible and reproducible memory switching property,caused by intermolecular charge transfer (CT) in the AgTCNQ thin-film, was observed in the organic bista- ble devices. The positive threshold voltage from the high impedance state to the low impedance was about 3.8-5V, with the reverse phenomenon occurring at a negative voltage of - 3.5- - 4. 4V,lower than that with a CuTCNQ active layer. The crossbar array of OBDs with AgTCNQ is promising for nonvolatile organic memory applications.展开更多
This paper presents an experimental study of the broadband energy harvesting and dynamic responses of an L-shaped piezoelectric cantilever beam.Experimental results show that the L-shaped piezoelectric beam generates ...This paper presents an experimental study of the broadband energy harvesting and dynamic responses of an L-shaped piezoelectric cantilever beam.Experimental results show that the L-shaped piezoelectric beam generates two optimal voltage peaks when the horizontal beam size is similar to the vertical beam size.Several optimized L-shaped piezoelectric cantilever beam structures are proposed.Power generation using the inverted bistable L-shaped beam is better.It is observed experimentally that the inverted bistable L-shaped beam structure shows obvious bistable characteristics and hard spring characteristics.Furthermore,the corresponding relationship between the bistable phase portrait and the potential energy curve is found in the experiment.This is the first time that a phase portrait for stiffness hardening of an L-shaped beam has been found experimentally.These results can be applied to analysis of new piezoelectric power generation structures.展开更多
In this paper we present the control and synchronization of a coupled Bragg acousto-optic bistable map system using nonlinear feedback technology. This nonlinear feedback technology is useful to control a temporally c...In this paper we present the control and synchronization of a coupled Bragg acousto-optic bistable map system using nonlinear feedback technology. This nonlinear feedback technology is useful to control a temporally chaotic system as well as a spatiotemporally chaotic system. It can be extended to synchronize the spatiotemporal chaos. It can work in a wide range of the controlled and synchronized signals, so it can decrease the sensitivity down to a noise level. The synchronization can be obtained by the analysis of the largest conditional Lyapunov exponent spectrum, and easily implemented in practical systems just by adjusting the coupled strength without any pre-knowledge of the dynamic system required.展开更多
By applying the second order Melnikov function, the chaos behaviors of a bistable piezoelectric cantilever power generation system are analyzed. Firstly, the conditions for emerging chaos of the system are derived by ...By applying the second order Melnikov function, the chaos behaviors of a bistable piezoelectric cantilever power generation system are analyzed. Firstly, the conditions for emerging chaos of the system are derived by the second order Melnikov function. Secondly, the effects of each item in chaos threshold expression are analyzed. The excitation frequency and resistance values, which have the most influence on chaos threshold value, are found. The result from the second order Melnikov function is more accurate compared with that from the first order Melnikov function. Finally, the attraction basins of large amplitude motions under different exciting frequency, exciting amplitude, and resistance parameters are given.展开更多
Double-clamped bistable buckled beams demonstrate great versatility in various fields such as robotics,energy harvesting,and microelectromechanical system(MEMS).However,their design often requires time-consuming and e...Double-clamped bistable buckled beams demonstrate great versatility in various fields such as robotics,energy harvesting,and microelectromechanical system(MEMS).However,their design often requires time-consuming and expensive computations.In this work,we present a method to easily and rapidly design bistable buckled beams subjected to a transverse point force.Based on the Euler–Bernoulli beam theory,we establish a theoretical model of bistable buckled beams to characterize their snapthrough properties.This model is verified against the results from a finite element analysis(FEA)model,with maximum discrepancy less than 7%.By analyzing and simplifying our theoretical model,we derive explicit analytical expressions for critical behavioral values on the force-displacement curve of the beam.These behavioral values include critical force,critical displacement,and travel,which are generally sufficient for characterizing the snapthrough properties of a bistable buckled beam.Based on these analytical formulas,we investigate the influence of a bistable buckled beam's key design parameters,including its actuation position and precompression,on its critical behavioral values,with our results validated by FEA simulations.Our analytical method enables fast and computationally inexpensive design of bistable buckled beams and can guide the design of complicated systems that incorporate bistable mechanisms.展开更多
