期刊文献+
共找到347篇文章
< 1 2 18 >
每页显示 20 50 100
基于GGE-Biplot的甘肃省不同生态区燕麦生产性能及适应性分析 被引量:39
1
作者 慕平 赵桂琴 柴继宽 《中国生态农业学报》 CAS CSCD 北大核心 2015年第6期705-712,共8页
为研究不同燕麦品种在甘肃省不同生态地区的生产性能和适应性,筛选适宜不同产区推广种植的品种,本文从2011—2013年采用7个燕麦品种在甘肃省天祝县、通渭县、夏河县、岷县、安定区、榆中县、合作市等7个不同生态区进行了为期3年的田间试... 为研究不同燕麦品种在甘肃省不同生态地区的生产性能和适应性,筛选适宜不同产区推广种植的品种,本文从2011—2013年采用7个燕麦品种在甘肃省天祝县、通渭县、夏河县、岷县、安定区、榆中县、合作市等7个不同生态区进行了为期3年的田间试验,分析参试材料干草和种子产量、生育期、株高、有效分蘖、穗长、穗粒数、穗粒重等指标的变化情况,利用GGE-Biplot双标图法对供试品种的生产性能及适应性进行了分析。结果表明,种植区生态环境对燕麦的生产性能有显著影响,7个试验点中通渭县的平均种子产量最高,为5 671.3 kg·hm-2,安定区种子产量和干草均最低,分别为1 709.7 kg·hm-2和3 301.2 kg·hm-2。不同品种在不同地区的适应性、丰产性和稳产性差异很大。‘陇燕2号’和‘陇燕3号’在天祝县、岷县、通渭县和榆中县种植可收获较高的青干草产量;‘陇燕1号’、‘陇燕3号’、‘青引2号’在合作市、通渭县、岷县种植可获得较高的种子产量;‘白燕7号’适宜在通渭县生产种子。7个试验点中最具代表性的是通渭县和岷县,通渭县适合干草生产,岷县适合种子生产。GGE-Biplot双标图法可以简便而直观地分析不同燕麦品种在不同利用目的下、不同生态区域的生产性能及其稳定性和试验点的代表性,提高试验效率和试验结果的准确性。 展开更多
关键词 燕麦 生态区域 种子产量 干草产量 农艺性状 生产性能 适应性 GGE-biplot
在线阅读 下载PDF
基于GGE-biplot的大豆根瘤菌抗逆性资源筛选 被引量:8
2
作者 王金生 王君 +3 位作者 吴俊江 刘庆莉 张鑫 王红蕾 《大豆科学》 CAS CSCD 北大核心 2017年第6期894-899,共6页
为了准确评价大豆根瘤菌在干旱及酸碱环境中的稳定性和适应性,采用GGE双标图对黑龙江省不同生态区分离、鉴定、纯化的7个大豆根瘤菌菌株分别进行耐旱性、耐酸碱性能力分析评价。结果表明:各供试菌株随着PEG6000浓度的增加,菌株生长量均... 为了准确评价大豆根瘤菌在干旱及酸碱环境中的稳定性和适应性,采用GGE双标图对黑龙江省不同生态区分离、鉴定、纯化的7个大豆根瘤菌菌株分别进行耐旱性、耐酸碱性能力分析评价。结果表明:各供试菌株随着PEG6000浓度的增加,菌株生长量均呈现逐渐下降的趋势。GGE双标图分析表明,耐旱性强且稳定性较好的菌株为111-1;供试菌株在耐酸碱性上均有较大优势,菌株在pH3.0和pH12.0的环境条件下均能缓慢生长,并且均在pH9.0的环境条件下生长量最大。GGE双标图分析得出,耐酸性强且稳定性较好的菌株为112-2,耐碱性强且稳定性较好的菌株为111-3。该结果对适于黑龙江地区不同环境条件下大豆根瘤菌的应用具有重要的指导意义。 展开更多
关键词 大豆根瘤菌 耐旱性 耐酸碱性 GGE双标图
原文传递
The Application of GGE Biplot Analysis for Evaluating Test Locations and Mega-Environment Investigation of Cotton Regional Trials 被引量:16
3
作者 XU Nai-yin Fok Michel +2 位作者 ZHANG Guo-wei LI Jian ZHOU Zhi-guo 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2014年第9期1921-1933,共13页
In the process to the marketing of cultivars, identification of superior test locations within multi-environment variety trial schemes is of critical relevance. It is relevant to breeding organizations as well as to g... In the process to the marketing of cultivars, identification of superior test locations within multi-environment variety trial schemes is of critical relevance. It is relevant to breeding organizations as well as to governmental organizations in charge of cultivar registration. Where competition among breeding companies exists, effective and fair multi-environment variety trials are of utmost importance to motivate investment in breeding. The objective of this study was to use genotype main effect plus genotype by environment interaction(GGE) biplot analysis to evaluate test locations in terms of discrimination ability, representativeness and desirability, and to investigate the presence of multiple mega-environments in cotton production in the Yangtze River Valley(YaRV), China. Four traits(cotton lint yield, fiber length, lint breaking tenacity, micronaire) and two composite selection indices were considered. It was found that the assumption of a single mega-environment in the YaRV for cotton production does not hold. The YaRV consists of three cotton mega-environments: a main one represented by 11 locations and two minor ones represented by two test locations each. This demands that the strategy of cotton variety registration or recommendation must be adjusted. GGE biplot analysis has also led to the identification of test location superior for cotton variety evaluation. Although test location desirable for selecting different traits varied greatly, Jinzhou, Hubei Province, China, was found to be desirable for selecting for all traits considered while Jianyang, Sichuan Province, China, was found to be desirable for none. 展开更多
关键词 COTTON multi-environmental trial GGE biplot test location mega-environment
在线阅读 下载PDF
GGE biplot analysis of yield stability and test location representativeness in proso millet (Panicum miliaceum L.) genotypes 被引量:14
4
作者 ZHANG Pan-pan SONG Hui +8 位作者 KE Xi-wang JIN Xi-jun YIN Li-hua LIU Yang QU Yang SU Wang FENG Nai-jie ZHENG Dian-feng FENG Bai-li 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2016年第6期1218-1227,共10页
