车联网的多数应用会产生大量数据且需在有限时间内处理完这些数据,但车辆自身资源有限,很难及时处理这些数据。基于权重二分图的路侧单元资源分配(resources allocation based on weighted bipartite graph, RAWB)算法,可提升处理数据...车联网的多数应用会产生大量数据且需在有限时间内处理完这些数据,但车辆自身资源有限,很难及时处理这些数据。基于权重二分图的路侧单元资源分配(resources allocation based on weighted bipartite graph, RAWB)算法,可提升处理数据的速度。RAWB算法通过引入虚拟机平衡路侧单元(road side units, RSUs)间的负载,将RSUs与虚拟机的匹配问题构建成虚拟机的分配问题,然后利用权重二分图法求解,实现最优的虚拟机调度,进而降低了任务的成本。仿真结果表明,RAWB算法降低了数据处理时延和任务成本。展开更多
For a graph G, if E(G) can be partitioned into several pairwise disjoint sets as{E1 , E2,...,El } such that the subgraph induced by Ei is a tree of order ki ) (i = 1, 2,... , l),then G is said to have a {k1, k2, ..., ...For a graph G, if E(G) can be partitioned into several pairwise disjoint sets as{E1 , E2,...,El } such that the subgraph induced by Ei is a tree of order ki ) (i = 1, 2,... , l),then G is said to have a {k1, k2, ..., kl }-tree-decomposition, denoted by { k1, k2 ,..., Kl } G.For k 1 and l 0, a collection (k,l) is the set of multigraphs such that G e Q(k,l)if and only if e(G) = k(G - 1) - l and (H) max{(k - 1)(H - 1),k(H -1) -l}for any subgraph H of G. We Prove that (1) If k 2,0 l 3 and G Q(k,l) oforder + 1, then {n,n,...,n -- l} E G. (2) If 2 and G (k,2) of ordern 3, then {n,n, ...,n,n-- 2} E G and {n,n,.. -1,n - 1} G. (3) If 3 andG g(k,3) of order n 4, then {n, n,... n,n-- 3} G ) {n,n,.., n,n-- 1,n -- 2} Gand {n,n,... n,n -- 1,n -- 1,n -- 1} G.展开更多
文摘车联网的多数应用会产生大量数据且需在有限时间内处理完这些数据,但车辆自身资源有限,很难及时处理这些数据。基于权重二分图的路侧单元资源分配(resources allocation based on weighted bipartite graph, RAWB)算法,可提升处理数据的速度。RAWB算法通过引入虚拟机平衡路侧单元(road side units, RSUs)间的负载,将RSUs与虚拟机的匹配问题构建成虚拟机的分配问题,然后利用权重二分图法求解,实现最优的虚拟机调度,进而降低了任务的成本。仿真结果表明,RAWB算法降低了数据处理时延和任务成本。
文摘For a graph G, if E(G) can be partitioned into several pairwise disjoint sets as{E1 , E2,...,El } such that the subgraph induced by Ei is a tree of order ki ) (i = 1, 2,... , l),then G is said to have a {k1, k2, ..., kl }-tree-decomposition, denoted by { k1, k2 ,..., Kl } G.For k 1 and l 0, a collection (k,l) is the set of multigraphs such that G e Q(k,l)if and only if e(G) = k(G - 1) - l and (H) max{(k - 1)(H - 1),k(H -1) -l}for any subgraph H of G. We Prove that (1) If k 2,0 l 3 and G Q(k,l) oforder + 1, then {n,n,...,n -- l} E G. (2) If 2 and G (k,2) of ordern 3, then {n,n, ...,n,n-- 2} E G and {n,n,.. -1,n - 1} G. (3) If 3 andG g(k,3) of order n 4, then {n, n,... n,n-- 3} G ) {n,n,.., n,n-- 1,n -- 2} Gand {n,n,... n,n -- 1,n -- 1,n -- 1} G.