This paper investigates the stochastic resonance in a time-delayed bistable system subjected to multiplicative and additive white noise and asymmetric dichotomous noise. Under the adiabatic approximation condition, th...This paper investigates the stochastic resonance in a time-delayed bistable system subjected to multiplicative and additive white noise and asymmetric dichotomous noise. Under the adiabatic approximation condition, the expression of the signal-to-noise ratio (SNR) is obtained. It finds that the SNR is a non-monotonic function of the delayed times, of the amplitude of the driving square-wave signal, as well as of the asymmetry of the dichotomous noise. In addition, the SNR varies non-monotonously with the intensities of the multiplicative and additive noise as well as the system parameters. Moreover, the SNR depends non-monotonically on the correlate rate of the dichotomous noise.展开更多
As two crucial indicators of bistable energy harvesting performance,band width and power amplitude are simultaneously investigated for obtaining the synergy effect.Toward this goal,a nonlinear electromechanical-couple...As two crucial indicators of bistable energy harvesting performance,band width and power amplitude are simultaneously investigated for obtaining the synergy effect.Toward this goal,a nonlinear electromechanical-coupled distributed-parameter model of the bistable piezoelectric energy harvester is established.Based on the electromechanical decoupled method,approximate higher-order analytical solutions of the beam displacement,harvested power and effective bandwidth are derived.The cubic-function discriminant of the analytical solution is introduced to determine the nonlinear excitation-frequency boundaries of multiple solutions and power peak.The stability of the multiple solutions is analyzed through Jacobi matrix of the modulation equation.Superharmonic resonance is notified.Upward and downward sweep experiments and numerical solutions of time history curves,phase portraits and power spectra confirm the analytical findings.To realize optimized broadband energy harvesting,the parametric study on the coefficients of the linear and cubic elastic external forces with the corresponding optimal load resistance is performed.For the nonlinear hardening case,more positive linear coefficient is preferred.For the nonlinear softening case,the cubic coefficient slightly larger than its optimal value is recommended at each given linear coefficient.By tuning the load resistance and linear and cubic coefficients of the external force,broadband bistable energy harvesting with optimized power is realized.展开更多
Stochastic resonance(SR) is studied in an under-damped bistable system driven by the harmonic mixing signal and Gaussian white noise. Using the linear response theory(LRT), the expressions of the spectral amplific...Stochastic resonance(SR) is studied in an under-damped bistable system driven by the harmonic mixing signal and Gaussian white noise. Using the linear response theory(LRT), the expressions of the spectral amplification at fundamental and higher-order harmonic are obtained. The effects of damping coefficient, noise intensity, signal amplitude, and frequency on spectral amplifications are explored. Meanwhile, the power spectral density(PSD) and signal-to-noise ratio(SNR) are calculated to quantify SR and verify the theoretical results. The SNRs at the first and second harmonics exhibit a minimum first and a maximum later with increasing noise intensity. That is, both of the noise-induced suppression and resonance can be observed by choosing proper system parameters. Especially, when the ratio of the second harmonic amplitude to the fundamental one takes a large value, the SNR at the fundamental harmonic is a monotonic function of noise intensity and the SR phenomenon disappears.展开更多
The steady-state properties of a bistable system are investigated when both the multiplicative noise and the coupling between additive and multiplicative noises are coloured with different values of noise correlation ...The steady-state properties of a bistable system are investigated when both the multiplicative noise and the coupling between additive and multiplicative noises are coloured with different values of noise correlation times T1 and T2. After introducing a dimensionless parameter R(R = α/D, D is the intensity of the multiplicative noise and a is the intensity of the additive noise), and performing the numerical computations, we find the following points: (1) For the case of R 〉 1, A (the intensity of correlation between additive and multiplicative noises), T1 and T2 can induce the stationary probability distribution (SPD) transition from bimodal to unimodal in structure, but for the cases of R _〈 1, the bimodal structure is preserved; (2) a can also induce the SPD transition from bimodal to unimodal in structure; (3) the bimodal structure of the SPD exhibits a symmetrical structure as D increases.展开更多
This paper considers the stochastic resonance in a stochastic bistable system driven by a periodic square-wave signal and a static force as well as by additive white noise and dichotomous noise from the viewpoint of s...This paper considers the stochastic resonance in a stochastic bistable system driven by a periodic square-wave signal and a static force as well as by additive white noise and dichotomous noise from the viewpoint of signal-to-noise ratio. It finds that the signal-to-noise ratio appears as stochastic resonance behaviour when it is plotted as a function of the noise strength of the white noise and dichotomous noise, as a function of the system parameters, or as a function of the static force. Moreover, the influence of the strength of the stochastic potential force and the correlation rate of the dichotomous noise on the signal-to-noise ratio is investigated.展开更多