The experiments were conducted for three consecutive years across 14 locations using 9 non-waxy proso millet genotypes and 16 locations using 7 waxy proso millet genotypes in China. The objectives of this study were t... The experiments were conducted for three consecutive years across 14 locations using 9 non-waxy proso millet genotypes and 16 locations using 7 waxy proso millet genotypes in China. The objectives of this study were to analyze yield stability and adaptability of proso millets and to evaluate the discrimination and representativeness of locations by analysis of vari- ance (ANOVA) and genotype and genotype by environment interaction (GGE) biplot methods. Grain yields of proso millet genotypes were significantly influenced by environment (E), genotype (G) and their interaction (GxE) (P〈0.1%). GxE inter- action effect was six times higher than G effect in non-waxy group and seven times in waxy group. N04-339 in non-waxy and Neimi 6 (NM6) in waxy showed higher grain yields and stability compared with other genotypes. Also, Neimi 9 (NM9, a non-waxy cultivar) and 90322-2-33 (a waxy cultivar) showed higher adaptability in 7 and in 11 locations, respectively. For non-waxy, Dalat, Inner Mongolia (E2) and Wuzhai, Shanxi (E5) were the best sites among all the locations for maximizing the variance among candidate cultivars, and Yanchi, Ningxia (El0) had the best representativeness. Wuzhai, Shanxi (e9) and Yanchi, Ningxia (e14) were the best representative locations, and Baicheng, Jilin (e2) was better discriminating location than others for waxy genotypes. Based on our results, El0 and e14 have enhanced efficiency and accuracy for non-waxy genotypes and waxy genotypes selection, respectively in national regional test of proso millet varieties. 展开更多
关键词 proso millet GGE biplot yield stability test location representativeness
在线阅读 下载PDF
One compound approach combining factor-analytic model with AMMI and GGE biplot to improve multi-environment trials analysis 被引量:7
5
作者 Weihua Zhang Jianlin Hu +1 位作者 Yuanmu Yang Yuanzhen Lin 《Journal of Forestry Research》 SCIE CAS CSCD 2020年第1期123-130,共8页
To improve multi-environmental trial(MET)analysis,a compound method—which combines factor analytic(FA)model with additive main effect and multiplicative interaction(AMMI)and genotype main effect plus genotype-by-envi... To improve multi-environmental trial(MET)analysis,a compound method—which combines factor analytic(FA)model with additive main effect and multiplicative interaction(AMMI)and genotype main effect plus genotype-by-environment interaction(GGE)biplot—was conducted in this study.The diameter at breast height of 36 open-pollinated(OP)families of Pinus taeda at six sites in South China was used as a raw dataset.The best linear unbiased prediction(BLUP)data of all individual trees in each site was obtained by fitting the spatial effects with the FA method from raw data.The raw data and BLUP data were analyzed and compared by using the AMMI and GGE biplot.BLUP results showed that the six sites were heterogeneous and spatial variation could be effectively fitted by spatial analysis with the FA method.AMMI analysis identified that two datasets had highly significant effects on the site,family,and their interactions,while BLUP data had a smaller residual error,but higher variation explaining ability and more credible stability than raw data.GGE biplot results revealed that raw data and BLUP data had different results in mega-environment delineation,test-environment evaluation,and genotype evaluation.In addition,BLUP data results were more reasonable due to the stronger analytical ability of the first two principal components.Our study suggests that the compound method combing the FA method with the AMMI and GGE biplot could improve the analysis result of MET data in Pinus teada as it was more reliable than direct AMMI and GGE biplot analysis on raw data. 展开更多
关键词 Additive main effect and multiplicative interaction Best linear unbiased prediction GGE biplot Genotype by environment interaction Multi-environment trial
在线阅读 下载PDF
Multienvironmental evaluation of wheat landraces by GGE Biplot Analysis for organic breeding 被引量:2