Bistable Deployable Composite Boom(Bi-DCB)can achieve bistable function by storing and releasing strain energy,which has a good application prospect in space field.For example,it serves as the main support section of ...Bistable Deployable Composite Boom(Bi-DCB)can achieve bistable function by storing and releasing strain energy,which has a good application prospect in space field.For example,it serves as the main support section of deployable structures(e.g.,solar arrays and antennas).This paper investigates folding stable state of Bi-DCB through the analytical method.Based on Archimedes’helix and energy principle,an analytical model for predicting folding stable state of Bi-DCB was presented.The failure index of Bi-DCB in folding stable state were analyzed using the Tsai-Hill criterion and the maximum stress criterion.Then,a 2400 mm long Bi-DCB was fabricated using autoclave method.The prediction results of the proposed model were compared with experiments and results of two other analytical models.It is shown that the proposed model shows good prediction accuracy.Finally,the effect of geometric parameters on folding stable state of Bi-DCB was further investigated with the aid of the proposed model.展开更多
The asymmetric effects on the escape rates from the stable states x±in the bistable system are analyzed. The results indicate that the multiplicative noise and the additive noise always enhance the particle escap...The asymmetric effects on the escape rates from the stable states x±in the bistable system are analyzed. The results indicate that the multiplicative noise and the additive noise always enhance the particle escape from stable states x±of bistable.However,the asymmetric parameter r enhances the particle escape from stable state x_+,and holds back the particle escape from stable state x_-.展开更多
To boost the performance of 4-ary pulse amplitude modulated(PAM) at low signal-to-noise ratio(SNR), bistable stochastic resonance(BSR) system is introduced into digital communications system and get a reliable signal ...To boost the performance of 4-ary pulse amplitude modulated(PAM) at low signal-to-noise ratio(SNR), bistable stochastic resonance(BSR) system is introduced into digital communications system and get a reliable signal detection scheme. In this paper, we first analyse BSR system for different amplitudes of 4-ary PAM signals. The steadystate of the bistable system will be statistically distinct, and the feasibility of the proposed detection scheme is confirmed. On this basis, we present a detailed study on steady-state transitions of the BSR system, and an explicit expression of the bistable system parameters is derived. By setting the bistable system parameters, bistable system, 4-ary PAM signal, and noise reach the resonance state, and the BSR-based detection scheme is implemented. Moreover, we derive an analytical expression to calculate the symbol error rate(SER) of 4-ary PAM signals with the BSR-based detection under additive white Gaussian noise(AWGN). Finally, the simulation results validate that BSR-based detection scheme can improve the detection performance while efficiently reducing the symbol error rate.展开更多
The snap-through behaviors and nonlinear vibrations are investigated for a bistable composite laminated cantilever shell subjected to transversal foundation excitation based on experimental and theoretical approaches....The snap-through behaviors and nonlinear vibrations are investigated for a bistable composite laminated cantilever shell subjected to transversal foundation excitation based on experimental and theoretical approaches.An improved experimental specimen is designed in order to satisfy the cantilever support boundary condition,which is composed of an asymmetric region and a symmetric region.The symmetric region of the experimental specimen is entirely clamped,which is rigidly connected to an electromagnetic shaker,while the asymmetric region remains free of constraint.Different motion paths are realized for the bistable cantilever shell by changing the input signal levels of the electromagnetic shaker,and the displacement responses of the shell are collected by the laser displacement sensors.The numerical simulation is conducted based on the established theoretical model of the bistable composite laminated cantilever shell,and an off-axis three-dimensional dynamic snap-through domain is obtained.The numerical solutions are in good agreement with the experimental results.The nonlinear stiffness characteristics,dynamic snap-through domain,and chaos and bifurcation behaviors of the shell are quantitatively analyzed.Due to the asymmetry of the boundary condition and the shell,the upper stable-state of the shell exhibits an obvious soft spring stiffness characteristic,and the lower stable-state shows a linear stiffness characteristic of the shell.展开更多
N-dodecanethiol capped zinc sulfide(Zn S) nanocrystals were synthesized by the one-pot approach and blended with poly(N-vinylcarbazole)(PVK) to fabricate electrical bistable devices. The corresponding devices di...N-dodecanethiol capped zinc sulfide(Zn S) nanocrystals were synthesized by the one-pot approach and blended with poly(N-vinylcarbazole)(PVK) to fabricate electrical bistable devices. The corresponding devices did exhibit electrical bistability and negative differential resistance(NDR) effects. A large ON/OFF current ratio of 104 at negative voltages was obtained by applying different amplitudes of sweeping voltage. The observed conductance switching and the negative differential resistance are attributed to the electric-field-induced charge transfer between the nanocrystals and the polymer,and the charge trapping/detrapping in the nanocrystals.展开更多
In this paper, the effect of every parameter (including p, q, r, λ, τ) on the mean first-passage time (MFPT) is investigated in an asymmetric bistable system driven by colour-correlated noise. The expression of ...In this paper, the effect of every parameter (including p, q, r, λ, τ) on the mean first-passage time (MFPT) is investigated in an asymmetric bistable system driven by colour-correlated noise. The expression of MFPT has been obtained by applying the steepest-descent approximation. Numerical results show that (1) the intensity of multiplicative noise p and the intensity of additive noise q play different roles in the MFPT of the system, (2) suppression appears on the curve of the MFPT with small λ (e.g. λ 〈 0.5) but there is a peak on the curve of the MFPT when λ is big (e.g. λ 〉 0.5), and (3) with different values of r (e.g. r = 0.1, 0.5, 1.5), the effort of τ on the MFPT is diverse.展开更多
By the method of the stochastic energetics,we investigate the stochastic resonance (SR) phenomenon of anoverdamped Brown particle in an asymmetric bistable potential,driven by external periodical signal and multiplica...By the method of the stochastic energetics,we investigate the stochastic resonance (SR) phenomenon of anoverdamped Brown particle in an asymmetric bistable potential,driven by external periodical signal and multiplicativenoise.The expressions have been obtained for the quasi-steady-state probability distribution function.It is found thatthe input energy (IE) pumped into the system by the external driving shows an SR-like behavior as a function of thenoise strength,whereas the IE turns to be a monotonic function of the correlation time of the noise.The effect ofpotential asymmetry is also studied on SR and IE.展开更多
The mean first-passage time of a bistable system with time-delayed feedback driven by multiplicative non-Gaussian noise and additive Gaussian white noise is investigated. Firstly, the non-Markov process is reduced to ...The mean first-passage time of a bistable system with time-delayed feedback driven by multiplicative non-Gaussian noise and additive Gaussian white noise is investigated. Firstly, the non-Markov process is reduced to the Markov process through a path-integral approach; Secondly, the approximate Fokker-Planck equation is obtained by applying the unified coloured noise approximation, the small time delay approximation and the Novikov Theorem. The functional analysis and simplification are employed to obtain the approximate expressions of MFPT. The effects of non-Gaussian parameter (measures deviation from Gaussian character) r, the delay time τ, the noise correlation time to, the intensities D and a of noise on the MFPT are discussed. It is found that the escape time could be reduced by increasing the delay time τ, the noise correlation time τ0, or by reducing the intensities D and α. As far as we know, this is the first time to consider the effect of delay time on the mean first-passage time in the stochastic dynamical system.展开更多
基金supported by the Guangdong Province Basic and Applied Basic Research Fund(Grant No.2025A1515011975)the research project of Guangdong University of Technology(Grant No.2023SDKYA010)for their funding.
文摘Bistable beams,with their characteristic recoverable elastic large deformations,are widely utilized in reversible deformation designs.However,analytical modeling of bistable beams under third-order mode deformation remains a challenge.For example,theoretical research on bistable beams in existing energy-consuming materials has focused mainly on the deformation process of the second-order mode.To address this challenge,the present work establishes an analytical model for the deformation process of a bistable beam from the first-order mode to the third-order mode via the elliptic integral method.Additionally,judgment conditions for identifying the critical points of modal transitions are provided.Second,the analytical model allows for the calculation of the maximum instability force and the unstable equilibrium position when third-order mode deformation occurs in the bistable beam during the snap-through process.The unstable equilibrium position of the bistable beam during third-order mode deformation is significantly lower than the positions of the two fixed ends.The validity of the analytical model was confirmed through experiments and finite element modeling.In the compression experiments of bistable beams with identical dimensional parameters presented in the present work,the work done by the external force during the third-order mode deformation process is 2 times that of the second-order mode deformation process.This will provide a completely new approach for the design of energy-consuming materials based on bistable beams.