6
作者 Kostas Koutis Athanasios G. Mavromatis +1 位作者 Dimitrios Baxevanos Metaxia Koutsika-Sotiriou 《Agricultural Sciences》 2012年第1期66-74,共9页
This study was conducted to determine the performance of wheat landraces cultivated under organic conditions and to analyze their stability across diverse environments. Six wheat landraces with specific characteristic... This study was conducted to determine the performance of wheat landraces cultivated under organic conditions and to analyze their stability across diverse environments. Six wheat landraces with specific characteristics (high protein content, drought tolerance, stay green) were tested under organic growing environment. The experiments were applied in three locations (Larisa (LAR), Thessaloniki (THES), Kilkis (KIL)) for three growing seasons. The role of specific agronomic traits (stay green, lodging) and their correlation with yield components were analyzed. Stability and genotypic superiority for grain yield were determined using ANOVA and genotype × environment (GGE) biplot analysis. Furthermore, the interrelationships among wheat traits and genotype-by-trait using regression analysis, coefficient of variation and (GT)-biplot technique were studied. Significant differences were found in yield among wheat landraces tested, and also in yield components, as related to specific traits expressed into organic environment. Best varieties in terms of yield were the medium statured landraces Skliropetra and M. Argolidas, characterized by lowest weight of 1000 grains, large number of spikes per m2 meter and the highest number of grains per spike as compared to the other landraces. The statistical model GGE biplot provides useful information for experimentation of wheat landraces when grown under organic environment. It identifies clearly the ideal and representative environment for experimentation and underlines the effect of specific traits for each wheat cultivar on yield performance and stability across environments. 展开更多
关键词 WHEAT LANDRACES Stay Green LODGING GGE biplot ANALYSIS
暂未订购
Cultivar Selection and Test Site Evaluation of Cotton Regional Trials in Jiangsu Province Based on GGE Biplot 被引量:2
7
作者 Jian LI Naiyin XU 《Agricultural Science & Technology》 CAS 2014年第8期1277-1280,1284,共5页
This study was to evaluate the high yielding and stability of candidate cultivars, depict the adaptive planting region, analyze trial location discrim-ination ability and representativeness, as wel as identify the ide... This study was to evaluate the high yielding and stability of candidate cultivars, depict the adaptive planting region, analyze trial location discrim-ination ability and representativeness, as wel as identify the ideal cultivar and trial location, with the aim to provide theory background for cultivar selection and rea-sonable scheme of test location in Jiangsu Province. [Method] The GGE biplot method was used to analyze the lint cotton yield of 12 experimental genotypes in the 6 test locations (three replicates in each) of the cotton regional trial in Jiangsu Province in 2013. [Result] The effects of genotype (G), environment (E), and geno-type by environment interaction (G&#215;E) on lint cotton yield were al highly significant (P〈0.01), which made it necessary to further explore the specific pattern of geno-type by environment interaction. Jinmian118 (G4) and SF3303 (G5) were the best ideal genotypes screened by the "ideal cultivar" and "ideal location" view of GGE biplot, and the ordination of test sites based on the ideal index were in the order of Dafeng (DF), Yanliang (YL), Liuhe (LH), Dongtai (DT), Yancheng (YC), and Nantong (NT), among which NT was relatively weak in representing of the whole target cot-ton planting region in Jiangsu Province. The "similarity among locations" view of GGE biplot clustered al trial locations into one group, showing that the test sites in the cotton planting region in Jiangsu Province were in the same mega-environment. The "which-won-where" view of GGE biplot indicated that cotton cultivar Jinmian118 (G4) was the most appropriate cultivar in the homogeneous cotton planting region in Jiangsu Province. [Conclusion] Among the candidate cultivars, Jinmian118 and SF3303 were identified as the most ideal cultivars in this set of conventional cotton regional trial in Jiangsu Province; the test site of Dafeng ranked the first out of al locations in terms of discrimination and representativeness, and al test locations were clustered into the same mega-environmet, which indicated the high efficiency of cultivar selection in the cotton regional trial in Jiangsu Province. 展开更多
关键词 Cotton (Gossypium hirsutum L.) GGE biplot Discrimination ability REPRESENTATIVENESS Crop regional trial
在线阅读 下载PDF
Biplot Analysis of Genotype by Environment for Cooking Quality in Hybrid Rice: A Tool for Line × Tester Data 被引量:1
8
作者 Mohammad H. FOTOKIAN Kayvan AGAHI 《Rice science》 SCIE 2014年第5期282-287,共6页
A study of combining ability for improving rice cooking quality was carried out via genotype plus genotype x environment (GGE) biplot. Four restorer lines and three male sterile lines were used to obtain F1 in a lin... A study of combining ability for improving rice cooking quality was carried out via genotype plus genotype x environment (GGE) biplot. Four restorer lines and three male sterile lines were used to obtain F1 in a line x tester trial at the Rice Research Institute, Amol, Iran in 2009. GGE biplot analysis showed that Neda and IR56 were the best general combiners for amylose content (AC), whereas Nemat and IR28 had the highest general combining ability (GCA) effects for gelatinization temperature (GT), and IR58 and IR59 showed the highest GCA effects in terms of gel consistency (GC). Meanwhile IR58 and IR59 showed large specific combining ability (SCA) effects for AC, while Neda and SA13 had high SCA effects for GT. Nemat and IR28 had large SCA effects for GC. Because intermediate levels ofAC, GT and GC are ideal, Nemat × IR59 was considered as the best possible cross. Based on these results, the GGE biplot showed good potential for identifying suitable parents, heterotic crosses and the best hybrids in line x tester data. 展开更多
关键词 line x tester trial general combining ability specific combining ability hybrid rice genotype plus genotype x environment biplot
在线阅读 下载PDF
Perform Stability of Isoflavones of Soybean Cultivar Evaluated by Genotype-genotype×environment(GGE) Biplot 被引量:1
9
作者 Han Ying-peng Lian Ming +3 位作者 Wang Jin-yang Wu De-peng Jing Yan Zhao Xue 《Journal of Northeast Agricultural University(English Edition)》 CAS 2019年第4期1-10,共10页
As one of the secondary metabolites,the isoflavones formed during the development of soybean[Glycine max(L.)Merr.]seeds.The total and individual isoflavone contents,a typical quantitative trait,were affected by signif... As one of the secondary metabolites,the isoflavones formed during the development of soybean[Glycine max(L.)Merr.]seeds.The total and individual isoflavone contents,a typical quantitative trait,were affected by significant genotypes of environments(GE)interaction and controlled by many genes with main or minor effects.In the present study,99 soybean cultivars,collected from northeastern China,were used to analyze the isoflavone performances.Genotype-genotype×environment(GGE)biplot software demonstrated an ability to provide information on genetic main effects than solely on phenotypic perform.Highperformance liquid chromatography(HPLC)system was used to extract and determine the isoflavone contents.The results indicated that most genotypes significantly varied among six tested environments.P40(Xiaolimoshidou)was the best-performed genotype with mean performance and stability for glycitein content across six different environments.P88(L-59Peking)was the super genotype with mean performance and stability on each tested environment for daidzein,genistein and the total isoflavone.E5(Gongzhuling in 2016)was the best environment for optimal environmental factor mining.P70(Charleston),P67(Baichengmoshidou)and P50(Jiunong 20)were the optimal genotypes with the highest field among 99 cultivars on each tested