基金supported by Sichuan Provincial Department of Science and Technology Key Research and Development Program in High-Tech Fields(2022YFG0240).
文摘Pneumatic soft robots have undergone significant advancements in recent years.However,the majority of robot motion control still relies on electronic computers to regulate the valves and air pumps.Despite the potential reduction in controller dependency by utilizing soft pneumatic oscillators,challenges such as low flow rates,complex manufacturing processes,and lack of adjustment ability persist.Inspired by the geckos'spine,we propose a Spinal Bistable Oscillator(SBO)that operates without discrete components or electronic control hardware,achieving stable oscillatory motion under constant air pressure.This oscillator employs a soft control valve and lagging pin,which can switch the direction of airflow conduction based on the oscillation angle of the spine.Different types of actuators can be controlled using a series connection.In this study,the effective working range of the soft control valve,influence of the spring pretension force on the torque during oscillation,and effect of different throttle tube lengths on the oscillation frequency were investigated.Furthermore,a self-crawling robot was developed.Experimental results demonstrate that the robot can crawl at speeds ranging from 3.6 to 5.7 mm/s(or 3.1 to 4.9 body length/min)and overcome its own gravity(with a weight of 165 g)to climb vertically.The SBO proposed in this study exhibits characteristics of lightweight,low cost,high oscillation torque,and tunable frequency.It holds promise for application in joint control of future pneumatic soft robots.
文摘The AgTCNQ thin-film was prepared by vacuum vapor co-deposition and characterized by infrared spectral analysis,and then a uniform AgTCNQ (TCNQ-- 7,7,8,8-tetracyanoquinodimethane) thin-film layer was sandwiched in a Ti/AgTCNQ/Ati crossbar structure array as organic bistable devices (OBD).A reversible and reproducible memory switching property,caused by intermolecular charge transfer (CT) in the AgTCNQ thin-film, was observed in the organic bista- ble devices. The positive threshold voltage from the high impedance state to the low impedance was about 3.8-5V, with the reverse phenomenon occurring at a negative voltage of - 3.5- - 4. 4V,lower than that with a CuTCNQ active layer. The crossbar array of OBDs with AgTCNQ is promising for nonvolatile organic memory applications.
基金supported by the National Natural Science Foundation of China(Grants 11772008,11172009,11372015,11232009,10872010,11290152,10732020)the Tianjin Natural Science Foundation(Grant 19JCZDJC32300).
文摘This paper presents an experimental study of the broadband energy harvesting and dynamic responses of an L-shaped piezoelectric cantilever beam.Experimental results show that the L-shaped piezoelectric beam generates two optimal voltage peaks when the horizontal beam size is similar to the vertical beam size.Several optimized L-shaped piezoelectric cantilever beam structures are proposed.Power generation using the inverted bistable L-shaped beam is better.It is observed experimentally that the inverted bistable L-shaped beam structure shows obvious bistable characteristics and hard spring characteristics.Furthermore,the corresponding relationship between the bistable phase portrait and the potential energy curve is found in the experiment.This is the first time that a phase portrait for stiffness hardening of an L-shaped beam has been found experimentally.These results can be applied to analysis of new piezoelectric power generation structures.
文摘In this paper we present the control and synchronization of a coupled Bragg acousto-optic bistable map system using nonlinear feedback technology. This nonlinear feedback technology is useful to control a temporally chaotic system as well as a spatiotemporally chaotic system. It can be extended to synchronize the spatiotemporal chaos. It can work in a wide range of the controlled and synchronized signals, so it can decrease the sensitivity down to a noise level. The synchronization can be obtained by the analysis of the largest conditional Lyapunov exponent spectrum, and easily implemented in practical systems just by adjusting the coupled strength without any pre-knowledge of the dynamic system required.
基金supported by the National Natural Science Foundation of China (Grant 11172199)
文摘By applying the second order Melnikov function, the chaos behaviors of a bistable piezoelectric cantilever power generation system are analyzed. Firstly, the conditions for emerging chaos of the system are derived by the second order Melnikov function. Secondly, the effects of each item in chaos threshold expression are analyzed. The excitation frequency and resistance values, which have the most influence on chaos threshold value, are found. The result from the second order Melnikov function is more accurate compared with that from the first order Melnikov function. Finally, the attraction basins of large amplitude motions under different exciting frequency, exciting amplitude, and resistance parameters are given.