environment for genistein.P70(Charleston),P67(Baichengmoshidou)and P14(Hefeng 25)were the optimal genotypes with the highest field among 99 cultivars on each tested environment for daidzein.P40(Xiaolimoshidou),P45(Jinshanchamodou),P33(Dongnong 48)and P56(L-5)were the optimal genotypes with the highest field among 99 cultivars on each tested environment for glycitein.P70(Charleston)and P67(Baichengmoshidou)were the optimal genotypes with the highest field among 99 cultivars on each tested environment for the total isoflavone.GGE biplot was a rational method for stability and adaptation evaluation of soybean isoflavones,and could assist soybean breeder to select a good culture and a suitable tested site.It provided a scientific basis for the establishment of a breeding site and a selection site of soybean isoflavones.This study was valuable to identify genotypes with stable performances of isoflavones of these 99 cultivars for developing new cultivars. 展开更多
关键词 SOYBEAN ISOFLAVONE STABILITY genotype-genotype×environment(GGE)biplot
在线阅读 下载PDF
基于GGE-biplot的大豆耐低磷资源筛选
10
作者 王金生 王君 +3 位作者 吴俊江 刘庆莉 王树林 张鑫 《大豆科学》 CAS CSCD 北大核心 2018年第4期511-516,共6页
为了准确评价大豆耐低磷基因型在不同环境中的稳定性和适应性,采用GGE双标图,通过4种评价指标数据计算耐性因子GGE双标图数学模型对前期鉴定、评价获得的7个大豆耐低磷种质资源分别进行不同环境下耐低磷能力分析评价。结果表明:耐低磷... 为了准确评价大豆耐低磷基因型在不同环境中的稳定性和适应性,采用GGE双标图,通过4种评价指标数据计算耐性因子GGE双标图数学模型对前期鉴定、评价获得的7个大豆耐低磷种质资源分别进行不同环境下耐低磷能力分析评价。结果表明:耐低磷性强且多环境下稳定性较好的品种为丰收24。以地下部干重计算耐性因子双标图显示垦鉴27表现出多环境下稳定的耐低磷性,而以地上部干重为评价指标则显示其耐低磷性较好但并不稳定;同样,以单株磷含量为评价指标显示克交05-1397同样表现出多环境下较稳定的耐低磷性,而以根系活跃吸收表面积评价指标显示其耐低磷性较好但不稳定。因此在利用GGE-biplot筛选耐低磷大豆资源时应结合具体的环境条件。研究结果对适于黑龙江地区不同环境条件下耐低磷大豆的应用具有重要的指导意义。 展开更多
关键词 大豆 耐低磷 GGE双标图
原文传递
Multi-environmental Evaluation of Triticale, Wheat and Barley Genotypes by GGE Biplot Analysis
11
作者 Oguz Bilgin Alpay Balkan +1 位作者 Zahit Kayihan Korkut Ismet Baser 《Journal of Life Sciences》 2018年第1期13-23,共11页
The research was carried out with 9 triticale, 3 bread wheat, 3 durum wheat and 3 barley varieties and advanced lines in Tekirdag, Edime and Silivri locations during three years. In the study, the data obtained from c... The research was carried out with 9 triticale, 3 bread wheat, 3 durum wheat and 3 barley varieties and advanced lines in Tekirdag, Edime and Silivri locations during three years. In the study, the data obtained from combined variance analysis were performed and the significance of the differences between the averages was determined by LSD multiple comparison test. GGE biplot analysis and graphics were made by using the statistical package program. The genotypes G2 and G3 for thousand kernel weight, genotype G1 for the heading time and test weight, genotypes G14 and G15 for the maturation time, number of spikelets per spike and grain weight per spike and G13 for the plant height, spike length and grain yield per hectare decare revealed the highest values. The genotypes G6, GS, G4, G14, G9, G8 and G7 gave lower values than the average in terms of grain yield, whereas the other genotypes gave higher values than the general average. According to biplot graphical results, while locations 1 and 8 were closely related, locations 9, 2 and 7 were positively related to these environments. Although the location 7 is slightly different from the other 4 locations, these 5 locations can be seen as a mega environment. Genotypes G12, G2, G3 and G10 for this mega-environment showed the best performances. According to the results of grain yields obtained from 9 different locations, the location 5 was the most discriminating area while the location 1 was the least discriminating. Location 2 was the best representative location, while locations 4 and 7 were with the lowest representation capability. The locations that are both descriptive and representative are good test locations for the selection of adapted genotypes. Test environments, such as location 8, with low ability to represent are useful for selecting genotypes that perform well in specific regions if the target environments can be subdivided into sub-environments. 展开更多
关键词 GGE biplot genotype mega-environment descriptive location and representative.