基金financial support from the National Science Foundation of the United State (Grants 1752575 and 1644579)
文摘Double-clamped bistable buckled beams demonstrate great versatility in various fields such as robotics,energy harvesting,and microelectromechanical system(MEMS).However,their design often requires time-consuming and expensive computations.In this work,we present a method to easily and rapidly design bistable buckled beams subjected to a transverse point force.Based on the Euler–Bernoulli beam theory,we establish a theoretical model of bistable buckled beams to characterize their snapthrough properties.This model is verified against the results from a finite element analysis(FEA)model,with maximum discrepancy less than 7%.By analyzing and simplifying our theoretical model,we derive explicit analytical expressions for critical behavioral values on the force-displacement curve of the beam.These behavioral values include critical force,critical displacement,and travel,which are generally sufficient for characterizing the snapthrough properties of a bistable buckled beam.Based on these analytical formulas,we investigate the influence of a bistable buckled beam's key design parameters,including its actuation position and precompression,on its critical behavioral values,with our results validated by FEA simulations.Our analytical method enables fast and computationally inexpensive design of bistable buckled beams and can guide the design of complicated systems that incorporate bistable mechanisms.
基金supported by the Doctor Foundation of Southwest University of Science and Technology of China (Grant No. 08zx7108)
文摘This paper investigates the stochastic resonance in a time-delayed bistable system subjected to multiplicative and additive white noise and asymmetric dichotomous noise. Under the adiabatic approximation condition, the expression of the signal-to-noise ratio (SNR) is obtained. It finds that the SNR is a non-monotonic function of the delayed times, of the amplitude of the driving square-wave signal, as well as of the asymmetry of the dichotomous noise. In addition, the SNR varies non-monotonously with the intensities of the multiplicative and additive noise as well as the system parameters. Moreover, the SNR depends non-monotonically on the correlate rate of the dichotomous noise.
基金supported by National Natural Science Foundation of China(Grants 11802071,11902193,and 11625208)Natural Science Foundation of Shanghai(Grant 19ZR1424300).
文摘As two crucial indicators of bistable energy harvesting performance,band width and power amplitude are simultaneously investigated for obtaining the synergy effect.Toward this goal,a nonlinear electromechanical-coupled distributed-parameter model of the bistable piezoelectric energy harvester is established.Based on the electromechanical decoupled method,approximate higher-order analytical solutions of the beam displacement,harvested power and effective bandwidth are derived.The cubic-function discriminant of the analytical solution is introduced to determine the nonlinear excitation-frequency boundaries of multiple solutions and power peak.The stability of the multiple solutions is analyzed through Jacobi matrix of the modulation equation.Superharmonic resonance is notified.Upward and downward sweep experiments and numerical solutions of time history curves,phase portraits and power spectra confirm the analytical findings.To realize optimized broadband energy harvesting,the parametric study on the coefficients of the linear and cubic elastic external forces with the corresponding optimal load resistance is performed.For the nonlinear hardening case,more positive linear coefficient is preferred.For the nonlinear softening case,the cubic coefficient slightly larger than its optimal value is recommended at each given linear coefficient.By tuning the load resistance and linear and cubic coefficients of the external force,broadband bistable energy harvesting with optimized power is realized.
基金Project supported by the National Natural Science Foundation of China(Grant No.11772048)
文摘Stochastic resonance(SR) is studied in an under-damped bistable system driven by the harmonic mixing signal and Gaussian white noise. Using the linear response theory(LRT), the expressions of the spectral amplification at fundamental and higher-order harmonic are obtained. The effects of damping coefficient, noise intensity, signal amplitude, and frequency on spectral amplifications are explored. Meanwhile, the power spectral density(PSD) and signal-to-noise ratio(SNR) are calculated to quantify SR and verify the theoretical results. The SNRs at the first and second harmonics exhibit a minimum first and a maximum later with increasing noise intensity. That is, both of the noise-induced suppression and resonance can be observed by choosing proper system parameters. Especially, when the ratio of the second harmonic amplitude to the fundamental one takes a large value, the SNR at the fundamental harmonic is a monotonic function of noise intensity and the SR phenomenon disappears.
基金Project supported by the National Nature Science Foundation of China (Grant No 10363001) and the project of Baoji University of Sciences and Arts of China (Grant No ZK2508).
文摘The steady-state properties of a bistable system are investigated when both the multiplicative noise and the coupling between additive and multiplicative noises are coloured with different values of noise correlation times T1 and T2. After introducing a dimensionless parameter R(R = α/D, D is the intensity of the multiplicative noise and a is the intensity of the additive noise), and performing the numerical computations, we find the following points: (1) For the case of R 〉 1, A (the intensity of correlation between additive and multiplicative noises), T1 and T2 can induce the stationary probability distribution (SPD) transition from bimodal to unimodal in structure, but for the cases of R _〈 1, the bimodal structure is preserved; (2) a can also induce the SPD transition from bimodal to unimodal in structure; (3) the bimodal structure of the SPD exhibits a symmetrical structure as D increases.
基金Project supported by the Doctorial Foundation of Southwest University of Science and Technology of China(Grant No.08zx7108)
文摘This paper considers the stochastic resonance in a stochastic bistable system driven by a periodic square-wave signal and a static force as well as by additive white noise and dichotomous noise from the viewpoint of signal-to-noise ratio. It finds that the signal-to-noise ratio appears as stochastic resonance behaviour when it is plotted as a function of the noise strength of the white noise and dichotomous noise, as a function of the system parameters, or as a function of the static force. Moreover, the influence of the strength of the stochastic potential force and the correlation rate of the dichotomous noise on the signal-to-noise ratio is investigated.
基金supported by the National Natural Science Foundation of China(No.52275231)the National Defense Basic Scientific Research Program of China(No.JCKY2019205C002).
文摘Bistable Deployable Composite Boom(Bi-DCB)can achieve bistable function by storing and releasing strain energy,which has a good application prospect in space field.For example,it serves as the main support section of deployable structures(e.g.,solar arrays and antennas).This paper investigates folding stable state of Bi-DCB through the analytical method.Based on Archimedes’helix and energy principle,an analytical model for predicting folding stable state of Bi-DCB was presented.The failure index of Bi-DCB in folding stable state were analyzed using the Tsai-Hill criterion and the maximum stress criterion.Then,a 2400 mm long Bi-DCB was fabricated using autoclave method.The prediction results of the proposed model were compared with experiments and results of two other analytical models.It is shown that the proposed model shows good prediction accuracy.Finally,the effect of geometric parameters on folding stable state of Bi-DCB was further investigated with the aid of the proposed model.
基金Supported by the Natural Science Foundation of China under Grant No.10865006the Natural Science Foundation of Shaanxi Province under Grant No.2010JQ1014the Science Foundation of Baoji University of Science and Arts of China under Grant No.ZK0954
文摘The asymmetric effects on the escape rates from the stable states x±in the bistable system are analyzed. The results indicate that the multiplicative noise and the additive noise always enhance the particle escape from stable states x±of bistable.However,the asymmetric parameter r enhances the particle escape from stable state x_+,and holds back the particle escape from stable state x_-.
基金supported by the National Natural Science Foundation of China (61631015, 61501354, 61501356, and 61573202)the Fundamental Research Funds of the Ministry of Education (7215433803)+5 种基金the Foundation of State Key Laboratory of Integrated Services Networks (ISN1101002)Higher School Subject Innovation Engineering Plan (B08038)Science and Technology Innovation Team Key Plan of Shaanxi Province (2016KCT-01)The Fundamental Research Funds of the Ministry of Education, China (Grant No. JB160101)The Key Laboratory Foundation of Ministry of Industry and Information Technology (KF20181912)China Postdoctoral Science Foundation (2018M631122)
文摘To boost the performance of 4-ary pulse amplitude modulated(PAM) at low signal-to-noise ratio(SNR), bistable stochastic resonance(BSR) system is introduced into digital communications system and get a reliable signal detection scheme. In this paper, we first analyse BSR system for different amplitudes of 4-ary PAM signals. The steadystate of the bistable system will be statistically distinct, and the feasibility of the proposed detection scheme is confirmed. On this basis, we present a detailed study on steady-state transitions of the BSR system, and an explicit expression of the bistable system parameters is derived. By setting the bistable system parameters, bistable system, 4-ary PAM signal, and noise reach the resonance state, and the BSR-based detection scheme is implemented. Moreover, we derive an analytical expression to calculate the symbol error rate(SER) of 4-ary PAM signals with the BSR-based detection under additive white Gaussian noise(AWGN). Finally, the simulation results validate that BSR-based detection scheme can improve the detection performance while efficiently reducing the symbol error rate.