在线阅读 下载PDF
Evaluating Varieties and Test Sites in the 2017 Rice Regional Trials of Hubei Province by GGE Biplot Based on Genstat 被引量:11
12
作者 潘高峰 房振兵 +3 位作者 田永宏 陈波 范兵 赵沙沙 《湖北农业科学》 2018年第15期24-27,共4页
为分析水稻区试参试品种的丰产性、稳产性、适应性以及区试地点的代表力和鉴别力,采用Gen Stat软件中的GGE双标图对湖北省2017年水稻区试A组12个参试品种和10个区试地点进行了分析。结果表明,深两优10号、亮两优1212、隆晶优4393、襄优5... 为分析水稻区试参试品种的丰产性、稳产性、适应性以及区试地点的代表力和鉴别力,采用Gen Stat软件中的GGE双标图对湖北省2017年水稻区试A组12个参试品种和10个区试地点进行了分析。结果表明,深两优10号、亮两优1212、隆晶优4393、襄优5327产量较高,亮两优1212、隆晶优4393、聚两优639、深两优10号具有较好的稳产性,襄优5327稳产性较弱,但在生产上仍有推广利用的价值。区试地点沙洋县、黄冈市、孝南区的代表力和鉴别力较强。 展开更多
关键词 水稻 GenStat GGE双标图 品种 区域试验
在线阅读 下载PDF
安大略州大豆的检测地点和性状相关的biplot分析
13
作者 WeikaiYan 向平 《国外作物育种》 2002年第4期51-52,共2页
关键词 多环境试验 产量 相关性 大豆 检测地点 性状 biplot分析
在线阅读 下载PDF
江苏省糯玉米品种产量和品质性状及试点鉴别力分析 被引量:1
14
作者 李小珊 黄忠勤 +1 位作者 刘红伟 苏在兴 《玉米科学》 北大核心 2025年第1期37-45,共9页
以2021-2022年江苏省区域试验中25个糯玉米品种在9个试点的鲜穗产量和品质性状数据为研究对象,应用GGE双标图法分析糯玉米品种的产量及区域适应性,对试点的区分力和代表性进行评价。应用GYT双标图法分析糯玉米品种的品质性状、产量和品... 以2021-2022年江苏省区域试验中25个糯玉米品种在9个试点的鲜穗产量和品质性状数据为研究对象,应用GGE双标图法分析糯玉米品种的产量及区域适应性,对试点的区分力和代表性进行评价。应用GYT双标图法分析糯玉米品种的品质性状、产量和品种×性状间的互作特性,并对参试品种进行综合评价。结果表明,2021年复试品种浙糯208、糯YH1113综合表现优良;2022年复试品种润扬白糯具有较强的地域性,适宜在徐州、淮安等地种植。连甜糯909适应性较强,综合表现优良。泰兴和海门试点的代表性和鉴别力较强,是较为理想的试验点。 展开更多
关键词 糯玉米 试验点 GGE双标图 丰产性 适应性
原文传递
旱地与补灌条件下不同基因型小麦高产稳产性比较
15
作者 孙宪印 张继波 +8 位作者 吕广德 亓晓蕾 孙盈盈 米勇 牟秋焕 尹逊栋 王瑞霞 钱兆国 高明刚 《作物杂志》 北大核心 2025年第4期104-110,共7页
干旱是严重影响小麦(Triticum aestivum L.)生产的普遍性问题。为探讨在干旱胁迫条件下,从不同小麦品系中筛选抗旱性强且具有高产稳产性基因型的方法,于2022-2023年,以14个不同基因型小麦品系为材料进行研究,采用随机区组设计,设置雨养... 干旱是严重影响小麦(Triticum aestivum L.)生产的普遍性问题。为探讨在干旱胁迫条件下,从不同小麦品系中筛选抗旱性强且具有高产稳产性基因型的方法,于2022-2023年,以14个不同基因型小麦品系为材料进行研究,采用随机区组设计,设置雨养和灌溉条件2个处理,每处理3次重复。以小区产量为基础,采用抗旱系数、抗旱指数和GGE双标图比较不同品系产量特性。结果表明,不同基因型品系旱地产量和抗旱指数存在极显著遗传差异;旱地产量、抗旱指数和抗旱系数三者相互间均呈极显著正相关;在方差分析的基础上,比较不同基因型品系的丰产性参数、稳产性参数及在GGE双标图中的位置,筛选出V14和V2为高产稳产基因型。因此,在旱地和补灌条件下,抗旱参数比较结合GGE分析的方法可以用于更好地评价不同基因型小麦的抗旱性、高产稳产性及适应性。 展开更多
关键词 小麦 干旱胁迫 抗旱性参数 双标图 高产 稳产
原文传递
基于R语言GGE双标图的强筋小麦新麦58丰产稳产性和适应性综合分析
16
作者 李晓航 王映红 +1 位作者 付亮 蒋志凯 《种子》 北大核心 2025年第8期136-144,166,共10页
小麦新品种推广和应用的重要参考指标包括其丰产性、稳产性和适应性。利用R语言的GGE双标图法分析新麦58在2021-2022年度生产试验(黄淮南部麦区)的产量数据,同时结合方差分析、变异系数、高稳系数、适应度和离优度等方法综合分析其连续... 小麦新品种推广和应用的重要参考指标包括其丰产性、稳产性和适应性。利用R语言的GGE双标图法分析新麦58在2021-2022年度生产试验(黄淮南部麦区)的产量数据,同时结合方差分析、变异系数、高稳系数、适应度和离优度等方法综合分析其连续三年的审定试验结果,以便提高对适应性、丰产稳产性及试点区分力评价的可靠性。结果表明,新麦58在陕西省宝鸡市、河南省郑州市和辉县表现出最强的适应性,其丰产稳产性综合排序第4,优于对照品种周麦18;河南原阳和江苏徐州是代表性和鉴别力均较强的试验地点;2019-2021年度新麦58较对照品种周麦18分别增产3.26%、3.84%和5.69%,差异极显著,其丰产性较好;高稳系数分别为86.3%、85.8%和87.9%,均高于对照品种周麦18,具有良好的稳产性;适应度和离优度分析结果说明不同试点条件下新麦58的适应性较强。 展开更多
关键词 新麦58 GGE双标图 丰产稳产性 适应性
在线阅读 下载PDF
河南省不同生态区玉米品种密度效应及稳产适应性分析
17
作者 丁勇 宋淼 +6 位作者 张留声 穆心愿 乔江方 刘桂珍 李会勇 张香粉 夏来坤 《南方农业学报》 北大核心 2025年第5期1589-1602,共14页
【目的】研究河南省不同生态区玉米品种密度效应及稳产适应性,为筛选高产广适玉米品种,构建河南省夏玉米种植密度优化布局方案提供参考依据。【方法】于2022—2023年在河南省6个生态区(环境)进行大田试验,采用裂区试验设计,主处理为密度... 【目的】研究河南省不同生态区玉米品种密度效应及稳产适应性,为筛选高产广适玉米品种,构建河南省夏玉米种植密度优化布局方案提供参考依据。【方法】于2022—2023年在河南省6个生态区(环境)进行大田试验,采用裂区试验设计,主处理为密度,共4个水平,分别为60000、67500、75000、82500株/ha(仅2023年);副处理为品种,为14个黄淮海地区和河南省近年来审定的玉米新品种。通过方差分析、高稳系数法、AMMI模型和GGE双标图分析、相关分析及二次多项式回归模型等方法,系统评估玉米品种适应性、产量构成因素及密度响应特征。【结果】种植密度、环境和品种、两两交互作用及三者的共同交互作用均对夏玉米产量、穗行数、行粒数、百粒重有不同程度的影响,2022和2023年环境对夏玉米产量变异的解释比例较高,分别为27.91%和43.18%,品种次之,解释比例分别为9.76%和10.19%,密度最小,解释比例分别为1.54%和2.25%。不同环境下,2022年夏玉米产量表现为南阳>漯河>商丘>洛阳>安阳>周口,2023年表现为南阳>周口>洛阳>商丘>安阳>漯河。基于高稳系数法、AMMI模型和GGE双标图分析结果显示,京科999、秋乐368、中科玉505、郑单5179等玉米品种丰产性较好,适合河南省种植,安阳和商丘较其他环境有较强的品种区分能力。产量与株高、穗位高、穗长、穗行数和行粒数均呈显著(P<0.05)或极显著(P<0.01或P<0.001)正相关,与倒伏倒折率呈极显著(P<0.001)负相关。河南省通过合理的品种选择可以实现增产,但并不是所有地区都适合增密,二次多项式回归分析结果显示,河南省夏玉米最优种植密度为71823.56株/ha,理论产量为9358.10 kg/ha。【结论】合理的种植密度与品种搭配是提高河南省夏玉米产量的关键。河南省夏玉米最适宜种植密度为71823.56株/ha,适合种植的高产稳产品种为京科999和秋乐368。 展开更多
关键词 夏玉米 耐密性 品种—环境互作 AMMI模型 GGE双标图 籽粒产量 河南省
在线阅读 下载PDF
大豆双品种高矮秆混合种植模式生态优势评价
18
作者 韩凌 唐晓东 +6 位作者 王金生 吴俊江 王家军 张瑞萍 马力 周野 季妮娜 《大豆科学》 北大核心 2025年第4期86-91,共6页