基金Project supported by the National Natural Science Foundation of China(Nos.11832002 and 12072201)。
文摘The snap-through behaviors and nonlinear vibrations are investigated for a bistable composite laminated cantilever shell subjected to transversal foundation excitation based on experimental and theoretical approaches.An improved experimental specimen is designed in order to satisfy the cantilever support boundary condition,which is composed of an asymmetric region and a symmetric region.The symmetric region of the experimental specimen is entirely clamped,which is rigidly connected to an electromagnetic shaker,while the asymmetric region remains free of constraint.Different motion paths are realized for the bistable cantilever shell by changing the input signal levels of the electromagnetic shaker,and the displacement responses of the shell are collected by the laser displacement sensors.The numerical simulation is conducted based on the established theoretical model of the bistable composite laminated cantilever shell,and an off-axis three-dimensional dynamic snap-through domain is obtained.The numerical solutions are in good agreement with the experimental results.The nonlinear stiffness characteristics,dynamic snap-through domain,and chaos and bifurcation behaviors of the shell are quantitatively analyzed.Due to the asymmetry of the boundary condition and the shell,the upper stable-state of the shell exhibits an obvious soft spring stiffness characteristic,and the lower stable-state shows a linear stiffness characteristic of the shell.
基金supported by the National Natural Science Foundation of China(Grant No.61377028)the Natural Science Funds for Distinguished Young Scholar,China(Grant No.61125505)the Fundamental Research Funds for the Central Universities,China(Grant No.2014JBZ009)
文摘N-dodecanethiol capped zinc sulfide(Zn S) nanocrystals were synthesized by the one-pot approach and blended with poly(N-vinylcarbazole)(PVK) to fabricate electrical bistable devices. The corresponding devices did exhibit electrical bistability and negative differential resistance(NDR) effects. A large ON/OFF current ratio of 104 at negative voltages was obtained by applying different amplitudes of sweeping voltage. The observed conductance switching and the negative differential resistance are attributed to the electric-field-induced charge transfer between the nanocrystals and the polymer,and the charge trapping/detrapping in the nanocrystals.
基金Project supported by the National Natural Science Foundation of China (Grants Nos 10472091, 10332030 and 10502042) and the Graduate Starting Seed Fund of Northwestern Polytechnical University (Grant No Z200655).
文摘In this paper, the effect of every parameter (including p, q, r, λ, τ) on the mean first-passage time (MFPT) is investigated in an asymmetric bistable system driven by colour-correlated noise. The expression of MFPT has been obtained by applying the steepest-descent approximation. Numerical results show that (1) the intensity of multiplicative noise p and the intensity of additive noise q play different roles in the MFPT of the system, (2) suppression appears on the curve of the MFPT with small λ (e.g. λ 〈 0.5) but there is a peak on the curve of the MFPT when λ is big (e.g. λ 〉 0.5), and (3) with different values of r (e.g. r = 0.1, 0.5, 1.5), the effort of τ on the MFPT is diverse.
基金The project supported by Doctor Foundation of Panzhihua University under Grant No.B2006-1
文摘By the method of the stochastic energetics,we investigate the stochastic resonance (SR) phenomenon of anoverdamped Brown particle in an asymmetric bistable potential,driven by external periodical signal and multiplicativenoise.The expressions have been obtained for the quasi-steady-state probability distribution function.It is found thatthe input energy (IE) pumped into the system by the external driving shows an SR-like behavior as a function of thenoise strength,whereas the IE turns to be a monotonic function of the correlation time of the noise.The effect ofpotential asymmetry is also studied on SR and IE.
基金National Natural Science Foundation of China under Grant Nos.10472091,10332030,and 10502042
文摘The mean first-passage time of a bistable system with time-delayed feedback driven by multiplicative non-Gaussian noise and additive Gaussian white noise is investigated. Firstly, the non-Markov process is reduced to the Markov process through a path-integral approach; Secondly, the approximate Fokker-Planck equation is obtained by applying the unified coloured noise approximation, the small time delay approximation and the Novikov Theorem. The functional analysis and simplification are employed to obtain the approximate expressions of MFPT. The effects of non-Gaussian parameter (measures deviation from Gaussian character) r, the delay time τ, the noise correlation time to, the intensities D and a of noise on the MFPT are discussed. It is found that the escape time could be reduced by increasing the delay time τ, the noise correlation time τ0, or by reducing the intensities D and α. As far as we know, this is the first time to consider the effect of delay time on the mean first-passage time in the stochastic dynamical system.