为准确评价大豆双品种高矮秆混合种植模式中不同配置组合的生态优越性,本研究以黑龙江省主栽大豆品种黑农63和黑农311为材料,利用株高差构建5种高矮秆配置模式,以不同配置区叶面积指数、田间透光率、土壤含水率及土壤容重作为生态指标,... 为准确评价大豆双品种高矮秆混合种植模式中不同配置组合的生态优越性,本研究以黑龙江省主栽大豆品种黑农63和黑农311为材料,利用株高差构建5种高矮秆配置模式,以不同配置区叶面积指数、田间透光率、土壤含水率及土壤容重作为生态指标,采用GGE双标图模型分析方法对不同高秆和矮秆配置进行生态优越性综合评价。结果显示:双品种混合种植模式,无论高秆还是矮秆品种如何搭配叶面积指数均高于高秆和矮秆单种模式。其中,1∶1配置和2∶2配置及4∶2配置较为明显;1∶1配置和2∶2配置高秆区叶面积指数分别为4.227和4.130,均显著高于高秆单种对照区和其他配置区,2∶2配置矮秆区叶面积指数为4.163,与1∶1配置和4∶2配置的矮秆区叶面积指数差异不显著,但显著高于其他配置处理及矮秆单种处理;所有配置处理高秆区的透光率差异不大。4∶4配置矮秆区的透光率为0.0845,与4∶2配置处理、2∶4配置处理之间的透光率差异不大,但显著高于其他配置处理及矮秆品种单种处理;所有配置处理高秆区土壤含水率之间差异不大,但均显著高于高秆品种单种处理。4∶4配置矮秆区的土壤含水率最高,为0.1437,显著高于1∶1配置矮秆区的土壤含水率,但与其他配置处理及矮秆品种单种处理之间差异不大。所有配置高秆区土壤容重均显著低于高秆品种单种处理区。其中,2∶2配置高秆区的土壤容重最低,为1.016 g·cm^(-2),2∶2配置矮秆区和4∶4配置矮秆区的土壤容重较低,分别为1.012和1.010 g·cm^(-2),两者之间差异不大,但显著低于其他配置处理及矮秆品种单种处理。双标图综合对比得出生态优越性突出且生态指标稳定性强的模式为高秆和矮秆2∶2配置。研究结果为大豆双品种高矮秆混合种植技术的应用提供了重要的科学依据。 展开更多
关键词 大豆 双品种高矮秆混合种植模式 GGE双标图 生态指标
原文传递
基于GGE双标图评价小麦京农72的丰产性、稳产性和适应性
19
作者 高新欢 马巧云 +3 位作者 陈现朝 侯起岭 张立平 王汉霞 《种子》 北大核心 2025年第4期204-209,共6页
为更准确地评价小麦品种京农72的丰产性、稳产性和适应性,提高育种效率,采用GGE Biplot双标图,对2020-2021年国家北部冬麦区水地组区域试验中各参试品种进行评价。结果表明,京农72在平均环境轴上垂足最接近正方向,丰产性较好;在平均环... 为更准确地评价小麦品种京农72的丰产性、稳产性和适应性,提高育种效率,采用GGE Biplot双标图,对2020-2021年国家北部冬麦区水地组区域试验中各参试品种进行评价。结果表明,京农72在平均环境轴上垂足最接近正方向,丰产性较好;在平均环境轴投影距离较短,稳产性较好。京农72距离理想品种较近,表现出较好的高产稳产性,适宜种植区域涵盖北部冬麦区绝大部分区域。研究表明,在北部冬麦区水地组区域试验参试品种中,京农72是兼有丰产、稳产和广适性的理想小麦品种,具有较好的推广价值。 展开更多
关键词 小麦 京农72 GGE双标图 丰产性 稳产性 适应性
在线阅读 下载PDF
基于BLUP和GGE双标图的谷子区域试验分析
20
作者 王淑君 邢璐 《河南农业科学》 北大核心 2025年第8期51-59,共9页
为准确筛选丰产性、稳产性好和适应性广的谷子品种,利用最佳线性无偏预测(BLUP)数据代替产量原始数据对2023—2024年全国谷子品种区域适应性联合鉴定(华北夏谷区组)试验的9个谷子品种和14个试点进行GGE双标图分析。通过对比热图和方差... 为准确筛选丰产性、稳产性好和适应性广的谷子品种,利用最佳线性无偏预测(BLUP)数据代替产量原始数据对2023—2024年全国谷子品种区域适应性联合鉴定(华北夏谷区组)试验的9个谷子品种和14个试点进行GGE双标图分析。通过对比热图和方差分析结果发现,BLUP数据降低了产量变异系数,能够更真实地反映品种的遗传潜力;同时,对产量总变异的解释(94.95%)明显高于原始数据(72.51%),提高了分析的准确性。利用BLUP数据进行GGE双标图分析发现,豫谷101、郑谷678和中谷855丰产性较好,邯谷6号、中谷855和沧471稳产性较好,豫谷101、中谷855丰产性和稳产性综合表现较好;豫谷101适应性最广,其次是中谷855。辽宁省的锦州、山东省的泰安和河南省的安阳3个试点是具有较强区分力和较好代表性的理想试点。综上,豫谷101、中谷855是丰产性、稳产性、适应性均较好的理想谷子品种,适合在华北夏谷区推广种植。 展开更多
关键词 谷子 最佳线性无偏预测(BLUP) GGE双标图 丰产性 稳产性 适应性
在线阅读 下载PDF
上一页 1 2 18 下一页 到第
使用帮助 返回顶部